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Abstract 

Due to the existence of a constant sum of constraints, the geochemical data is presented as the compositional 

data that has a closed number system. A closed number system is a dataset that includes several variables. 

The summation value of variables is constant, being equal to one. By calculating the correlation coefficient 

of a closed number system and comparing it with an open number system, one can see an increase in the 

values of the closed number system, which is false. Such features of this data prevent the application of 

standard statistical techniques to process the data. Therefore, several methods have been proposed for 

transforming the data from closed to open number systems. There are various geostatistical methods 

consisting of estimation and simulation methods in order to model a deposit. Geostatistical simulations can 

produce various models for a deposit with different probability percentages. The most applicable 

geostatistical simulation method is the sequential Gaussian simulation technique, which is highly flexible. In 

this work, 392 Litho-geochemical data of the Baghqloom region of Kerman in Iran consisting of 20 elements 

were at first converted using an open number system. Afterwards, the elements that were helpful for 

exploring the area and were normally standard were simulated for 100 times. After the simulations, the valid 

output was chosen using geostatistical validation. The maps derived from the simulations revealed the 

enriched concentrations of mineralization elements in the central regions. 

 

Keywords: Compositional Data, Closed and Open Number System, Geostatistical Simulation, Sequential 

Gaussian Simulation, Baghqloom-Kerman. 

1. Introduction 
Considering the geochemical data as a closed 

number system is important in data processing. A 

closed number system is a dataset of several 

variables that applies one or more constraints on 

the data. In closed number systems, the variables 

are not independent from each other, i.e. they are 

expressed as parts per million or percent [1-3]. In 

fact, the sum of variables in a closed numerical 

system is constant. This fixed value is a 

restriction, and varies depending on the measuring 

units of variables. Standard statistical techniques 

are designed for the data that change in negative 

to positive infinity range. Thus these techniques 

cannot be implemented on the data with a closed 

number system because in such a system, the 

value of any combination is positive, and this 

value is between 0 and 100 [4-7]. In most 

conducted works, disregarding this issue has 

caused incorrect results. There are various 

methods available to convert the data from closed 

to open number systems. Despite the closed 

numerical systems, in an open numerical system, 

the variables are independent. As a result, each 

variable can be individually examined. The most 

important methods are additive logratio transform 

(ALR), centered logratio transform (CLR), and 

isometric logratio transform (ILR) [8-11]. The 

output logarithmic coefficients are random 
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variables that are in positive and negative infinity 

range; as a result, statistical techniques can be 

performed on them. 

In mining activities, the samples taken cover a 

limited part of the area. Several geostatistical 

investigations have been conducted to design 

sampling plans, in most of which, the estimation 

variance has been used as an uncertainty 

measurement. The estimation variance only 

depends on the position of the sample in space 

[12, 13]. However, it should be noted that in the 

case of modeling the deposits and geochemical 

halos, calculating various realizations of a deposit 

is more useful rather than having an average 

image of the deposit that is achieved from kriging 

[14] because in this case, the smoothing effect of 

kriging will be lost and the local variability can be 

observed. 

Geostatistical simulation methods are powerful 

tools used to achieve this purpose. These methods 

remove the problems of kriging method, and the 

variability of the concentrations in the area will be 

easily recognized using a series of taken points. 

An accurate and appropriate perspective of the 

variability of area is useful for starting a 

geochemical exploration. These methods were 

introduced in 1970 by Journel, and are now used 

in various industries including mining, oil, and 

environment [15]. The principles of the 

geostatistical simulation method are based upon 

the principles of the Monte Carlo simulation 

method. However, the difference is that in 

geostatistical simulation, in addition to the initial 

histogram data, the recreation of the variogram 

data is also important. Moreover, the most 

important feature of geostatistical simulation is 

the production of a series of realizations that 

include the domains of possible modes. In 

conditional simulation, the amount of simulation 

data in certain points will be equal to the actual 

amount [13, 16]. In other words, showing the 

accuracy of a simulation, if one considers a point 

with an absolute value as an unknown value and 

simulates it using the surrounding points, the 

simulated and the real values are equal, and as a 

result, the error is zero. 

