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Abstract

The purpose of mineral exploration is to find ore deposits. The main aim of this work is to use the fuzzy
inference system to integrate the exploration layers including the geological, remote sensing, geochemical,
and magnetic data. The studied area was the porphyry copper deposit of the Kahang area in the preliminary
stage of exploration. Overlaying of rock units and tectonic layers were used to prepare the geological layer.
ASTER images were used for the purpose of recognition of the alterations. The processes used for
preparation of the alteration layer were the image-based methods including RGB, band ratio, and principal
component analysis as well as the spectrum-based methods including spectral angel mapper and spectral
feature fitting. In order to prepare the geochemical layer, the multivariate statistical methods such as the
Pearson correlation matrix and cluster analysis were applied on the data, which showed that both copper and
molybdenum were the most effective elements of mineralization. Application of the concentration-number
multi-fractal modeling was used for geochemical anomaly separation, and finally, the geochemical layer was
obtained by the overlaying of two prepared layers of copper and molybdenum. In order to prepare the
magnetics layer, the analytical signal map of the magnetometry data was selected. Finally, the FIS
integration was applied on the layers. Ultimately, the mineral potential map was obtained and compared with
the 33 drilled boreholes in the studied area. The accuracy of the model was validated upon achieving the
70.6% agreement percentage between the model results and true data from the boreholes, and consequently,
the appropriate areas were suggested for the subsequent drilling.

Keywords: Fuzzy Inference System, Geographic Information System, Mineral Potential Map, Kahang,
Porphyry.

1. Introduction

The model-based mineral prospectively mapping geographic information system (GIS). Many

is an approach used to minimize the size of the
understudied area in mineral exploration. A
mineral prospectively model is a model in which
the input layers are integrated using a pre-defined
function, and the result obtained is an integrated
layer or mineral potential map. The input layers
are the geoscience data such as the geochemical,
geophysical, and geological data in the form of
evidential maps. The functions used in mineral
prospectively modeling is diverse in the level of
model complexity. The models are classified into
two types, data-driven and knowledge-driven.
These models are usually conducted using the

scientists such as Agterberg [1-3], Bohnam et al.
[4], and Brown et al. [5] have worked on different
models for the integration of geoscience layers.

Fuzzy inference system (FIS) is one of the
knowledge-driven models [6]. There are three
types of FISs: Mamdani style, Sugeno-style, and
Tsukamoto-style. There are four inference
methods of the Mamdani type including
fuzzification, rule evaluation, aggregation, and
defuzzification [7]. They have been successfully
used in many scientific fields such as electrical
and mechanical engineering, and the rest of the
engineering fields or other branches of science
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[8-10]. FISs of Mamdani and Tagaki-Sugeno
algorithms have been used in many topics of
research works in the geoscience and mining
engineering. Nguyen and Ashworth have used it
to develop the knowledge in the rock systems
[11]. other scientists have done similar research
works on the mentioned filed [12-16]. Porwal has
been successfully used FIS in mineral exploration
[6].

The integrated model of this research work is FIS
[7]. The advantage of this integration approach is
that it does not need to be trained in the same way
as the advanced model of integrations such as
neuro-fuzzy. Therefore, FIS can be used in any
type of exploration areas as displayed by different
researchers [6, 17]. The whole structure of the
models in which the training data is necessary
depends upon the training datasets, and they
cannot be used in other cases even with similar
feature conditions [17]. Any FIS model can also
be updated simply by exploration miners to
include new opinions and to include new
variables. Since the FIS method does not need to
have examples of recognized mineralization areas
as the training data, it can be effectively used in
the green (unknown) and brown (known) areas
[6].

Pervious rock units, remote sensing, and
geochemical and geophysical studies have
indicated the presence of a large porphyry deposit
in the Kahang area [18-21]. Initial geomagnetic
magnetometry studies have been performed on the
area by the Samankav Company in July 2010. The
model of integration of the layers has been applied
to the data for the Kahang area [18].

