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Abstract

The most significant aspect of a geochemical exploration program is to define and separate the anomalous
values from the background. In the past decades, geochemical anomalies have been identified by means of
various methods. Most of the conventional statistical methods aiming at defining the geochemical
concentration thresholds for separating anomalies from the background have limited the efficiency in the
areas with complex geological settings. In this work, three methods including the Concentration-Area (C-A)
and Spectrum-Area (S-A) fractal models, and the U-statistic method are applied to identify the geochemical
anomalies in Avanj porphyry system due to a complex geological and tectonic setting. The results obtained
show that the S-A and U-statistic methods present more acceptable outputs than the C-A method. The C-A
model acts well to identify the geochemical anomalies within a region including a simple geochemical
background; however, the model has limitations within a region including a complex geological setting,
where each sub-area is characterized by different geochemical fields. The U-statistic method, by considering
the location of sampling points, their spatial relation, and radius of influence for each point in the estimation
of anomaly location, overcomes the limitations of the C-A model. The S-A model is a powerful tool to
decompose mixed geochemical patterns into a geochemical anomaly map and a varied geochemical
background map. The output of this method shows the analysis of geochemical data in the frequency
domain, which can provide new exploratory information that may not be revealed in the spatial domain.
Eventually, it can be pointed out that the accuracy of the S-A fractal model for determining the thresholds is
higher than the other two methods mentioned.

Keywords: C-A Fractal, S-A Multi-Fractal, Geochemical Anomaly, Anomaly Separation, U-Statistic, Avanj
Porphyry System.

1. Introduction

Geo-anomaly is a geologic body or geologic body activities, and element dispersion from an ore
combination that is different from its adjacent body [7-9]. Delineation and separation of
settings in composition, texture, structure, and geochemical anomalies from background is one of
genetic sequence [1-3]. A geochemical anomaly is the most fundamental tasks in the fields of mineral

a region where the concentration of a specific
element is greater than a certain threshold value
which is conventionally determined by statistical
parameters such as mean, median, mode, and
standard deviation [4-6]. It occurs either by
common geological processes over long periods
of time related to different geological events (e.g.
tectonics, weathering, and erosion) or uncommon
processes such as mineralization, human

exploration and mineral resource assessment
because they have a profound influence on the
analysis  of  geological  evolution and
mineralization process. Usually determination of
the thresholds are the main key to geochemical
data processing in order to separate anomalies
from the geochemical background, and then either
delineate the mineralized areas or distinguish the
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anthropogenic and natural sources of materials
[10, 11].

In the past 30 years, specialized methods and
strategies have been developed for identifying the
geochemical anomalies from the background. The
properties on which one can differentiate
distinctive populations of geochemical data may
include the geochemical value frequency, spatial
variability of geochemical values, geometrical
characteristics of anomaly, and scaling properties
of a geochemical anomaly [12-15]. The most
effective way to distinguish the geochemical
anomalies from the background is to adopt a
comprehensive technique that combines the
properties mentioned above. In general, methods
for separating geochemical populations may be
broadly classified into the non-structural and
structural approaches. The non-structural methods
consider only the frequency distribution of an
element concentration, and ignore the spatial
variability. In particular, information about the
spatial correlation is not always available. In
addition, these methods are only applicable to
cases where the geochemical data follows a
normal distribution. Nevertheless, the normal
distribution does not provide the only possible
model of geochemical distribution [6].
Furthermore, the gathered data has to be modified
in non-structural methods, e.g. by rejection of
outliers and normalization of data. Moreover, the
conventional statistical methods that use
histogram analysis or Q-Q plots assume normality
or lognormality of the data, and do not consider
the shape, extent, and magnitude of the anomalous
areas [16]. For this sake, the structural approaches
emerged.