The sequential Gaussian simulation (SGS) method 

is among the most important and most widely 

used geostatistical simulation methods, which 

nowadays is used to simulate many geological 

parameters such as mineral grade, porosity, and 

permeability [17]. Gaussian simulation is an 

algorithm that sequentially simulates the nodes, 

and the simulated values are used as the 

conditioning data. Gaussian standardized values 

are necessary to be used in the Gaussian 

simulation method. Therefore, it is necessary to 

transform the data into the Gaussian space [18, 

19]. 

2. Methodology 

2.1. Compositional data 

In order to conduct a geostatistical operation on 

the geochemical data, it is absolutely necessary to 

convert the data to an open numerical system, in 

which the elements are independent from each 

other. Data conversion makes it possible to 

separately examine each element or variable in 

terms of statistical and geostatistical analyses. The 

important methods of data conversion are 

presented in the following sections. 

For analyzing the correlation coefficient of the 

compositional data, first of all, the data should be 

opened by ALR or CLR. ILR cannot be used to 

determine the correlation coefficient because in 

this method, the relationship between the main 

variables is completely deflected from a straighten 

system. As a result, the calculated correlation 

coefficient is unrealistic [20, 21]. When CLR is 

used to open the system, the correlation 

coefficient is related to the geometric mean of the 

variables. Moreover, when the selection of 

element is not considered, this transformation can 

be used as well. When ALR is used to open the 

system, the correlation coefficient is related to the 

selected element (denominator). 

2.1.1. Additive logratio transformation (ALR) 

The ALR method was first developed by 

Aitchison in 1982. In this method, a variable is 

selected from the existing variables as 

denominator, and the values for other variables 

are divided into this variable. Then a logarithm is 

applied on these values so that the variables are 

transformed from closed to open systems and the 

denominator is deleted from variables (Equation 

1) [22]. 

1 11( ) [log ,..., log ,log ,log ]
 


j j D

j j j j

x xx x
alr x

x x x x
 (1) 

where x1, x2,…, xD are the available variables 

(elements) and xj is the denominator. 

It should be noted that the denominator should not 

be one of the main variables (major elements); 

otherwise, it will create a false correlation. In 

geochemistry, the denominator belongs to trace 

elements because if these elements are removed 

from the dataset, they will not cause an important 

problem in the mineral exploration projects [22]. 
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2.1.2. Centered logratio transform (CLR) 

The CLR method was also developed at first by 

Aitchison in 1986. In this method, a logarithm is 

applied on all variables (Equation 2) [23]. 

1( ) [log( ),..., log( )]
( ) ( )

 Dx x
clr x

g x g x
 (2) 

where x1, x2,…, xD are the available variables, and 

the fraction denominator is the logarithm of the 

geometric mean (    ) of variables. The 

advantage of this method is that no variable will 

be removed from the set of variables. On the other 

hand, the disadvantage of this method is that the 

matrix of covariance is irreversible; therefore, 

various multivariate statistical analyses cannot be 

implemented on open data using this 

transformation [23].     

2.1.3. Isometric logratio transform (ILR) 

The ILR method was developed by Egozcue in 

2003. As an advantage of this transformation, it is 

possible to calculate the inverse covariance 

matrix; therefore, it excels the previous method. 

This method is slightly more complicated than the 

above-mentioned two methods, and there are 

different rules for its conduction. In this method, 

each variable is divided on total roots of other 

variables, then a logarithm is applied on the 

outcome values, and finally, it is multiplied by a 

coefficient that is dependent on the number of 

variables (Equation 3) [24]. 

1

1

( ) log
1



 




 


i

D

D
j

j i

xD i
ilr x

D i
x

 
(3) 

where x1, x2,…, xD are the available variables and 

xj is the studied variable. D is the number of 

variables and i is the number of studied variables. 

The fraction denominator is the total root of 

variables (except for the variable in the 

numerator). 

2.2. Sequential gaussian simulation (SGS) 

After transforming data from the closed to the 

open mode, geostatistical simulation can be 

performed on the data. According to the previous 

studies, simulations are applied to the alr-

transformed data [25]. Unlike all estimation 

methods based on moving average, geostatistical 

simulation is considered as an algorithm to adjust 

the smoothing effect of such methods [26]. 