In this work, the mineral potential map of the
Kahang area was prepared by FIS. At first, the
primary layers were prepared. Right afterwards,
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the primary layers were integrated by Fuzzy
methods, and geological, remote sensing,
geochemical, and magnetics layers were prepared.
These four layers were integrated using the
Mamdani fuzzy inference model, and the final
mineral potenatial map was created.

2. Geological settings

The Kahang porphyry copper area is located in the
middle of Iran in the NE of 1:100000 Koohpayeh
geological sheet in the Isfahan province. It is
located between the latitudes 32° 56.7' and 32°
55.5" and between the longitudes 52° 26.47" and
52°29.9". The understudied area is situated in the
middle of Urmia-dokhtar magmatic belt, one of
the Zagros main divisions [22-24]. Extension of
this belt is about 2000 Km from NW to SE. Some
very important porphyry copper deposits such as
Sarcheshmeh, Meyduk, and Songun are placed in
this belt [25]. The Kahang porphyry copper
deposit is hosted by a composite intrusive
comprising early diorite granodiorite and later
monzonite quartz-monzonite, which was placed
over a 2000 m depth, and at the temperature range
of 243-600 °C [26]. The rock unit map of this
area is depicted in Figure 1.

Compounds of dacite to andesitic rock involving
tuffs, breccias, and lavas are the extrusive rocks in
this area. The explosive eruptions of pyroclastic
materials such as tuff and tuff breccia are the
evidence of volcanic events in the Kahang area.
Subsequently, the establishment of sub-volcanic
and intrusive rocks with andesitic, dicitic, dioritic,
and monzonitic occurred [26]. NW to SE is the
main trend of faults as depicted with Rose
diagram in Figure 2 (modified by the National
Copper Company in Iran [27]).
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Figure 1. Modified geological map of Kahang, scale: 1.10,000, within Urumieh—-Dokhtar volcanic belt in
structural map of Iran [22].
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Figure 2. (a) Fault map of Kahang area (b) Rose diagram showing faults in studied area (modified by National
Copper Company in Iran [27]).

3. Preparation of geological layer

In order to prepare the geological layer, rock units
and tectonic layers must be created. At first, the
tectonic layer was created in order to create the
tectonic layer, and the fault and fault intersection
layers were integrated by gamma = 0.9, as shown
in the algorithm of Figure 3a. These faults were
studied, and the values obtained were assigned to
three models including buffering, density of the
faults, and importance of the faults by azimuth.
According to the previous studies in central Iran
and territories around the area, the importance of
relation between azimuth of fault structures and
trend of mineralization are known. In the
following, the intersection of faults was studied
and the values were assigned in three models
including buffers, density of the fault intersection,
and importance of the fault intersection by
azimuth of the faults [28]. More details are given
in the Table. 1.

In order to prepare the rock unit layer, rock units
of the same grade of importance were used in the
same groups. The importance of host rocks in the
porphyry copper deposits was considered in the
stage of assigning values to the rock units.
Important units including granodiorite and
monzonite gained the most values (Figure 3b).
Details of the value assignments are displayed in
Table 1.

Finally, to prepare the geological layer, rock units
and tectonic layers were overlaid by
gamma = 0.85, and the final geological layer was
created and depicted in Figure 3c.

4. Preparation of remote sensing layer
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In order to prepare the remote sensing layer, the
data from the remote sensing and geological
studies were used. Having done the geometric and
radiometric corrections on the ASTER data, bands
numbers 1 to 9 of remote sensing images were
selected to be used in the remote sensing layer.
Here, the image-based (RGB, band ratio and
principal ~ component analysis) and the
spectrum-based (spectral angel mapper and
spectral feature fitting) methods were applied on
the images.

Analysis of the satellite images to extract
information by combination of bands in the state
of one band is defined by the false color
composite. This combination is beneficial to
validate alternations [29, 30]. In order to detect
the argyllic alternation, RGB(468) was used
(Figure 5a). Band ratioing is a very simple and
powerful method in remote sensing. The basic
idea of this method is to accentuate or exaggerate
the anomaly of the target object [31]. Band ratio
reduces the effect of topography, and therefore,
augmentation of the differences between the
spectral responses of each band [32]. In this work,
the sericite, kaolinite, and Chlorite minerals were
the key targets to find out any alteration zone.
Sericite was wused to validate the phyllic
alternation by the ratio represented in Table 2; the
resulting map is shown in Figure 5c.