Structural methods involve frequency distribution,
spatial variability, and correlation, and they
include various forms of spatial statistics and
filtering. Within this, there is an increasing use of
the fractal models and U-statistic method [17-19].
Cheng (1999b) has first presented the U-statistic
method [20]. Indeed, this method is strong for
separating the anomaly from the background [21],
and it is based upon moving window techniques
with an optimal variable window shape and size.
The U-statistic values are calculated for each
specific point using the surrounding points, which
shows that there is a spatial relation between them
[20, 22]. The main problem of this method is that
it does not consider the geometry of the
anomalous areas since the geometry of a
geochemical anomaly may provide clues for
anomaly interpretation. For example, linear
anomalies may imply structural controls, and
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arcuate anomalies may be associated with
intrusive or deformed bodies. It has generally
been accepted that the spatial and geometrical
information of anomalies might be essential for
anomaly separation. For this reason, the
fractal/multi-fractal theory, as one of the subjects
in non-linear mathematics, established by
Mandelbrot (1983), considers the geometry
property of geochemical landscape [23]. Since
1983, the fractal and multi-fractal models have
extensively been applied to separate the anomalies
from the background. These models include the
number-size [24, 25] singularity indices [26],
radial-density [27], concentration-distance [6],
concentration-area [12], perimeter-area [28],
concentration-volume [29], power spectrum-area
fractal models [30, 31], and multi-fractal methods
[32].

In this work, Avanj porphyry Cu-Mo system in
Central Iran was chosen as the case of the study to
compare the results from the Concentration-Area
(C-A) and Spectrum-Area (S-A) models with

U-statistic method, and to identify the
geochemical anomalies associated with the
mineralization. Furthermore, the effect of

sampling density on the results is illustrated, and
the edge effect in the S-A multi-fractal model was
studied. This article is organized as follows. In the
next section, the case study is investigated from
the aspects of regional geology, structural
geology, and geological setting. In Section 3, the
geochemical dataset and statistical calculations
are described. Section 4 gives a survey of the
methods, their principles, advantages, and
limitations. Section 5 describes the results, and
Section 6 entitled “Discussion” compares the
applied methods to demonstrate their efficiency.
Finally, in Section 7, conclusions are presented.

2. Avanj Cu-Mo porphyry system

In terms of regional geology, Avanj porphyry
system with an area of about 7 Km® is located in
Central Iran on the Uromieh-Dokhtar magmatic
belt. This belt is part of the Alpine-Himalayan
orogenic belt. Tertiary volcanic rocks are the
oldest geological unit in the study area. Intrusive
bodies can also be observed at the edge of the
district. Due to (i) the intensity, type, and zoning
of the alterations, (ii) surface mineralization
evidences, and (iii) contiguous geochemical
anomaly of Cu and Mo at the center and Mn-Zn-
Pb at the margins of the system, the study area can
be considered as one of the highly potential
reserves that typically involves Cu-Mo
mineralization.



Shokouh Saljoughi et al./ Journal of Mining & Environment, Vol.9, No.1, 2018

The main rock units in Avanj porphyry system,
which is 90 Km far from the northeast of Isfahan
and 5 Km distant from the East of Avanj village,
consist of andesite, porphyry dacite, rhyodacite,
quartz  diorite, and diorite along  with
quartz-magnetite veins. Common alterations in a
porphyry system including phyllic
(quartz-sericite), argillic (quartz-clay minerals),
and propylitic (chlorite-epidote) alterations, and
also various iron oxide minerals (jarosite,
hematite, and goethite) can be observed in the
study area. The geological map of the study area
is shown in Figure 1. According to this map,
alterations from the center to the margins include
phyllic or quartz-sericite (mainly in the northern
and  southern  sections),  quartz-magnetite
stockworks (mainly in the southern section),
argillic (quartz-kaolinite), and propylitic (epidote
and chlorite on the margins). Hydroxides of iron
(hematite, goethite, and jarosite) are observed in
most places relating to phyllic and argillic
alterations.

