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Abstract

The intersection lines between discontinuity surfaces and their intersection points on the visible surfaces of
any engineering structure may be the instability indicators. This paper describes a new approach to
modelling the intersecting lines and points that would provide the first evaluation of any instability in an
engineering structure characterized by the failure modes. In this work, the intersection lines were grouped
according to their direction either in the reverse or in the same direction as the dip of the slope. Furthermore,
the intersection lines are grouped according to various ranges of the interior friction angle, which can be
selected by the users in a computer application developed for this work. The orientation of the intersecting
lines and the location of the exposed intersection points are defined and assigned as the scatter points. These
exposed points are clustered to determine the centroid locations. The K-means clustering is used in this step.
Finally, all these analyses are integrated in a logical order, and the results obtained are used to assess the
instabilities on the slope surface. Experiments are carried out on a rock cut along the Konya-Antalya
(Turkey) highway, which is composed of limestone, to demonstrate the performance and results of the
approach. The locations of the possible failure zones in the critical range of the interior friction angle are
defined both visually and numerically along the slope. Experiments show that the proposed method is very
useful and easy to implement and yields practical preliminary evaluation results pertaining to instabilities
according to the basic failure modes.

Keywords: Rock Mass, Failure Modes, Intersection Lines and Points, K-Means, Interior Friction Angles.

1. Introduction

When addressing discontinuous rock masses, the
properties of the discontinuities in the rock
become of prime importance since they will
determine, to a large extent, the mechanical
behaviour of the rock mass [1]. These properties
can be classified as geometric or non-geometric.
The non-geometric properties are related to the
mechanical behaviour of the infill material and the
shear strength of the intact rock adjacent to the
discontinuity, while the geometric properties
define the fabric of the discontinuous rock mass
[2]. In addition, the geometric features of a
discontinuity affect the behaviour of the rock
mass, particularly at shallow depths, much more

strongly than the mechanical properties. However,
the surface openings caused by engineering of the
rock have a greater unit surface area than the
underground  openings.  Therefore, surface
excavations undergo failure more frequently, and
are less stable than the underground ones.

Investigating the possible failures beforehand is
highly important in the engineering
decision-making and design process. Indeed, a
visual explanation of failures is the initial step,
and represents a useful tool in evaluation. A
systematic and well-designed visual work also
provides an effective way to arrive at a rapid
solution to many problems faced by the managers
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and engineers. The most important component
that must be examined in a rock mass is
discontinuities (e.g. faults, joints, beddings). The
inhomogeneous and anisotropic nature of a rock
mass is mainly attributed to its interior
discontinuities. In these respects, a rock mass is an
excellent object for visualization. The geometric
properties of discontinuities have been extensively
reported on by ISRM (1981) [3].

Discontinuities, which are distributed randomly
and irregularly in a rock mass, are generally
considered under the frameworks of the statistics
and probability theories [4-6]. The main aim of
these theories is to qualitatively and quantitatively
evaluate the slope stability using the discontinuity
and intact rock data.

The geometrical parameters, which include the
dip, dip direction, orientation, spacing, and length
of a discontinuity, are directly gathered from rock
mass exposure or bore holes made inside a rock
mass using several surveying techniques. These
parameters are generally used to understand the
statistical nature of the discontinuities and in the
instability analyses. For example, the plotting and
contouring of discontinuity orientations on
stereonets have long been performed to determine
prominent orientations for the kinematic analyses.
Spherical projections are a method for
representing a 3-D (three-dimensional) spherical
data on a 2-D (two-dimensional) plane. The
structural geologists often use a Schmidt stereonet
(a Lambert equal-area projection of the lower
hemisphere of a sphere onto the plane of a
meridian). The equal-area projection preserves the
intensity of points, although the shapes of
projected groups (clusters) will vary according to
their original position on the sphere. For
equal-angle projections, large and small circles
are projected as circular areas. Hence, a contour
plot of a unimodal dataset, which exhibits circular
contours when projected using equal-angle
projection, indicates that the data is isotropic
about their mean direction. More information on
the spherical projections can be found in the
works carried out by Hoek and Bray (1981) and
Davis (2002) [7, 8].

The most important challenges in modelling rock
mass are the geometrical representation of
complex 3-D discontinuity systems and the
existence of many variables in these
heterogeneous  structures. In  discontinuity
analyses, the discontinuities are commonly
represented in a reduced form either as line
segments or as points. The line segments are
defined by the connection of two intersection

points in 2-D or ellipses in a 3-D space. Discrete
fracturing Network (DFN) modelling, originally
proposed by Dershowitz and Einstein (1988) [9],
is a method for representing the fracture
characteristics. The DFN models considered
include those based on geological mapping,
stochastic ~ generation, and geomechanical
simulation [10]. The simulated line segments and
points are the main inputs for the construction of
the DFN models. These models have been used in
mining applications, primarily for kinematic
analyses of rock slopes in open and underground
excavations and to estimate the rock mass
strength, fragmentation, anisotropic rock mass
deformability, pore pressure distribution, and fluid
connectivity of media.

Another modelling approach is the use of a
stochastic network model, which is generated by
marked point processes that incorporate the most
significant fracture characteristics [11-14]. The
use of marked point processes has proved to be an
effective means of developing the stochastic
fracture models [13]. In this approach, the fracture
locations, orientations, and shapes are represented
by points near the centre of 2-D shapes or the
centroid of 3-D shapes. The resulting fracture
intersection databases can be used for further
applications such as the statistical and spatial
analyses of intersections and, in particular,
fluid-connectivity analysis.