The main aim of using a principal component
analysis (PCA) is to reduce the dimensions of the
data, here, the number of original bands, and to
maximize the amount of information from the
original bands into the least number of principal
components. The original bands are transformed
into the principal components, which contain the



Barak et al./ Journal of Mining & Environment, Vol.9, No.1, 2018

maximum original information with a physical
meaning that is required to be explored [33]. Due
to the absorption and reflection bands of sericite,
the 4, 6, and 7 bands were used to validate the
phyllic alternation in the Kahang area by a
mini-table that is represented in Table 2
(Figure 5e).

The Spectral Angel Mapper (SAM) is one of the
leading classification approaches because it
estimates the spectral similarity to suppress the
influence of shading to emphasize the purpose
reflectance characteristics [34, 35]. In this
method, the grade of similarity between two
spectra is measured by the angle between
spectrals [36]. Generally, the basis of the
spectrum-based methods is the comparison of the
reference spectrum and the spectrum of mineral, if
both spectra are similar; this means that the
mineral we are looking for has been validated in
the area. The reference spectra that are used to
validate the alternation zones are shown in Figure
4. These spectra can be obtained from the spectral
library. SAM is a controlled classification method.
In order to identify the phyllic alteration by the
SAM method, the reference spectrum of sericite
was used. The optimum angle for the phyllic
alteration was 0.19 (Figure 5h). For each
alternation, different angles were selected, and
according to the results obtained, the optimum
angle was selected.

Spectral Feature Fitting (SFF) is a commonly
utilized method for hyper-spectral imagery
analysis to discriminate ground targets. Compared
to the other image analysis methods, SFF does not
assure a higher precision in extractive image
information in all status [37]. SFF 1is an
absorption-feature-based  methodology.  The
reference spectra are scaled to match the image
spectra after the continuum is removed from both
datasets [38]. In order to identify the propylitic
alteration by the SFF method, the reference
spectra of chlorite, epidote, and calcite were used.
After processing the reference spectrum of
chlorite with the aster image of the area, the
results obtained showed the similarities between
the spectra of the selected pixels (Figure 5k) and
the reference spectrum. The details of the methods
for other alternations are shown in Table 2.

In the final remote sensing layer, both the phyllic
and argyllic alterations are the results of
image-based and spectrum-based methods, while
the propylitic alteration is the result of the
spectrum-based methods. The basis of these
selections are the compliance of the zones with
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rock units and the results provided from the RGB
images. The Potassic zones shown in Figure 5n
are the results of geology studies carried out by
the National Copper Company in Iran [27]. In the
stage of assigning values to the alteration zones,
the conceptual models of porphyry copper
deposits were used according to these types of
deposits potassic zones including the most amount
of copper, so it gains the most value of weight.
The details of the value assignments are displayed
in Table 1. The fuzzified remote sensing layer is
shown in Figure 5o.

5. Preparation of geochemical layer

Since the Kahang area is hot and dry, the residual
soil samples were used as the geochemical data.
The total number of samples were 2564 (Figure
6). The soil samples weighting approximately 300
g were sampled and analyzed for 42 elements
using an ICP-MS machine. The location of each
sample was indicated in Figure 6. The size
distribution varied from 250 to 400 micrometers.
ICP-MS results for the elements are provided in
Table 3.

At first, the descriptive statistics applied on data is
shown in Table 3. Afterwards, all data went
through the pre-statistical data processing
methods such as detection of censored data and
replacing, correcting the out-of-order values, and
normalization. Finally, multivariate statistical
processing was applied on the data. The Pearson
correlation matrix and cluster analysis were used
as multivariate statistical approaches. The
strongest correlation coefficient between copper
and molybdenum was achieved to be 0.334. The
cluster analysis also showed that the two elements
copper and molybdenum were in one sub-branch
(Figure 7).