The porphyry rhyodacite units aged Miocene and
they are observed in brown color on the ground.
This unit contains argillic alteration, goethite
oxides sporadically, and jarosite-silica veins. It
also involves porphyry dacite and quartz-diorite
rock units, and does not have appropriate hematite
mineralization in relation to copper sulfide. The
porphyry dacite unit aged Miocene is the most

important unit containing copper mineralization
potential in the area. The unit includes quartz-
sericite  (phyllic) alteration, quartz-hematite
stockworks, abundant iron oxide mineralization
(mainly scattered and veinlets of hematite), and
locally malachite mineralization. Dacitic rocks,
located at the center of the southern and northern
sections, include significant mineralization of
hematite associated with copper sulfides. Quartz
diorite intrusive bodies aged Miocene and include
potassic alteration and quartz-magnetite veins.
Diorite contains propylitic alteration intruded into
semi-deep dacite-rhyodacite porphyry, and leads
to the alteration of old rocks and creation of Cu-
Mo mineralization in different parts of the phyllic
alteration system. This unit can be seen in the
central parts of the south porphyry alteration
system. The quartz-diorite porphyry unit in the
western part of the south porphyry system
includes propylitic alteration.

Faults play an important role in the structure of
tectonics, positioning of the igneous rocks,
alteration and mineralization in the study area.
Avanj porphyry system is tectonically located at
the intersection of the Uromieh-Dokhtar
magmatic belt and the furthest part of the Daroneh
fault striking NE-SW. In general, the injection of
intrusive bodies and fault mechanism play an
important role in structuring the eastern part of the
mentioned fault.
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Figure 1. Geological map and lithogeochemical sampling locations of Avanj porphyry system.
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3. Geochemical dataset

Geochemical surveys are an important part of
geoscience investigations in both mineral
exploration and environmental monitoring. A total
number of 251 rock samples were collected in the
study area using a semi-regular network and
chip-sampling method so that the sampling
density in volcanic units with high potential of

laboratory, Tehran. Since Avanj deposit is known
as a porphyry Cu-Mo system based on the
mineralogical, geological, and geochemical
results, these two elements were selected for the
current study. The statistical parameters of Cu and
Mo are presented in Table 1. The mean values for
Cu and Mo are, respectively, 84.688 ppm and
4.9961 ppm, and their distributions are not

mineralization like dacitic rocks is higher than the normal. Histograms of the Cu and Mo
other units. These samples were analyzed by the concentration are shown in Figure 2.
ICP-MS method for 44 elements at Zarazma
Table 1. Statistical parameters of Cu and Mo elements in rock samples.
N* DL**  Accuracy Min. Max. Mean StD***  Variance Skewness Kurtosis
Cu 240 1ppm 1 1 1040 84.688 147.2839 21692.542 3.738 16.457
Mo 251 0.5 ppm 0.01 0.83 89.60 4.9961 11.45388 131.191 4.671 25.902
* Some samples are removed from the study due to low value under the detection limit.
** Detection limit.
*** Standard deviation.
Mean =84.69 Mean =5.00
200 ﬁti,zazv =147.284 2001 : ﬁtg Zg?v =11.454
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> >
3 3
g 100 g 1007
i i
50 50
|
o 1] QD:) 0 405 0 Sﬁ:) 0 80(‘3 0 10(:0 0 12(;0 0 o 00 20?00 40‘00 SOIDO BD?OD 10(; 00
Cu Mo
(@ (b)

Figure 2. Histograms of a) copper and b) molybdenum concentration values in Avanj porphyry system.

4. Threshold determination methods

4.1. U-statistic method

The U-statistic method is one of the most
important univariate structural methods that
consider the spatial situation of samples. This
method is based on moving the average technique
with variable window radius [33, 34]. Assume a
circle with the center of o; (i-th sample position in
the study area), a neighborhood radius of
r (0 <r < 1), and x; as the desired quantity in
this coordinate. Similar to all methods of
calculating the weighted average, the closer points
are more weighted than the further ones. After
calculating the weight of each sample, the
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dispersion of samples can be calculated as
presented in Eq. (1) [20].