Many applications of cluster analysis have been
used to solve the practical engineering problems.
The clustering analysis methods such as K-means
and fuzzy K-means have been widely used to
identify discontinuity sets and characterize their
orientation. In these methods, the resulting
clusters, which consist of points representing
discontinuity properties, can also be visualized by
a stereonet representation of the facet’s poles.
Fuzzy clustering is based on dividing the clustered
data points in the transformed space into k subsets
using the fuzzy K-means algorithm. Then the
computed degrees of membership of points in
each cluster in the transformed space are assigned
to their corresponding points in the original space
of discontinuity orientations [15].

An alternative method for the characterization
application is the semi-automatic identification of
discontinuity sets using the kernel density
estimation (KDE). 3-D data is recorded in the
field, and a series of algebraic equations are used
for the calculations. The principal datum used in
KDE is the normal vector of discontinuity planes
[16]. These methodologies involve large amounts
of data about any rock block formed by
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discontinuities such as their scattered pole
densities, the dominant directions of any failure,
the identification of discontinuity set numbers,
and the statistical properties of discontinuity sets.
In the work carried out by Turanboy (2016), the
direct intersection points were used as the primary
data and mapped with 2-D KDE intensities of
these intersection points to identify weak zones
[17].

With the development of remote sensing
technologies such as LIDAR (light detection and
ranging) and  photogrammetry,  stochastic
modelling of fractures in rock masses based on
point density estimation (using Fisher, KDE,
K-means, fuzzy K-means clustering) has become
widespread in the recent years. The general
purpose of this estimation method is to construct a
model that best describes the underlying point
density structure of a dataset and the discontinuity
characteristics represented by field data. In these
techniques, the clustering and mapping of data are
the main steps, and a large amount of data related
to discontinuities and rock faces can be
semi-automatically or automatically. A number of
recent works have implemented these techniques
to collect and analyse the discontinuity data, for
example, to identify discontinuity orientations
[16,18-24], determine roughness [25-27], conduct
spacing analyses [28-30], evaluate persistence
[26, 31-32], and determine slope instabilities [24,
33-36].

A structurally-controlled instability refers to the
phenomenon in which blocks formed by
discontinuities may be free to either fall or slide
from the excavation periphery under a set of
several forces, usually due to gravity. As a basic
method, the kinematic analysis is used to analyse
the potential of the various modes of rock block
failures that occur due to the presence of
unfavourably-oriented discontinuities. ~Several
works have extensively examined the possibility
of failure according to the corresponding failure
modes [7, 37-44]. The kinematic feasibility tests
assess the probabilities of different failure
mechanisms based on the discontinuity
orientations with respect to the slope orientation,
and by constructing rock failure susceptibility
maps, three fundamental kinematic mechanisms
of instability were considered by Hoek and Londe
(1974) [45]: plane failure, wedge failure, and
toppling  failure. The analysis of rock block
stability due to these failure modes was verified
using the stereo-graphical methods proposed by
Matheson (1983) [46]. In addition, several
geometric conditions were introduced to consider

the kinematic feasibility of these failure modes in
detail [7 and 44].

Various approaches and theories have also been
developed with respect to the geometric approach
to examine the nature of a rock mass. For
example, the block theory [41] is a comprehensive
and rigorous approach that involves identifying
removable blocks, determining potential failure
modes, and assessing stability by 3-D geometric
characterization of a rock mass. The main purpose
of the block theory is to analyse the finiteness,
removability, and mechanical stability of various
rock blocks under different engineering conditions
by analysing the dip angles, dip directions of
discontinuities, interior friction angles, and
direction of the active resultant force. The
spherical projection and block theory have also
been used both in the practical and detailed
numerical analysis as descriptive tools for the
geometric characterization of discontinuities in
2-D and 3-D spaces.

However, these methodologies are too complex
and time-consuming, and offer a limited
information or require additional studies regarding
the grouping analysis of the failure modes and the
locations of possible failures for rock slopes.

In this paper, a modelling approach is proposed to
conduct a preliminary assessment for the stability
analysis of rock slopes. The approach is a
combination of the visualization and statistical
methods. In developing the proposed model, the
linear geometry concepts and the trigonometric
identities were considered, and an interconnected
and hierarchical approach was embraced.
Essentially, it was assumed that failures were
resisted only by surface friction. Additionally,
different user-defined ranges (five ranges were
selected in the experimental analyses) of interior
friction angles of discontinuity surfaces were
considered to demonstrate the feasibility of the
results of the suggested approach. In the proposed
model, the day-lighted intersection points on free
surfaces were directly used as the main data for
the statistical analysis. Furthermore, the
intersection lines were generated from the
calculated intersection points. Then these two
derived secondary data were integrated into the
well-known main conditions for plane, wedge,
and foppling failures. Thus rock failures were
classified on free surfaces, and their locations
were specified. Furthermore, the failure
conditions were evaluated over various ranges of
interior friction angles.

This paper is organized as what follows. In
Section one, the importance of the problem is
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emphasized and the literature studies are
summarized. The proposed approach is presented
in detail in Section two. In Section three, the
successful performance of the proposed method is
demonstrated using a field study. Finally,the
conclusion section of the paper presents an
assessment of the results.

2. Methodology

The tools used in the conceptual model and the
developed approaches are presented
hierarchically.

2.1. Background

In general, several geometric conditions have
been introduced to consider the kinematic
feasibility of the failure modes. The main ones
that are related to the failure modes can be
summarized as follow:

1) Plane failure: Release surfaces must be present
to define the lateral slide boundaries; the dip of
the sliding plane is less than the dip of the slope
surface in the same direction; the intersection line
must daylight on the excavation and the upper
slope surface (Figure 1a).

2) Wedge failure: Two intersecting
discontinuities occur, both of which dip out of the
cut slope at an oblique angle; the dip of the
intersection line is less than the dip of the slope
surface, and in the same direction; the dip of the
slope must exceed the dip of the line of
intersection of the wedge forming two
discontinuity planes; the intersection line must
daylight on the excavation and upper slope
surface (Figure 1b).