Application of concentration-number (C-N)
multi-fractal modeling was wused for the
geochemical anomaly separation in both the
copper (Figure 8a,c) and molybdenum (Figure
8b,d) layers. In the stage of assigning values to the
zones of the geochemical layer, the probable
anomaly gained the most value because of its
nature; the mentioned zone had the most amount
of copper or molybdenum in deposits; details of
the value assignments are displayed in Table 1.
Both the fuzzified copper and fuzzified
molybdenum layers are shown in Figure 8e,f. The
final geochemical layer was obtained by
integrating the two layers (copper and
molybdenum) with ‘OR’ fuzzy function.
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Table 1. Weights assigned to factor layers in Kahang area.

Layer

Class

Allocated weight

Faults
Azimuth with 40 m buffering

Azimuth 0° to 10° (A)

Azimuth 10° to 60° (B)

Azimuth 60° to 80° (C)
Azimuth 80° to 130° (D)
Azimuth 130° to 150° (E)
Azimuth 150° to 180° (F)

40 m buffering

5m
10 m
20 m
30 m
40 m

N WA QOINN WAL

Fault intersection
importance of faultsintersection by azimuth of
faults

A-B, B-B

B-C, B-D, B-E, B-F
Intersection of A and C with each of D, E,
and F
Intersection D, E, and F with each other

40 meters buffering

8 m
16 m
24 m
32m
40 m

N WO~ W O O

Rock units

Granodiorite & Monzodiorite
Andesite
Tuff
Dacite
Andesitic dyke
Alluvium

— N LN O

Magnetics
(Analytical signal map)

High
Medium
Low
Very low
Background

il S AE SN BN}

Geochemistry
Cu

Probable anomaly
Possible anomaly
Threshold
Background
Probable anomaly
Possible anomaly
Threshold
Background

— N N0 — 3O

Remote sensing

Potassic

Phyllic

Argillic
Propylitic

W 3 o0 O

23
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Figure 3. (a) Fault factor map and (b) rock units’ factor map for understudied area, (c) final geological factor
map for Kahang area.
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Figure 4. Reference spectrum used for detecting alternation by spectrum-based methods.
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Table 2. Process of remote sensing in understudied area.

Image-based

False color

Method  Alternation . Figure Color of alternation area in map
composite
RGB Phyllic RGB(468) (Figure 5a) Brown
Argyllic RGB(468) (Figure 5a) Orange
Propylitic = RGB(468) (Figure 5a) Light green
Color of
Method  Alternation Mineral Band ratio Figure alternati
used on area
in map
Band . L. Band 4 + Band 7 . ]
Ratio Phyllic Sericite B (Figure 5b) Pink
Argyllic Kaolinite w (Figure 5¢) Purple
Band 5
Propylitic Chlorite w (Figure 5d) Blue
Band 8
R
Method  Alternation mineral PCA (Eigenvector) Figure on area
and bands .
in map
Phyllic Band 4 Band 6 Band 7
Bands 4, 6, Pcl 0.6141 0.5_658 0.5501
PCA Phyllic and 7 of Pc2 0.7849 03658 -0.4999 (Figure 5¢)  Crimson
sericite o
Pc3 0.0816 0.7389 0.6688
Argyllic Band 4 Band 5 Band 7
Bands 4, 5, Pcl -0.6250 - -0.5459
Argyllic and 7 of 0.5578 (Figure 5f) Purple
gy I Pc2 -0.7595 02743 0.5859 gl urp
Kaolinite )
Pc3 0.1791 0.7832 0.5952
Propelytic Balnd and Band 7 Band 9
Pcl 0'3;99 0'5551 0.5377 0.4969
- (Figure 5g)  Green
Bands 1, 6, 0.915
Propylitic 7, and 9 of Pc2 6 0.277 -0.2204  0.1893
Chlorite 8
Pc3 0.019 0.494 -0.8106  0.3123
6 8
Pc4 0.(;39 0.6113 -0.0707  0.7871
Spectrum-based
Color of
Method  Alternation Spegtrum Optimum angle Figure alternatllo
of mineral n area in
map
SAM Phyllic Sericite 0.19 (Figure 5h) Red
Argyllic Kaolinite 0.17 (Figure 51) Pink
Propylitic Chlorite 0.5 (Figure 5j) Green
Method  Alternation Spec'trum Figure Color of mineral area in map
of mineral
SFF Propylitic Chlorite (Figure 5k) Purple pixels are similar to reference spectrum
Epidote (Figure 51) Yellow pixels are similar to reference spectrum
Calcite (Figure 5m) Green pixels are similar to reference spectrum
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Table 3. Descriptive statistics of geochemical data in Kahang area.