&maﬁyﬁm

where Wj(r) refers to the weights that are a
function of the search radius. As a result, the U
value in the i-th point with an effect of Si(r) on
X,(r) and standardization is defined as Eq. (2)

[20].
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in which p is the mean and o is the standard
deviation of all the data. Uj(r) is a function of r,
and different values for U; are obtained by
changing r. For each r, the specific number of
surrounding samples are considered for
determining the U value of the unknown point. As
a result, various U values are obtained for
unknown points, and thus the optimal value for r
is obtained for the maximum absolute value of U
that causes the most separation between the two
populations of anomaly and background [20, 33].

3)

Eq. (3) means that at each sampling point, the U
values should be calculated from r = 0 to 1 = Iy
and then from the U values that were obtained; the
maximum value is devoted to the target point
[20]. Although this method considers the
frequency distributions and also spatial variability
and correlation, it does not consider the
geometrical characteristics of the anomaly and the
scaling properties of a geochemical anomaly,
which is one of the shortcomings of this approach.

|Ui*| = maXXOSrSrmx |Ul (}")|

4.2. Concentration-Area (C-A) fractal model

The C-A model [12, 13] is one of the most widely
used fractal models. The C-A model, originally
developed by Cheng et al. (1994), represents the
first important step in the fractal/multi-fractal
modeling of geochemical data, and has been “a
fundamental technique for modeling geochemical
anomalies” [35, 36]. It can be expressed as Eq.

4.

A(2c)ec ™ (4)
In this model, the measure A(> c) is the area
enclosed by contours with values greater than or
equal to ¢ on a geochemical contour map. It can
also be estimated using the box-counting
techniques, which involves counting the number
of pixels with averaged concentration values
greater than or equal to c¢ on interpolated
geochemical images.

The exponent o may have different values for
different ranges of c. If the geochemical data is
composed of multiple populations (for example, a
mineralization-related anomalous population and
a background population), the distribution of the
points on a log A(>c)-log (c) plot fits more than
one line segment. Each line segment is presumed
to represent a different population characterized
by a different value of the exponent a. The right-
most breakpoint joining the line segments is
generally taken as the threshold for separating the
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anomaly from the background [37, 38].

This method has the following advantages: (i) it is
based upon a very simple empirical set of
equations; (ii) the advantages of this method are
essentially its simplicity and easy computational
implementation [39-41] as well as the possibility
to compute a numerical value of concentrations,
i.e. the anomalous threshold, which is the most
useful criterion for cross-examination of
information with numerical data from different
sources; (iii) unlike most conventional methods,
the C-A method generates classes (zones) of pixel
values on the basis of not only the pixel-value
frequency distribution but also takes into account
the spatial and geometrical properties of the real-
world features on the ground; (iv) in the C-A
procedure, the original element concentration data
can be treated directly [42], and therefore, it is
unnecessary to process the data with pretreatment
of any smoothing procedure, thus enhancing
recognition of a geochemical anomaly from the
background. The approach is also applied for
image classification, anomaly separation, and
assigning color palettes for displaying
remotely-sensed images.

The disadvantage of this method is that although
the C-A model is wuseful to identify the
geochemical anomalies within a region including
a simple geological background, it has limitations
within a region linked with a complex geological
setting, where each sub-area is characterized by
different geochemical fields [43]. When the study
area is regarded as a whole mineral district
regardless of different geological background and
different geochemical field in a complex region,
the C-A model could not identify the weak
anomalies well. One can firstly divide the whole
study area into sub-areas in terms of geotectonic
background and geochemical field, and then use
the C-A model in each sub-area. Even in this case,
the weak local geochemical anomalies are not
identified well [43].