3) Toppling failure: Goodman and Bray (1976)
[47] have described a number of different types of
toppling failures that may be encountered in the
field including flexural toppling, block toppling,
and block-flexure toppling; blocks are formed by
discontinuities dipping steeply into the excavation
or upper slope surfaces, combined with cross

(a)

discontinuities (release surfaces); the dip of the
intersection line is less than the dip of the slope
surface, and in the opposite direction; the dip of
the toppling surface is greater than 70° the
intersection line must daylight on the excavation
and/or upper slope surface [47-48]. Block
toppling occurs where narrow slabs are formed by
joints dipping steeply into the face, combined with
flatter cross-joints. The cross-joints provide
release surfaces for rotation of the blocks. In the
most common form of block toppling, the blocks,
driven by self-weight, rotate forward out of the
slope. Toppling failure is a more complex
phenomenon; whether the rock block is stable
depends on the ratio between the base length
(b) - the height of rock blocks (h) and the dip
angle of the sliding surface (y,) - friction angle of
the sliding surface (¢). The following instability
and stability conditions have been reported by
Goodman and Bray (1976) [47], De Freitas and
Watters (1973) [49], and Owen et al. (1998) [50]:
1) y,>¢ and b/h > ¢ (sliding condition (1));

2) y,>¢ and b/h<¢( slidingand toppling
condition (2));

3) y.<¢ and b/h < ¢ (toppling condition (3));
and

4) y,<¢ and b/h > ¢ (stable condition (4)).
where, g, y;, and ¢ are the dip angle of the
slope, dip angle of the discontinuity surface or
line, and friction angle of the discontinuity
surface, respectively (Figure 1c). In the modelling
study, rotational sliding, overturning, and flexural
slip toppling were not considered. Only flexural
toppling, block flexure, and block toppling were
considered.

In this work, to assess the likelihood of such
failures, analyses of the kinematic admissibility of
potential failure blocks that intersect the slope
face(s) (excavation and upper slope faces) were
performed.

___A’ﬁ’\fl' ‘h\

()

Figure 1. Main failure modes and their geometric parameters used in model: a) plane failure; b) wedge failure;
¢) toppling failure (flexural, block-flexure toppling, block toppling): sliding (1), sliding-toppling (2), toppling (3),
stable condition (4) (adapted from Owen et al. (1998) [50]).
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2.2. Survey techniques and scan-line survey

In this work, the primary raw data was the dip, dip
direction angles of discontinuities, spacing, height
of scan-lines, and dimensions of the experimental
rock mass. The derived secondary data was the
dip angle of the intersection lines inside the rock
mass and the coordinates of the intersection points
exposed on visible rock surfaces. The primary
data was recorded simply by applying the basic
scan-line technique, which consists of the
directional and qualitative measurements of rock
discontinuities [51, 52]. This data was recorded
along a horizontal line in the field study. The
visualized secondary (extended) data was derived
from the primary raw data.

2.3.  Parametric
computations

In the proposed approach, the first step is to
describe the intersection points and lines, which
are boundaries of the in situ polyhedral rock
block, using the analytical geometry rules. These
components are the secondary data used directly
to create the model. The basic parameters of the
model were calculated based on the intersection
points of two line segments from a parametric
form in a 3-D Cartesian coordinate system, and
they were then connected systematically.

Assume that two points, P; = (x;, y1, z;) and
P, = (%2, ¥2, 22), are given. Let P; and P, lie on two
different lines, and P; = (X3, y3;, z3) is the
intersection point of these lines. In this case, the
parametric forms of the two lines on P, and P, can
be given by Equation 1. The intersection point of
the two lines can be determined using the
simultaneous equation method.

equations and 3-D

X1 +Acosa; = xytcosa, = x3
V1 +Acosa; = xytcosa, =y; (1)
Zy +Acosa; = xytcosa, = z3

where A and t are the linear coefficients (0 <A <1
and 0 <t < 1) and a is the angle measured
clockwise relative to the x-, y-, and z-axes. The
intersection point of the two lines is solved as (x3,
V3, 73). These equations are calculated for both the
excavation and upper surfaces of the rock slope to
determine the coordinates of the intersection
points. The derived intersection points are also
used to calculate the intersection lines inside the
rock mass. Thus all intersection points, lines, and
their spatial properties can be investigated easily.
More information about the calculation of
intersection points can be found in the work
carried out by Turanboy and Ulker (2008) [53].

Another aspect of the model is that the
discontinuities are assumed to be linear and
infinite such that the free surfaces of the rock
slope resemble the 2-D trace plane described by
Dershowitz and Einstein (1988) [9]. In this work,
to simplify the complexity of the structure, a
series of reduction processes were performed for
day-lighted polyhedral rock blocks regardless of
the failure mode (wedge, planner or toppling).
The intersection lines in the rock mass and
day-lighted points of their lines on excavating
surfaces represent the rock blocks. In addition,
they are used in the 3-D visualization and
statistical processes. Since any failure begins at
the intersection points and proceeds along the
intersection lines, it is assumed that any
intersection point that belongs to any rock block
occurs at the lowest location on the excavating
surface. Thus each rock block can be modelled
with polygons, and all intersection points on the
excavating surface can be modelled. The logic is
that the intersection lines are described in two
different directions, which were handled
separately as the intersection lines that are
oriented in the reverse direction relative to the
slope direction and the intersection lines that are
oriented in the same direction as the slope
direction. The same basic classification was
performed for the intersection points on free
surfaces in the model. A representative 2-D trace
plane on the excavation surface is shown in
Figure 2.