Domain Min Max Mean Std. deviation Variance

Ag 0.49 0.26 0.75 0.33 0.05 0.00

Al 90741.00 40527.00 131268.0 76016.65 13319.39 177406145.67
As 35.40 6.50 41.90 15.87 4.81 23.15
Ba 1561.00 284.00 1845.00 611.67 194.80 37946.46
Be 2.20 1.00 3.20 1.85 0.28 0.08

Bi 2.66 0.34 3.00 0.48 0.09 0.01

Ca 112956.00 7032.00 119988.0 34907.37 17106.68 292638434.97
Cd 1.95 0.23 2.18 0.37 0.23 0.06

Ce 58.00 20.00 78.00 45.36 7.05 49.74

Co 42.00 9.00 51.00 23.05 473 22.40

Cr 367.00 20.00 387.00 135.88 36.67 1344.51
Cs 1.94 1.30 3.24 2.05 0.24 0.06

Cu 963.00 25.00 988.00 123.97 105.62 11155.33
Fe  46486.00 21440.00 67926.00 42654.43 4930.13 24306176.30
K 44770.00  7195.00 51965.00 22270.56 5970.63 35648467.62
La 33.00 11.00 44.00 25.05 3.88 15.04

Li 47.00 10.00 57.00 34.02 6.22 38.70
Mg 19370.00 9452.00 28822.00 19694.30 2340.70 5478889.08
Mn 2701.00 264.00 2965.00 1040.92 349.95 122463.39
Mo 56.18 0.62 56.80 1.84 3.88 15.06
Na 12958.00 2998.00 15956.00 6391.88 1936.73 3750914.52
Nb 54.00 10.00 64.00 34.05 9.98 99.66

Ni 145.00 15.00 160.0 77.66 14.76 217.94

P 1892.00 486.00 2378.00 1048.68 202.45 40984.17
Pb 596.00 10.00 606.00 62.47 52.02 2705.91
Rb 103.25 43.00 146.25 82.19 13.08 170.99

S 2938.00 109.00 3047.00 529.79 358.67 128647.74
Sb 14.80 0.83 15.63 1.11 0.59 0.34

Sc 19.57 5.80 25.37 13.84 2.34 5.49

Sn 2.50 1.30 3.80 2.02 0.36 0.13

Sr 805.00 186.00 991.00 401.83 116.32 13529.84
Te 0.09 0.13 0.22 0.16 0.01 0.00

Th 12.65 4.10 16.75 8.50 1.69 2.84

Ti 12206.27 747.00 12953.27 5767.39 1452.14 2108724.74
T1 1.20 0.20 1.40 1.07 0.10 0.01

U 2.30 1.00 3.30 2.01 0.44 0.19

6. Preparation of magnetics layer

In order to prepare the magnetics layer, data from
the magnetometer was used. In this area, 4446
points were totally picked up by the PROTON
MP2 MAGNETOMETER device. The dimension
of the surveying grid was 20x50 m. Each point
was measured three times, and the average
amount was recorded. The survey area is shown in
Figure 9.

The IGRF and diurnal correlations were
conducted on the magnetometer data, and the total
magnetic field map was obtained (Figure 10a). In
fact, the intensity and the form of the anomaly
depends on the lines of the magnetic survey
network. These effects were successfully removed
by applying different filters on the maps. The
reduce to pole (RTP) technique (Figure 10b) was
used on the total magnetic field map, and the
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result was not only caused by displacement but
also regularized the final anomalies. Afterwards,
the analytical signal map was created. The
maximum parts of analytical signal map represent
the boundary of magnetic source (Figure 10c).
According to this map, the position of anomalies
was discerned, which was utilized in the
integrated layer.