4.3. Spectrum-Area (S-A) model

Fourier/inverse Fourier transformation has been
generally used in time series analysis and signal
processing [30, 31, 44]. Spectral energy density
functions  illustrate the power spectrum
distribution in the frequency domain. Cheng et al.
(2000) have developed the idea of the C-A model
into the frequency domain, and have extended the
S-A model to characterize the spectral energy
density-area relationship [45]. The advantage of
dealing with fields in the frequency domain is that
some complex convolution operations in the
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spatial domain for correlation analysis, filtering,
and transformation can be simplified significantly
[46, 47]. The S-A model is one the most
sophisticated methods in which the frequencies
and spatial distributions are used. It is given as

Eq. (5).
A(28)oc §7H7 (5)

where S denotes the spectral energy density as a
function of the wave number vector, A(= S)
denotes area in the unit of wave number with a
threshold above S, B is an anisotropic scaling
exponent, d is a parameter representing the degree
of overall concentration, and oc denotes
proportionality [48-51].

The implementation of the S-A model can be
achieved in three steps:

e Generating a raster map through
interpolating the raw data using an interpolation
method [15];

e Converting the raster map into the
frequency domain wusing the Fourier
transformation. A dataset consisting of the
power spectrum density (S) and the area with
power spectrum density greater than or equal to
S is obtained and then plotted in a log-log
graph. N (N > 2) straight lines can be fitted
using the LS method. N filters are defined with
N-1 cut-off values from N ranges of power
energy spectrum (S) that possess distinct
scaling properties of the S-A relation. The
small cut-off value generally defines the
anomaly filter, and the large cut-off value
defines the background filter.

e The inverse Fourier transform functions are
applied to convert the frequency components
back to the spatial domain [52].

The main disadvantage of this method is that the
resulting S-A model is influenced inevitably and
sometimes severely by abrupt edge truncation
[53-54]. The edge effects due to the irregular
shape of the study area results in high values
occurring at the edge of the study area. The edge
effects in an irregular-shaped study area should be
further investigated. Traditional solutions to
reduce edge effects are too smooth for the
boundary of the image prior to applying the
Fourier transformation [45]. Zero-padding is one
of the most frequently used smoothing methods
[51]. This simple method can reduce the edge
effect to some degree but it is inefficient in some
applications when the image remains distorted.
Moreover, due to the complexity of geoscience
data involving irregular shapes and holes with
missing data, zero-padding generally does not
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give satisfactory results. Decay functions are
suggested to handle edge effects in the geoscience
image analysis [53]. A further study can focus on
how to reduce the edge effects for the S-A model
because the decay functions also cannot
effectively reduce the edge effects for an irregular
study area illustrated by Zuo et al. (2013) [43].
Recently, Afzal et al. (2017) have used the fractal-
wavelet analysis to transform data from the spatial
domain to the frequency domain [55].