Kriging is able to produce non-skewed 

estimations through minimizing the estimation 

variance. However, the smoothing effect of the 

kriging method impedes to show the variability of 

the region. Geostatistical simulation with its 

available tools can rebuild different states for each 

point or block, and can provide a distribution of 

data. In general, the simulation and estimation 

have two different objectives. The purpose of 

kriging is to calculate the features of probability 

of distribution function such as the mean value, 

and to achieve a minimum estimation error based 

on the available data (actual facts). However, the 

purpose of simulation is the creation of unrealized 

possible scenarios by maintaining the data 

structure elements (accomplished facts) [27, 28]. 

Geostatistical simulations have different methods, 

of which sequential simulation is one of the most 

important methods. Sequential simulation is a 

stochastic modeling process that is based upon the 

input data that creates numerous realizations [29, 

30]. For this simulation, the input data can be 

continuous or definite. Based on the type of data, 

sequential simulations can be divided into the 

three Gaussian, indicator, and direct groups [31]. 

The SGS method is the most flexible and 

performable simulation method. In this method, 

the Gaussian standard data is used with a mean of 

zero and a variance of one. Therefore, at first, data 

must be transformed as described earlier [32, 33]. 

In the simplest expression, this algorithm starts 

the simulation from a random point and will 

continue randomly to simulate all points of a 

block. 

Simple kriging estimation helps to create a local 

distribution function. Then a value is selected 

from the distribution and is assigned to the point 

as a full-scale. This operation is repeated as long 

as all the spots on this route are simulated. In the 

simulation of a region one will be faced with 

many realizations that are different the other ones 

because except for the areas that have been 

sampled, the rest are facing with uncertainty. 

Therefore, each realized case can be a product of 

simulation. The main objective of the simulation 

process can be seen as restoring the changes of the 

original data space. 

Therefore, the basic steps involved to perform this 

simulation can be expressed as follow [27, 34]: 

1. Transforming data to a standard normal 

distribution, 

2. Variography for the transformed data, 

3. Random selection of one of the nodes, 

4. Estimation of the nodes using kriging, the 

transformed data, and the simulated values, 

5. Forming a normal distribution function 

using the estimation variance and the value of 
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estimation, and random sampling of the 

distribution function, and then putting this 

value in the node, 

6. Repeating steps 3-5 until all nodes are 

selected, 

7. Reversing data transformation, 

8. Repeating the simulation. 

Perhaps the biggest problem for the sequential 

Gaussian simulation method is to select a search 

radius (a part of region for doing the calculation). 

Selecting a small neighborhood radius leads to a 

poor conditioning of data [27]. 
 

3. Study area 

The Baghqloom exploration area is located about 

41 Km East of Jiroft and about 12.5 km west of 

the Gomrokan village in Kerman, Iran (Figure 

1b); this area is called Sangestan. From a 

geological viewpoint, Baghqloom is located in the 

southern part of the Barez Mountains. The 

dominant lithology in the studied area is alkaline 

granite, diorite, granodiorite, and a set of intrusive 

dykes. The post-mineralization parts of the region 

are of stockwork and shear zone types that occur 

in different rock types (sub-volcanic and intrusive 

units). It seems that most of the mineralization 

was introduced by dikes. The mineralization has 

been formed only around the dikes, in a way that 

the veinlets that contain ore minerals are not 

uniform everywhere. Formation of an ore deposit 

depends on various factors, of which, the major 

ones are structural, hydrothermal, lithological, and 

chemical elements. In the Kerver and Baghqloom 

regions, the faults, fractures, and veinlets were 

created due to the structural forces or 

hydrothermal fluid pressures (stockwork 

framework). These have created a proper space 

for circulation of hydrothermal fluids, and 

eventually, formation of an ore deposit. The 

lithology brittleness plays an important 

controlling role in the development of veins. The 

lithological units of the area consist of a wide 

range of Eocene units including the pyroclastic 

rocks that are inter-bedded between the volcanic 

lavas, conglomerate, sandstone, and green tuff of 

sedimentary units. The dikes of acidic to mafic 

composition have affected the area in several 

stages. The mineralization in this area has a 

stockwork form, and is scattered over a large area. 