2.4. Design of database and algorithmic
structure of problem

There are 7 tables in the designed database, as
shown in Figure 3. All data are stored in the
database. First, an Information System must be
created. This system includes the orientation
parameters (dip, dip direction, location, and
spacing) that belong to discontinuities and the
representing prism. A unique identifying number
(ID) for each rock mass is defined, and the
associated data is classified based on this ID. This
Information System, named “The Discontinuity
Input Table”, was used for the -calculations
performed in this work.

The next table is The Mass Table. It contains the
outcrop, width, length, and height of the
representing prism, and the height of the scan-
line. These values must be provided as
parameters, and the dimensions must be chosen by
the user. In The Discontinuity Input Table and The
Mass Table, the representing prism and
discontinuity data are taken into account
separately [53], and these two tables contain the
primary data. Other tables store the calculation
results and the secondary data.
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Figure 2. Excavating surface represented by 2-D trace plane. Each polygon is identified by intersection point at
lowest location. Polygons and intersection points that are shown in the same colour belong together.

The mfersection peints on outerop The discontimmty mput
The probable intersected discontinurties Stning Fock mass 1id Integer
The mumbaer of intersection pomts on cuterop Integer 3| Dizcontmuity id Integer
The H-coordinate value of the pomt =1 Double Dip Double
The Y-coordmats value of the point £1 Double Dip direction Double
The Z-coordmats value of the point £1 Double Spacing Double
The :‘(E-ccar{.iliuata value of the pa.ht =1 Double The mame table
The Y-coordnats value of the point 2 Double .,
_ B e N Fock mass 1d Integer
The Z-coordinate value of the point =2 Diouble
Outcrop Intezer
Scanline height Diouble
Deapth (s1ze along X axis) Diouble
The intersection poizts on npper sarfaces Width (size alons ¥ axis) Double
The probable intersacted discontinuities String, Height (along T axis) Double
The mumber of intersaction points on upper surface Integer The vertex points of discontinuity surface
The X-coordinate value of the pomt =1 Douhble Discontinuity id Integer
The Y-coordinate value of the point £1 Double MNumber of vertices of the discontinuity Intezer
The Z-coordmats value of the point £1 Double The axis of the discontinity surface String
The X-coordinate value of the pomt =2 Double The X-coordinate value of the pomt =1 Double
The Y-coordinate value of the pomt £ Double The Y-coordmats value of the point £1 Double
The Z-coordinate value of the pomt 2 Double The Z-coordmats value of the point £1 Double
The H-coordinate value of the pomt =6 Douhble
The imtersection points on upper surfaces The Y-coordmats value of the point 6 Diouhble
The probable intersected discontinurties String The Z-coordinate value of the point =6 Doutle
The surface information of the mtersection pomnt £1 Strinz The intersection points on Lateral surfaces
The X-coordmate value of the point =1 Double The probable intersected discontmurties Stning
The ¥-coordinate value of the point #1 Double The mumber of intersection pomts on lateral surface  Infeger
The Z-coordinate value of the point #1 Double The H-coordinate value of the pomt =1 Double
The surface information of the ntersection pomnt #2 String The Y-coordinate value of the point £1 Douhle
The X-coordmate value of the pomt =2 Double The Z-coordinate value of the point £1 Daoahle
The Y-coordmnate value of the pont £ Double The X-coordinata value of the pomt =2 Diouble
The Z-coordinate value of the point £1 Double The Y-coordinats value of the point 2 Double
The Z-cocrdmnats value of the poimnt 22 Double

Figure 3. ER diagram of designed database.
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A rock mass mapping model is able to calculate
the coordinates of the intersection point (vertex)
between the edge of a representing
prism-discontinuity trace and discontinuity
trace-discontinuity trace for all discontinuity data.
This data can also generate a discontinuity surface
in the rock mass with the representing prism
(Figure 4a). Equation 1 is used in all the
intersection calculations, considering the possible
conditions of spatial positions of a discontinuity
surface. A possible surface may form at least three
vertices and at  most  six  vertices
(edge-discontinuity trace intersection) on the
boundary of the representing prism. The surface
can be determined by strolling on the vertex with
respect to the possible orientations of surfaces
(Figure 4b). The data pertaining to the vertex
points of the discontinuity surfaces are recorded in
The Vertex Points of Discontinuity Surfaces
Table. Each discontinuity forms a plane of
discontinuity. For this reason, The Vertex Points
of Discontinuity Surfaces Table stores the
discontinuity number, number of vertices forming
the discontinuity plane, and coordinate values of
each vertex. The related values in this table are
presented as fields in Figure 3.

The field The Axis of Discontinuity Surface in The
Vertex Points of Discontinuity Surface Table is
the discontinuity trace extent drawing the order of
discontinuity edges on the representing prism. The
field content is produced according to the
procedures shown in Figure 4a (the representing
prism surfaces are denoted +X, -X, +Y, -Y, +Z,
and —Z). In the examples involving the minimum
(three) and maximum number (six) of vertices, the
strings+Z+Y -Xand+Z+X+Y-Z-X-Y
represent the first and second discontinuities,
respectively (Figure 4b).

The dip and dip direction angles of the
discontinuity surface determine which
discontinuity trace is on each representing prism
surface. Thus only one intersection point exists
between two discontinuity traces on any surface
of a representing prism, and two intersection
points exist between two discontinuity surfaces on
any double surface of a representing prism. For
example, for two discontinuity surfaces that have
dip angles greater than and less than 90°,
respectively, the human eye can clearly perceive
the intersection points, line, and discontinuity
surfaces. However, a computer code cannot do so
itself. Therefore, an appropriate approach should
be developed. In the developed approach, it is
preferred to search for the existence of possible
intersection points on all the representing prism
surfaces by comparing each discontinuity surface
with other possible discontinuity surfaces. If the
Axis of Discontinuity Surface (in The Vertex
points of Discontinuity Surface Table) field
features the same surface data for both
discontinuity traces on the same representing
prism surface, the two traces are on the same
representing prism surface. Thus the possibility of
an intersection can be considered. Therefore, the
main problem can be reduced to one involving the
intersection of two straight lines.