5. Results

5.1. U-statistic method

In this study, the copper and molybdenum
anomalies were separated from the background by
applying the U-statistic method. In this method,
the radius value mostly depends on variables such
as the average distance between the samples and
the extent of the area in which the study is being
carried out. Therefore, in this study, according to
these variables, a range of different radii were
considered for calculation of the U values. The
average distance between the samples is
calculated using a MATLAB code. The code
calculates the distance of each sample point from
the others, and then it considers the first eight
minimum distance values for each point. The
average of these values is calculated for each
point, and finally, the mean of averaged values is
considered as the average distance between the
samples in the study area. The calculated value in
the study area equals roughly 140 m. The radius
range, which is considered for calculating the U
values, includes 50 different radii, and it starts
from the average distance quarter with the same
increment that is equal to that. Following the
calculation of U values, an interpolated raster map
should be generated. The IDW interpolation
method was used in this study for interpolating the
U values, and the cell size was considered to be
14 m. This cell size is actually one-tenth of the
average distance, which is considered as an
appropriate cell size for the interpolation process
according to the interpolated values for some
check points. Based on the Jenks -clustering
method, the anomaly maps for Cu and Mo were
plotted, as shown, respectively, in Figs. 3a and 3b.
According to the outputs of this method, strong
anomalies of both Cu and Mo could be observed
at the southeastern section of the study area and a
weak small anomaly at the northwestern section.
The point to be considered is that the anomalies
are mostly located over the dacite porphyry
lithological unit, which shows a strong phyllic
alteration.
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Figure 3. a) Cu and b) Mo anomaly maps using U-statistic method.
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5.2. Concentration-Area (C-A) fractal model
The C-A fractal model is one of the common and
simple fractal methods that is based on the grade
variations, the area it covers, and the higher
grades to deal with the estimation of the cut-off
grade and separation of the anomaly from the
background. This method has been used to
analyze various types of geochemical data
including stream sediment samples [5, 13], rock
samples [12], and humus [40]. In this study, the
C-A method, proposed by Cheng et al. (1994),
was used for separating the anomalies from the
background. The steps of separating anomaly by
this method can be summarized as follows: First,
the geochemical data 1is interpolated by
considering an appropriate interpolation method
and an appropriate cell size. Then the area that is
covered by a specific concentration value is
determined. Next, the concentration values are
sorted in ascending order, and the cumulative area
for each value is calculated. The log-log plot of
concentration versus area is generated and the
straight trend lines are fitted on points. Finally, the
threshold values occurring on the break points are
extracted and the anomaly map is provided based
on them.

In this study, the C-A fractal model is
implemented using MATLAB, and the maps are
provided by ArcGIS. Figure 4 shows the log-log
plots of concentration versus area for the elements
Cu and Mo. Straight lines are fitted by means of
the Least Squares (LS) method. In general, the
fractal dimensions increase from lower to higher
concentration populations. Low fractal
dimensions are typical of the assumed background
population  distributions and high fractal
dimensions typical of mineralization effects in the

study area. In Figures 4a and 4b, respectively, the
values less than 1.4534 and -0.0167 (blue line)
represent the depletion region and the values
greater than 2.6510 and 1.5166 (red line) show the
enrichment area but by various intensities. Three
break points were considered for both plots, which
were the threshold values for separating different
populations of concentration values including
anomaly and background. In Table 2, the break
point values of log-log plots and their equivalent
concentration value before taking logarithm for
the two elements are given. According to this
table, the threshold values that can be considered
for separating the anomalies of Cu and Mo are,
respectively, equal to 447.7346 and 32.8552.

The geochemical maps of copper and
molybdenum, which are classified by applying the
C-A fractal model, are shown in Figure 5.
According to these maps, the red class indicates
the anomalous area and the blue class represents
the depletion regions. The major anomaly areas,
according to Figure 5, are located in the
southeastern section of the study area. The Cu and
Mo anomalies are well well-conformed and are
spatially coincident with the tectonic activities and
typically the faults. The classes that are
representatives  of  different  geochemical
populations are more dispersed in comparison
with the U-statistic outputs, and show a less
coherent structure. The intense anomaly areas
located at the southeastern section are placed over
the dacite porphyry lithological unit, which shows
a strong phyllic alteration. The anomaly section
that was shown at the northwest of the study area
by the U-statistic method has been somewhat
diminished in this method.

Table 2. Break point values of C-A log-log plot and their equivalent concentration values before taking

logarithm.
Element Break point 1 Break point2 Break point 3
c 1.4534 2.3375 2.6510
u
28.4070 217.5155 447.7346
-0.0167 1.4215 1.5166
Mo
0.9622 26.3942 32.8552
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Figure 4. a) Log-log plot of concentration versus area for Cu b) log-log plot of concentration versus area for Mo.
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Figure 5. a) Cu and b) Mo anomalies obtained from C-A fractal model.
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5.3. Spectrum-Area (S-A) fractal model

The spatial distribution of Cu and Mo obtained
using the inverse distance weighted (IDW)
method through ArcGIS shows a mixed and
complicated pattern. The S-A technique is used to
decompose this mixed pattern. Firstly, the Cu and
Mo maps are taken into the frequency domain by
means of the two dimensional (2D) Fourier
transformation.