In the stage of assigning values to the magnetics
layer (analytical signal), the medium magnetic
field gained the most value. It is known that the
high and low levels of the magnetic property are
associated with the unaltered stones and the
regional sediments, respectively. Thus they do not
have a significant correlation with the
mineralization. The details are given in Table 1,
and the final magnetics layer is shown in Figure
10d.



Barak et al./ Journal of Mining & Environment, Vol.9, No.1, 2018

52°27'0"E 52°27'20"E  52°27'40"E

52°28'0"E

52°28'20"E  52°28'40"E = 52°29'0"E

32°66'0'N

32°55'40'"N

20'N

W

32°5540°N

32°5520'N

52°27'20"E  52°27'40"E

0 140 280 580

52°28'0"E

62°28'20"E  52°28'40'E

52°29'0"E
LEGEND

— Road
EZ4 vilage

*  sanple

Figure 9. Location map of magnetics survey (magnetometry) in understudied area.
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(d) final magnetics layer for understudied area.

7. Fuzzy inference system (FIS)

The fuzzy inference is a mapping technique in
which the fuzzy logic applies on the inputs to
provide outputs [39]. FISs can be utilized to
depict an exploration geologist’s logic for
predicting the mineral potential by integration of
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predictor linguistic variables [6]. There are three
inference steps in the Mamdani style including the
fuzzification, inference engine, and
defuzzification [7], which are illustrated in the
Figure 11. All integration steps with the FIS
method are briefly illustrated in Figure 12.

35540°N  32°5600'N

32°5520°N
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Figure 11. Modified generalized scheme for Mamdani style inference [40].

Inference

Figure 12. Schematic picture of layer integration by FIS method.

7.1. Fuzzification

Fuzzification is a kind of diagnosing membership
function assigned to the fuzzy variables [41]. The
various types of membership functions are
triangular, trapezoidal, piecewise-linear,
Gaussian, and bell-shaped. Among the mentioned
types, triangular, trapezoidal, and Gaussian
membership functions are only used by the
geoscience researchers. The type of fuzzy
membership function could greatly influence the
output model. Previous studies have shown that
triangle and trapezoidal functions, which are
special cases of piecewise linear according to their
simple nature, can be used in the green fields.
However, sigmoidal/logistic and Gaussians
functions, due to their nature (curvature), need at
least some information about the understudied
area [6, 17, 42, 43].

In this research work, the trapezoidal membership
fuzzy function was applied on the input layers (i.e.
geological, remote sensing, geochemical, and
magnetics layers). According to the preliminary
stage of exploration in the Kahang area, the
trapezoidal function was used for the studied
areas. Three linguistic variables including poor
potential, average, and high were used to make the
input maps (Figure 13a,b,c,d), while seven
linguistic variables including very poor potential,
poor, below average, average, and above average
as well as high and very high were used to make
the output map (Figure 13e).

7.2. Inference engine
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In this stage, if-then rules were applied on fuzzy
maps to make the final fuzzy output of the model.
have shown that the number of rules (o) for layer
integration is estimated by Equation (1) [44]:

e

where m is the number of language variables and
n is the number of input variables in the FIS
system (here, indicates the number of factor
maps).

In order to diminish the number of rules, the
layers were classified. The geology, remote
sensing, geochemistry, and magnetics were the
final layers to be integrated. These fuzzy layers,
imported to an inference engine and 81 rules
according to Eq. (1), were applied on them. Some
of the rules are displayed in Table 4, and the
algorithm of this process is depicted in Figure 14.
It is worthy to mention to keep the figure short;
the 29 of rules are only shown.