First, it is determined whether two discontinuity
traces on the same surface are parallel to each
other. The case of parallelism can be described as
follows:

1) Let the initial point and end point of the first
discontinuity be i (x; y;) and j(x; ;), respectively.
2) Let the initial point and end point of the second
discontinuity be & (x;, y) and / (x,, y;), respectively
(Figure 5b).

Figure 4. Representing prism and example of surfaces inside it: a) all representing prism surfaces; b) formed
minimum (three) and maximum (six) vertices.
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Figure 5. a) Example of intersection between two surfaces. b) Initial and end points of discontinuities on visible

The parameter d in Equation 2 must be calculated
to test for parallelism.

2)

If d = 0, there are no intersection points between
these two straight lines (the lines are parallel);
otherwise, the parameters p; and p, are calculated
using Equations 3 and 4, respectively, as 2-D
coordinate points.

d= (Xj - Xi)(J’k —yi) — (g — xi)(}’j - Yi)

(o — x) (Vi — i) — (e — ) ke — »i) (3)

p1 =

d
(x; — xk)(yj - }’i) - (xj - xi)(yi /)
4
d
If 0<p; <1 and 0 <p, <1, the intersection
point is on these two discontinuity traces. Thus
the coordinates of the intersection points can be
calculated using Equations 5 and 6.

P2 =

)

xs = x; + p1 (% — x;)

ys =vi +pi(yj — ) (6)

These equations can be calculated only on 2-D
planes. Equations 5 and 6 are valid for the same
representing prism surfaces. If the intersection
point is searched for on the front or back
(+Z or —Z) vertical surface, the x-coordinates are
not considered. Similarly, if the intersection point
is searched for on the upper or base (+X or —X)
horizontal surface, the z-coordinates are not
considered, and if the intersection point is
searched for on the lateral (+Y or —Y) vertical
surface, the y-coordinates are not considered.

This search process is repeated for the remaining
representing prism surfaces. The results for all the
representing prism surfaces are saved in three
different tables: The Intersection Points on
Lateral Surfaces, The Intersection Points on
Outcrop, and The Intersection Points on Upper

surface.

Surfaces. These three tables can be reduced to a
single one: The Intersection Table. If two
consecutive  discontinuity planes have an
intersection, the intersection points can be cut 1 or
2 times on each opposing face of the prism. It is
also possible that the prism will never cut off each
opposing face. In this case, the intersections may
not be on the opposite faces but on the
neighbouring faces. The number of intersection
points in the generated tables represents this
number of cuts for each opposing face. In the
tables, 1 or 2 vertex coordinate values are stored
according to the number of cuts. In addition, IDs
of the intersecting discontinuities are stored in the
text form. The field structures of the reduced table
and the three separate tables are presented in
Figure 3.

2.5. Scatter points, intersection lines, and
failure modes

In developing our proposed method, assumptions
for factors other than the rigidity of blocks were
made. In particular, the discontinuities were
considered to be linear, infinite, and
randomly-oriented; the interior friction angles on
the discontinuity surfaces were assumed to be the
same, and a maximum of two straight lines
(discontinuity  trace-discontinuity  trace  or
discontinuity trace-representing prism edge) were
considered to intersect at only one point.
Therefore, the obtained intersection points and
straight lines (intersection line) passing through
two intersecting points, which represent the
boundaries of a polyhedral rock block, were used
as the input data for the 2-D and 3-D
visualizations. In  addition, only the
spatial-geometric relationships of discontinuities
were examined. All the modelling processing
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steps were carried out on a selected representing
rectangular prism.
Determination of the angles of intersection lines
between the excavation surface and other surfaces
of the representing prism is an important step.
This process involves a series of trigonometric
calculations to solve the angles and lengths of the
intersecting  lines. All the discontinuity
intersection data are obtained from a spreadsheet
file generated by the Linear Isometric Projection
of Rock Mass (LIP-RM) software [53]. The data
is filtered using a logical order in the MATLAB
R2014b environment so that the sliding and
toppling intersections can be classified separately.
With this filtering process, the slopes and the
slopes of the cutting edges are compared; the
slopes leaning in the same direction and the slopes
leaning in the opposite directions are separated.
The scatter points are the intersecting points
between two discontinuity traces. They are
created simply from the coordinates of the
intersection of two discontinuity traces on the
excavation surface. These secondary data are used
in the following statistical analysis steps.
In the model, two angular conditions from the
slope, the intersection line, and the interior
friction angle are taken into account to consider
the occurrence of failure modes:
a) The first condition is that the angles of the
intersection lines and surfaces have smaller
values (for wedge and plane) than the dip angle
of the slope, and the angle of the intersection
lines and surfaces must be greater than the
friction angle for the occurrence of failure.
This condition can be expressed as y; > w; > ¢
for sliding failures.
b) The second condition is  that
wi > (90° - y;) + ¢gonly for the toppling
failures (Goodman and Bray 1976) [47]. The
cross-section geometry of a slope exhibiting a
failure can be detailed according to the three
failure modes shown in Figure 1. In this
definition, the dip angle of the intersection is
measured clockwise.
In the model used in this work, all the intersection
angles were treated as acute angles for simplicity
(the dip angle of intersection for toppling was
converted to an acute angle). Furthermore,
without referring to these definitions, only
discontinuities with a reverse angle relative to the
slope dip were modelled to develop a more
general approach (Figure 1c). In addition, several
ranges of friction angles were selected. Thus the
intersection lines and points identified fell within
these ranges.