Two components, the power spectrum density and
phases, are obtained. The spectrum energy density
(S) and the area (A) enclosed by values greater
than or equal to the threshold for copper and
molybdenum are plotted on a log-log scale
(Figure 6). The S-A method ensures that the
power spectrum value S and the area A follow
power law relationships, as shown by the fitted
straight-line segments on the log-log axes.
Different straight-line segments with different
slopes represent different self-similarities, which
usually correspond to different patterns in the
spatial domain. For example, in this study, for the
elements Cu and Mo, four straight lines can be
fitted by means of the LS method. This gives four
ranges of power energy spectrum S that maintain
distinct scaling properties of the S-A relation. In
the case of copper, the values Log Sy = 5.1423,
Log S; =6.3727, and Log S, = 6.8786 define three
thresholds. S < S, may represent the anomalies
and the power spectrum, and S > S, usually
corresponds to the background (Cheng and
Grunsky, 1999). Similarly, in the case of
molybdenum, the values Log Sy = 2.2763, Log S,
=3.9529, and Log S, = 4.2719 define four straight
lines.

Furthermore, three types of fractal filters can be
constructed based on the log S-log A plot:
low-pass, high-pass, and band-pass spectral
energy density filters. The abscissa of the
intersection points, as threshold Sy, or S;, is
defined by two intersecting line segments on both
sides of the two segments. The different slopes of
these segments indicate that they meet different
fractal characteristics. Usually three types of
fractal filters are defined as follow, based on the
log S—log A plot:

1 S(w)<S,

0 S(w)>S5, ©)

G, (w)= {
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G. (@) = 1 S(w)=S, -
g 0 S(w)<S,
I §S,<S8w)<S
G — 2 0
(@) { 0 otherwise ®

Investigations indicate that the spectral energy
density is inversely related to the spectral
frequency. It has also been proven that if Ga(®) of
the spectral energy density is less than Gg(®), the
wave number of Ga(w) is larger than Gg(w). In
this sense, Ga(®) corresponds to a high frequency
and Gg(w) to a low frequency. Therefore, Ga(®)
can be used as the high frequency energy spectral
density filter and Gg(w) is the low-frequency
energy spectral density filter. Usually Ga(w) can
be considered as the anomaly filter and Gg(®) can
be considered as the background filter. Gc(®) can
be used to strain out energy spectra less than S,
but greater than §S,, retaining the spectral
components within the interval (S,, Sy). In this
way, Gc(w) is a band-pass filter in a specific
interval.

The resulting S-A model is influenced inevitably
and sometimes severely by abrupt edge truncation
[53, 54]. The edge effects due to the irregular
shape of the study area result in high values
occurring at the edge of the study area. The edge
effects in this irregular-shaped study area should
be removed. In Figure 7, the edge effects for Cu
and Mo have been effectively addressed. There
are various solutions to eliminate the edge effects
[56-59]. In this work, we applied the zero-passing
approach to reduce the edge effects. Zero-padding
is one of the most frequently used smoothing
methods. This simple method can reduce the edge
effect to some degree.

After removing the edge effects and determining
the thresholds, the high-frequency, low-frequency,
and band pass filters are applied to the Fourier-
transformed results, and then the inverse Fourier
transform is applied to bring the data back to the
spatial domain and the anomaly and background
map was plotted. The Cu anomaly and
background maps are obtained using the inverse
Fourier transformation, which are shown in Figure
8. The promising areas of Cu mineralization are
located in the areas with high background and
anomaly values. The resulting anomaly and
background maps for Cu and Mo are available,
respectively, in Figures 8 and 9.
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Figure 6. a) Log-log plot of power energy versus area of Cu and b) Mo.
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Figure 7. Edge effects for a) Cu and b) Mo.
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Considering the high values of the anomaly and
background maps simultaneously for Cu and Mo,
potential mineralization areas are mostly located
at the southeastern section over the dacite
porphyry lithological unit that shows a strong
phyllic alteration associated with the hematite and
malachite mineralization. The anomaly section
seems more coherent in this method in
comparison with the other two methods.