The procedure of integration of the layers in the
FIS method is shown in Figure 14. According to
this figure, if the pixel values are 0.495, 0.499,
0.553, and 0.500 on the geological, geochemical,
magnetics, and remote sensing maps, respectively,
the value for the integrated pixel will be 0.665.

a=m"

7.3. Defuzzification

The final step in the FIS model is defuzzification,
in which the output map of a fuzzy inference
engine, i.e. a fuzzy number will be converted into
a crispy number to be understandable for the
mineral exploration engineers. Such a kind of
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conversion is called data defuzzification. There
are a variety of defuzzification models including
center of gravity, weighted average, maximum
mid-center, and center of the greatest levels [45].
The centroid method (Eq. 2) is the most widely
used in the defuzzification step [6].

The center of gravity method, which was used in
this research work, can be estimated by the
following equation:

S, [z () xdx
J‘ug (x)dx

wherep z(x) is the degree of fuzzy membership for
values of x that represent fuzzy membership
degree in fuzzy inference output and Z* is the
center of gravity for the membership function
values. The value 0.665 is obtained by the center
of gravity, and used to make the final mineral
potential map (Figure 15).
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Figure 13. Membership functions, (a) geological factor, (b) remote sensing factor, (c) geochemical factor, (d)
magnetics factor, (e) output factor (final mineral potential map).

Table 4. Examples of if-then rules in FIS.

Rule Geology Remote sensing Geochemistry Magnetics Mineral potential

1 Poor Poor Poor Poor Very poor

2 Poor Poor Average Poor Poor

3 Average Strong Poor Average Average

4 Poor Average Strong Strong Above average
5 Strong Strong Strong Average Strong

6 Strong Strong Strong Strong Very strong
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Figure 14. Procedure of integration of layers in FIS method for Kahang area.
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Figure 15. Final mineral potential map in Kahang area.

8. Results and discussions

8.1. Validation of results

Mineral Potential Mapping (MPM) is a
multi-disciplinary task requiring the simultaneous
consideration of numerous datasets including the
geological, remote sensing, geochemical, and
geophysical datasets. The MPM process is a
multiple criteria decision making (MCDM) task,
and produces a predictive model for outlining the
prospective areas. Several methods exist for
MCDM [46, 47]. These growing methods have
been used in many scientific and industrial studies
[48, 49]. Each of these modeling methods for
predictive mineral potential mapping offers
advantages and disadvantages, and this work
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endeavored simply to illustrate the possible
methodology for producing a mineral prospect
map using a Geographic Information System
(GIS). fuzzy inference system, which is one of the
well-known classical MCDM methods. The fuzzy
inference technique is a widely accepted
multi-attribute decision-making technique due to
its sound logic, simultaneous consideration of the
ideal and anti-ideal solutions, and easily
programmable computation procedure. FIS, which
is a type of knowledge-driven artificial
intelligence systems, is transparent, easy to build,
and interpretable by specialists of geology and
mining because it is built in a natural language. It
applies the well-established FIS algorithm to
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mineral potential modelling. The use of FIS in
exploration of deposits is also not a new idea. This
method was developed by different scientists
[6, 50-52].

However, the data used in this work was selected
according to relevance with respect to the
porphyry copper exploration criteria. In general,
the five main criteria, as the input map layers,
were employed including the magnetics,
geochemical, geological, and remote sensing data.
Various raster-based evidential layers involving
geo-datasets were integrated to prepare a mineral
prospectivity mapping. We applied these multiple
exploration datasets and classification of mineral
prospectivity areas using the fuzzy inference
techniques to delineate areas with a high potential
to host mineral deposits and additional
exploratory drilling targets using a GIS. Utilizing
a GIS allows an expert user to rapidly evaluate the
spatial geoscience data for use in mineral potential
mapping projects to identify exploration targeting
opportunities, as shown in Figure 16a,b. These
areas may be considered suitable candidate zones
for detailed studies including additional drilling
targets, and the remaining area may not be
favorable and should be excluded from further
studies because they do not have a sufficient value
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to justify the detailed exploration survey.
However, since the validation of the resulting
mineral potential maps is a critical part of the
analysis, the ability to accurately predict the
locations of known Cu deposits is used to validate
the mineral potential maps generated by the fuzzy
inference techniques employed in this work. In the
studied area, available subsurface datasets of 33
boreholes were used by multiplying the mean
grade in thickness above cut off Cu'0.2% along
them. In order to evaluate the capability of the
fuzzy inference technique in the context of MPM,
the Jenk classification allows for the comparison
of the boreholes classes. According to the Jenk
classification method, the mineral potential map
was firstly divided into five classes. These classes
including very poor, poor, average, high, and very
high were attributed to each one of the boreholes
(Figure 17). According to the pixel values of the
final mineral potential map, the values for
boreholes were determined. Then the determined
classes were compared with the situation of
boreholes (Table 5). The result of this assessment
showed 70.6% of agreement percentage between
the model results and true data from the
boreholes.