The main aim of data visualization is to
communicate information clearly and efficiently
to the wuser wvia statistical graphics, plots,
information graphics, and tables. To this end, the
2-D and 3-D visualizations of intersection lines
and the K-means of intersection points were
generated.

2.6. Clustering process and K-means method
The aim of a spatial point pattern analysis is to
represent any characteristic of a rock mass. In this
work, highlighting weak zones on a rock slope
was essentially achieved using the K-means
clustering  algorithms.  Clustering involves
grouping similar objects together in a set.
Clustering analysis is a common well-known data
mining and statistical data analysis method. There
are several clustering methods [54-56] such as the
expectation maximization, decision tree, neural
network, K-means, C-means, and K-medoids
methods. The oldest, simplest, and most common
one is K-means, an algorithm that groups objects
into a constant k£ number of clusters. Another soft
computing clustering algorithm is fuzzy K-means,
also known as smooth K-means, which differs
slightly from the K-means algorithm. Objects are
members of distinct clusters in which an object
can only belong to one cluster in the K-means
algorithm, whereas objects are the weighted
members of every cluster in the fuzzy K-means
algorithm. In the fuzzy K-means method,
membership of an object to any group is defined
by a scalar value. In our experimental study, the
K-means and fuzzy K-means methods yielded
similar results. Therefore, only the K-means
output was considered in the case study. The
K-means method can be explained briefly as what
follows.

Given a set of observations (ai, a,, ..., a,), where
each one is a d-dimensional real vector, K-means
clustering aims to partition the n observations
into k (<n) sets S={Sy, S,, ..., Sy} in order to
minimize the within-cluster sum of squares.
Formally, the objective is to find [57]:

k
; 2
args min Jla —wllc =
gsmin ) Saesla—wl o
argsmin Y.5_,|S;| Vars;
where u;is the mean of points inS;. This
formulation is equivalent to minimizing the

pairwise squared deviations of points in the same
cluster:

k
. 1
args min E - s—=Xapeslla—bl? (®)
1oy 2Isi
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Since the total variance 1is constant, this
formulation is also equivalent to maximizing the
squared deviations between points
in different clusters [57].

The clustering method divides the given n number
of objects into a specific number of groups. Each
group represents a cluster; each object belongs to
any one of the groups. Each group may be
represented by a centroid or cluster
representative. The most important step in
developing this type of algorithm is to define the &
constant number of clusters (or centroid number).
The elbow method (also called the knee method)
has been widely used to validate the number of
clusters for many statistical data analyses. This
heuristic method, which looks at the percentage of
variance explained as a function of the number of
clusters (appropriately determining the Elbow
point), was used in this work to determine the
critical failure zones according to the given
friction angle ranges.

2.7. Wedge structure

The formation and identification of locations with
the centroids of wedges (as one of the final
solutions) on a slope surface involves a series of
filtering processes. The intersection points
calculated by LIP-RM may be found both within
the rock mass and on the surfaces. There are also
4 points (two of them on the crest and the other
two must lie on the excavated (+Z) and upper
(+X) surface of the slope) for constructing the
wedge form. Filtering eliminates the intersection
points within the slope. The process also selects
the identified 4 points that form the wedge
condition. In other words, the basic principle for
defining wedges in the model is to identify the
day-lighted tetrahedrons because not all
tetrahedrons may be day-lighted. A side view of a
wedge, with its components used in the model, is
presented in Figure 1b.

2.8. Tool, environment, and flow diagram used
to assess stability of a rock slope

In order to determine the block geometry in 2-D
and 3-D, a computer code was developed to
calculate the coordinates of the block vertices in
the rock mass and to introduce a graphical survey
of rock mass faces into the MATLAB R14
environment. The LIP-RM software and the
newly developed computer code were used to
prepare the database and visualizations of the rock
mass. These processes can be regarded as query
operations, which request several pieces of data
from a database, obtained from the LIP-RM code.
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The developed code is capable of processing data
and visualizing the calculated secondary data,
separately. The complete flow diagram of the
developed code is presented in Figure 6.

3. Field experiment

Highway rock cut at 20 km on the
Seydigehir-Antalya road wall in Turkey was
chosen for the field experiment. In this region, the
main formation is composed of limestone. The
experimental rock slope contains bedding and
joints that can be easily observed in the field. In
particular, block failures and individual wedges
have often been encountered during the
precipitation seasons in the region. The
experimental outcrop on which the data was
recorded is shown in Figure 7a. The scan-line
height was taken as 1 m in the measurement
studies. The outcrop dip and dip direction were
recorded as 85° and 274°, respectively. The
dimensions of the sampled prism dimensions were
defined as (x, y, z) = (30 x 140 x 12) m. For the
field experiment, 125 discontinuities were
recorded, as shown in Table 1 (in sample). The
output of the 3-D discontinuity planes obtained by
running the LIP-RM software is shown in Figure
7b.

The developed code is capable of constructing
several visualizations. In this work, a different
strategy was developed and incorporated into the
model, and the code was tested on the chosen
field. From the first to the last step, the model
deploys an increasingly detailed analysis to
consider the stability problem. As the model runs,
more basic sub-results can be obtained; the final
results will be presented only for current locations
of the experimental rock slope. The results of the
model are presented as 2-D plane views and 3-D
intersection lines, scatter points, K-means of
intersection points, and location of intensities (as
centroids) of the two main groups of the dip angle
of discontinuity in k-means clustering.

To demonstrate the changes in the results of the
model, five friction angle ranges were selected:
l//ﬁ>l//i>¢200, l//ﬁ>l//i>¢2200a
W > yi> ¢= 355, Wi > yi> ¢ 55° and
wi>w; > ¢>75°. These ranges were selected
regardless of the type of rock and other properties
of the discontinuity surface. The ranges can be
narrowed or extended, and the number of ranges
can be increased or decreased.