6. Discussion

In this study, three methods for anomaly
separation including the C-A and S-A fractal
models along with the U-statistic method were
used. Each method has some advantages and
limitations in different geological and structural
settings. In what follows, we discuss the
characteristics of the applied methods in
comparison with each other. The C-A fractal
model present four classes that can be considered
from low to high wvalues, respectively, as the
background, possible anomaly, probable anomaly,
and certain anomaly. Also the background class
due to very low values of Cu and Mo can be
classified as the depletion region. Dispersion of
classes in the resulting map of the C-A method
and low coherency of anomaly sections can be
named as one of the limitations.

Output of the S-A fractal model mainly includes
the two components anomaly and background.
Sharp borders of the anomaly sections in both
components can be considered as one of the
characteristics of the S-A fractal model. The
background component is somewhat similar to the
output of the U-statistic method but the anomaly
component is different, and the point that should
be noted is that the anomaly sections with low
sampling density are ignored in the anomaly
component of the S-A fractal model. As an
example, the anomaly section that is placed at the
lower border of NW of the study area can be
mentioned. Moreover, the conformity of the
anomaly sections resulting from the S-A fractal
model with potential lithological units is higher
than the other two methods. For instance, the
porphyry rhyodacite unit that includes a strong
argillic alteration and iron-oxide does not show
any considerable geochemical anomalies, whereas
the dacitic rocks including strong phyllic
alteration located at the center of the southern and
northern sections show coherent and strong
geochemical anomalies of copper-molybdenum
according to the outputs of applying the S-A
fractal model. Also the diorite unit containing the
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propylitic alteration shows a weak geochemical
anomaly in NW of the study area.

7. Conclusions

According to the complicated tectonic and
intensive  geological occurrences that have
occurred in different periods of geological time,
Avanj porphyry system has a complex
geochemical surface expression. In such an
intricate district, we need to apply several
methods to separate the anomaly from the
background. The most efficient way to distinguish
the geochemical anomalies from the background
is to adopt a comprehensive technique that
combines the following properties: geochemical
value frequency, spatial variability of geochemical
values, geometrical characteristics of anomaly,
and scaling properties of a geochemical anomaly.
In this study, three methods including the
Concentration-Area (C-A), Spectrum-Area (S-A),
and U-statistic methods were applied to identify
the geochemical anomalies in Avanj porphyry
system (in Central Iran). The results of this study
indicate the high ability of the fractal and
U-statistic methods to separate the geochemical
anomaly from the background. Based on the maps
obtained, the U-statistic and S-A methods
illustrate better results than the C-A method
because the C-A model is useful to identify the
geochemical anomalies within a region with a
simple geochemical background but the model has
limitations within a region linked with a complex
geological setting where each sub-area is
characterized by different geochemical fields and
the whole region has a complex tectonic setting.
When the study area is regarded as a whole
mineral district regardless of different geological
backgrounds and different geochemical fields in a
complex region, the C-A model could not
effectively identify the weak anomalies. The
U-statistic method, by considering sampling point
locations, radius of influence, and their spatial
relation in the estimation of anomaly location, can
overcome the disadvantage of the C-A model. It is
a powerful tool to identify the geochemical
anomalies within the regions characterized by a
complex geological setting and a varied
geochemical background. The S-A model is a
powerful tool to decompose mixed geochemical
patterns into a geochemical anomaly map and a
varied geochemical background map because the
results of this method show the analysis of
geochemical data in the frequency domain, which
can provide new exploratory information that may
not be revealed in the spatial domain, and since
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the noise data is reduced from the results, the
accuracy of determination of the thresholds can be
higher than the other two applied methods.
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