[0 The Propsed Locations For Drilling

b

Figure 16. The suggested locations for the subsequent exploration drilling.
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Figure 17. Agreement of drilled boreholes with final mineral potential map.

Table 5. Comparison between obtained mineral potential maps and Jenk classification method.

Status of Status of
Status of Status of
Number borehole classificationto 5  Score Number borehole classificationto5  Score
borehole classified to S borehole classified to 5
groups groups
groups groups
1 Average Average 0 18 Average Very high -2
2 High High 0 19 Poor Average -1
3 Very high Very high 0 20 Very poor Average -2
4 Average Average 0 21 Poor Poor 0
5 Average Average 0 22 Very high Very high 0
6 Average Very high -2 23 Very high Very high 0
7 Average High -1 24 Average Very high -2
8 Average Average 0 25 Poor Very high -3
9 Poor Average -1 26 Average Average 0
10 Poor Very high -3 27 Poor High -2
11 Average Average 0 28 Average Average 0
12 Poor Average -1 29 Poor Average -1
13 Average High -1 30 Poor Poor 0
14 Average High -1 31 Average Average 0
15 Average High -1 32 Very poor Average -2
16 Average High -1 33 Average Average 0
17 Poor Poor 0 Agreement percentage 70.6%

9. Conclusions

The target of this work was to use the fuzzy
inference system to integrate layers to explore the
porphyry copper deposit of the Kahang area with
the lowest cost and the best result. The layers used
for the process of FIS integration were geology,
remote sensing, geochemical, and magnetics. The
geological layer is the result of rock units and
tectonic layers. The geology studies showed that
there were two anomalies in the eastern and
western parts of the Kahang area. In order to
prepare the rock unit layer, rock units with the
same grade of importance were used in the same
groups, which caused to remove the effect of
alluvium units and increase the effects of deeper
units. Afterwards, the remote sensing studies by
aster images revealed three alternations (phyllic,
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argillic, and propylitic) of Cu-Mo porphyry
deposits in the area. The potassic alteration was
detected by the lithological studies before; these
four alternations prove the existence of Cu-Mo
porphyry deposit in the understudied area. Since
the Kahang area is hot and dry, residual soil
samples were used as the geochemical data. This
means that each sample refers to its location, so it
makes the analysis simple. By studying
multivariate statistical processes such as the
Pearson correlation matrix and the cluster
analysis, high correlation between copper and
molybdenum elements were obtained. This
statistical process with favorable rock units
increases the chance of having the Cu-Mo
porphyry deposit in the Kahang area. In order to
separate the geochemical anomalies from
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background, the C-N fractal method was used,
and three anomaly zones in the east, west, and
central part of the area were detected. Magnetics
anomalies in the understudied area were detected
on volcanic rocks, andesite porphyry, and diorites,
which confirmed the geological structures. Also
analytical signal map demonstrated the existence
of anomalies in the eastern and western parts of
the area.

The results of the FIS integration system indicates
that the most prospective areas for the porphyry
copper mineralization in the Kahang area are
located in the eastern, western, and center of
Kahang. The model accuracy was validated upon
achieving 70.6% agreement percentage between
the final mineral potential map and true data from
the 33 boreholes. In this way, the high efficiency
of the FIS integrated system was confirmed as a
knowledge-driven = method.  Therefore, the
purposed FIS model could successfully suggest
some locations for further exploration stages
including drilling.
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