Furthermore, for a planar, clean (no infilling)
discontinuity, the cohesion will be zero, and the
shear strength will be defined solely by the
interior friction angle. A typical range of friction
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angles for a limestone discontinuity has been
reported to be 34° — 40°(classified as high
friction) by Barton (1973) [58]. This range
approximately corresponds to the selected range
of y;>y;> ¢>35° This is assumed as the key
range for assessing a rock slope.

The results of the wedge analyses are presented as
3-D wedges, scatter points, K-means of

intersection points (only in the ranges of
Wi>yi> ¢=0° (all wedges) and
Wi > ;> ¢ > 35° (critical wedges)), and locations
of intensities as centroids.

In addition, the result of the intersecting lines
whose dip direction is greater than 70° is
presented for toppling failures.
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Figure 6. Flow chart of model implementation.

Table 1. Input data for experimental slope.

Discontinuity Number Cumulative Spacing (m)

Spacing (m) Dip (°) Dip Direction (°)

1 0.6

2 1.78

3 1.89
123 137.55
124 138.7
125 139.4

0.6 59 311
1.18 61 309
0.11 64 25
0.45 21 332
1.15 25 332

0.7 22 338
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Figure 7. a) Studied highway slope that formed limestone (blue line indicates approximate scan-line through +y
direction); b) image capture of experimental rock slope obtained by LIP-RM.

3.1. Results of experimental rock slope

The visual results obtained for the experimental
rock slope in the current location are displayed as
follow:

a) A 3-D model of the rock slope with all the
intersection lines without any exclusion in Figure
8,

b) A 3-D model of the rock slope with only the
daylight intersection lines on the excavating
surface in Figure 9,

c) A 2-D analysis of the intersecting lines in the
reverse direction compared with the excavating
surface and details in Figure 10,

d) A 2-D analysis of the intersecting lines in the
same direction compared with the excavating
surface on the excavating surface and details in
Figure 11,

e) All wedge structures on the excavating surface
of the experimental slope and details in Figure 12,
f) The wedge structure on the excavating surface
of the experimental slope in the range of
Wi > w; > ¢ > 35° and details in Figure 13,

g) An analysis of the dip of intersecting lines
greater than 70° (drop in y; > w; > ¢ > 35° range)
and details in Figure 14,

h) Numerical results of the experimental rock
slope in Table 2.

Figure 8. 3-D modelling of rock slope with a) all intersection lines without any exclusion (920); b) intersection
lines in reverse direction compared with slope direction (661); c) intersection lines in the same direction
compared with slope direction (259).
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Figure 9. 3-D modelling of rock slope with only daylight intersection lines on excavating surface: a) intersection
lines without any exclusion (556); b) intersection lines in reverse direction compared with slope direction (447);
¢) intersection lines in the same direction compared with slope direction (109).
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Figure 10. 2-D analysis of intersecting lines in reverse direction compared with excavating surface: a) view of
intersection lines on +y surface (see Figure 3a); b) scatter point plots; ¢) number of centroids (elbow solution); d)
K-means (determined centroid locations on excavating surface). Rows denote general condition according to five

selected friction angle ranges: 1* row: Wi > Wi > 0 >0, 2" row: Wi > Wi > ¢ > 200, 3" row: Wi > Wi > ¢ > 359, 4™
row: yi > ;> ¢ > 55°, 5" row: yy; >y > ¢ > 75°.

19 /) B e = 19 71 =% >
BE, I T T 08 S THE T %]
0 20 40 80 80 100 120 140 (] 20 40 60 80 100 120 140
06 * group 1
0 2 4 3 8 10 & gD
- group 3
¢ groupd
1 P X_centroids |
"
e
W F s e R s = N
0 20 40 60 80 100 120 140 / [ 20 40 60 80 100 120 140
08
o 2 4 3 8 10

]

20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

o3
o
®

o0d

%6,

0 - 10
B gF K) ] e X ]
20 40 60 80 100 120 140 1] 20 40 60 80 100 120 140

¥ DS‘\ 2 3 4 5 ¥ (d)

Number of Clusters (c)

Figure 11. 2-D analysis of intersecting lines in same direction compared with excavating surface on excavating
surface: a) view of intersection lines on +y surface (see Figure 3a); b) scatter point plots; ¢) number of centroids
(elbow solution); d) K-means (determined centroid locations on excavating surface). Rows denote general
condition according to five selected interior friction angle ranges: 1* row: yg > y; > ¢ > 0°, 2" row:

Wi > Wi > 0> 200, 3 row: yy >y > ¢ > 35%, 4™ row: wi >y > ¢ > 55°, 5™ row: yi; > y; > ¢ > 75°. Note that any
discontinuity was not determined in yg; > y; > ¢ > 75° range.
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Figure 12. All wedge structures on excavating surface of experimental slope: a) 3-D plot wedges; b) view of
intersection lines on +y surface (see Figure 3a); c) scatter point plots; d) number of centroids (elbow solution); e)
K-means (determined centroid locations on excavating surface).
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Figure 13. Wedge structure on excavating surface of experimental slope in yg; > y; > ¢ > 35° range: a) 3-D plot
wedges; b) view of intersection lines on +y surface (see Figure 3a); c¢) scatter point plots; d) number of centroids
(elbow solution); e) K-means (determined centroid locations on excavating surface).
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Figure 14. Analysis for dip angle of intersecting lines greater than 70° (drop in yg > y; > ¢ > 35° range): a) 3-D
intersection lines; b) view of intersection lines on +y surface (see Figure 3a); c) scatter point plots; d) number of
centroids (elbow solution); ¢) K-means (determined centroid locations on excavating surface).

Table 2. Results for excavating surface of experimental slope.

Expos
Intersection . . ed .
Line Fr;;t:::neA(%gle Point CNzl;;li)o‘;g Centroid Coordinate (y, z) (m)
Direction g Numb
er
Oonosit Wi > w > 9> 0° 447 4 (26.73, 5.64), (54.38, 6.55), (75.08, 8.57), (128.83, 4.65)
. ppt{)Sl e . wu> §>20° 86 3 (17.70, 4.61), (55.02, 7.92), (132.18, 4.47)
‘rgfo“’: 0 wy> > 35° 48 3 (17.70, 4.61), (56.25, 6.83), (125.22, 2.54)
(al)) w>w> ¢>55° 17 2 (19.08, 6.34), (128.53, 5.14)
v > $>75° 2 2 (20.32, 6.89), (23.62, 11.60)
Wi > i > >0° 109 4 (34.65,3 .92), (50.56, 7.68), (72.21, 8.09), (117.85, 5.03)
_ Same wys ¢>20° 18 3 (32.32, 1.31), (57.24, 5.57), (128.14, 2.71)
Direction as
Slone ww> > 35° 11 3 (0.07,0.11), (55.11, 4.37), (127.87, 2.31)
(bl)) y>w> ¢>55° 8 3 (0.07,0.11), (32.32, 0.18), (55.11, 5.57)
Wn>wi> $>75° 0 0 -
. (32.32, 1.31), (49.99, 10.25), (57.84, 6.72), (72.01, 7.99),
Wedges v >y >$>0 29 5 (99.17, 11.50)
(© v §>35° 9 3 (0.07, 0.11), (54.00, 2.21), (58.33, 9.14)
Topplings °
p(l;) g >y > 4> 170 7 2 (21.47, 8.53), (135.17, 10.60)

3.2. Discussion on results

When the dip of the intersection lines that are in
the reverse and the same direction is compared
with the slope, the dip is assigned as flexural,
block-flexure toppling (dip angle of discontinuity
greater than 70°) or block toppling (sliding,
toppling, and sliding-toppling modes) (see Figure
Ic), and the day-lighted points are classified as
individual or combinations of planar and wedge
failures (see Figures l1a and 1b).

The results can be summarized as follow:
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a) Forty-eight intersection points with three
centroids of clusters (reverse direction compared
to slope dip) and 11 intersection points with three
centroids of clusters (same direction as slope dip)
were defined on the excavating surface in the
Wi >y > ¢>35° range.

b) Twenty-nine (five centroids) and nine (three
centroids) wedge structures were defined for the
wi>y> ¢>0° and y;>w;> ¢>35° ranges,
respectively.
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c) The centroids in the wj;> ;> ¢>35° range
were assumed to represent the critical ones in
terms of the failure zones.

d) The condition of the dip of the toppling surface
must be greater than 70° for toppling failure,
which refers to the condition y; > y; > 70°. In this
condition, only seven exposed points and two
centroids with their coordinates were identified on
the bottom part of the excavating surface.

e) It can be concluded that the states in the ranges
wi>wi> ¢>35° (¢) and yi> ;> 70° (d) are
critical in terms of the respective failure modes
according to the proposed model.

f) All the obtained coordinates of the zones of
weakness are consistent with the visuals generated
by the model.

4. Conclusions

In this paper, a process starting from a scan-line
survey and ending with the generation of visual
models is presented as a sequential structure of
sub-models. These sub-models can be interpreted
separately for the components in the structure or
as a whole. This hierarchical structure consists of
the following components, with measurements
simply recorded by the scan-line method. The
discontinuity planes can be identified. The
discontinuity intersections can be calculated as
points. The scatter points and intersection lines
between two discontinuities can be defined.
Failure modes can be defined as two groups
according to the orientation of the intersection
lines. With the K-means method, different failure
modes are modelled over different interior friction
angle ranges, and the location of the weak zones
can be determined dynamically. In addition,
wedge forms, which are a common type of sliding
structure over critical interior friction angle
ranges, can be identified, and their locations can
be determined.

According to the experimental study, 3 (wedge
failure) (Table 2c) and 2 (toppling failure) (Table
2d) centroid locations in the critical friction angle
ranges appear to be unstable. These results are
similar to those obtained from the analysis of the
intersection lines running in the opposite (Table
2a) and same direction (Table 2b), with the slopes
presented along with their visualization details in
Table 2.

In this work, construction of the model involved a
stepwise approach for identifying the weak zones;
the steps of the model are closely linked to each
other. In addition, all steps involve increasing
amounts of detail until the final analysis results
(centroid locations) of the model are obtained. In
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this work, all processes were performed without
any other field -characterization study or
mechanical tests. The dip, dip direction, and
spacing measurements from the scan-line survey
were sufficient to obtain the results without any
other equipment.

The detailed analyses are expensive and time-
consuming. In addition, in predicting the weak
zones using the current model, knowing where the
detailed analysis should be focused would be
advantageous in terms of saving time and
resources.

There is no doubt that the model cannot explain
more complex failures that can be triggered by
other failures or by interlocking blocks.
Nevertheless, the beginning of the failure zones
was successfully modelled as a basic failure mode
separately; hence, the developed model can be
used to predict the basic failure zones along the
excavating surface of a rock slope. Thus the
coordinates of the supporting measures can be
defined. This method can be used in many
applications of excavation engineering, from
preliminary assessment to final decision steps.
Surely, there are numerous other parameters to
consider as well such as water pressure, cohesion,
and roughness. These parameters can be adapted
to the model in the future works to provide a more
detail and a higher accuracy in assessing the rock
slope stability. Additionally, we plan to adopt
more detailed survey methods to improve the
measurement processes in the initial steps of the
model.
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