It has a porphyritic texture, and the mineralogical 

paragenesis (pyrite and chalcopyrite) has been 

introduced as porphyry copper mineralization. 

From the copper mineralization perspective, the 

Baghqloom area is less important than the Kerver 

region, which is located 2 km away from 

Baghqloom. Systematic sampling was carried out 

on the studied area that is enriched with granite, 

granodiorite, and quartz diorite rocks. Figure 1a 

shows the geological map of the studied area and 

the sample position. 

4. Results 

4.1. Dataset 

After determining 20 elements of the collected 

data from the Baghqloom region in Kerman, the 

important elements for exploration operations 

were recognized. In the last few decades, 

researchers have tried to analyze the 

mineralization and depth of the erosion level, 

especially to detect the hidden reserves, using the 

exploration and geochemical indicators. For 

porphyry deposits, the indirect exploration 

methods (that do not directly deal with the studied 

mineral deposit) were used to achieve better and 

more accurate results, and also to avoid wasting 

huge costs of different exploration methods. 

These indirect methods are based upon the 

geochemical data [35-38]. The method of 

geochemical zonation pattern core of elements is 

an appropriate method to apply. Analyzing the 

geochemical zonality using the litho-geochemical 

halo method above and under the deposits reveals 

important implications in relation to the erosion of 

the deposits and mineralization level [39-42]. 

Usually in porphyry deposits, elements such as 

Cu, Mo, Pb, and Zn are introduced as the zonality 

index elements and tried to detect the 

mineralization and depth of the erosion level 

using Equation 4 [38-41]. After analyzing the 

transformed data, Cu, Mo, Pb, and Zn were 

selected. The other exploration operations were 

performed on these elements as well. 

 





Pb Zn
Zonality Index

Cu Mo
 (4) 
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Figure 1. (a) Geological map of studied area with a scale of 1:100000 (the marked part with a gray border shows 

location of sampling points) (b) Geographical situation of studied area. 
 

 

4.2. Correlation coefficient of data 

Since in this study the selected element has the 

minimum value compared to the other elements, 

application of the ALR method is really 

appropriate. On the other hand, by analyzing the 

other conducted research works, the calculated 

correlation coefficients can be interpreted right 

after the transformation [25, 43]. In the additive 

logratio transformation method, the elements that 

have small values can be removed. The purpose of 

applying the multivariable analysis on the 

geochemical data is to find the relationship 

between the major and minor elements and the 

possibility of using this correlation to achieve a 

specified pattern. Data processing was performed 

by the two methods of cluster analysis and 

principal component analysis in order to remove 

the desired element. 

Cluster analysis is a chart that shows the 

relationship between the elements under the 

maximum correlation coefficient. First, by using 

the clustering chart, the relationships between the 

paragenetic elements were determined and the 

elements were divided into different groups. 

As it can be seen in Figure 2, the elements were 

divided into four groups. Using this analysis, one 

can conclude that the elements in the first branch 

and the first group are the mineralization 

elements, and are independent from the other 

ones. After carrying out the cluster analysis, the 

principal component analysis determined the 

factor that resulted in the variability of 

concentration. The purpose of analyzing the major 

element is to analyze the components variance of 

multivariate data in which the first component 

causes most of the variance in the data, and 

gradually the next components justify the lower 

variance of changes [44]. In this method, each 

component is independent from the other factors. 

This means that there is no correlation between 

the resulting components. In the analysis of the 

main components, the first and second 
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components are of high importance. Generally, 

the elements in each component whose values are 

approximately equal to or more than 0.5 will be 

identified as its main component elements. It can 

be concluded from Table 1 that copper, gold, 

silver, molybdenum, arsenic, bismuth, and 

mercury are the major elements of the first 

component, and antimony and tin are the major 

elements of the second component. The results of 

the cluster analysis and principal component are 

overlapping well. In fact, by using both methods 

at the same time, it can be realized that the results 

are true. Accordingly, nickel is the least important 

element whose maximum and minimum 

concentration values are very low. As a result, 

nickel can be selected as the denominator element. 

 

 
Figure 2. Dendrogram of cluster analysis elements and categorizing elements based on cluster analysis (closed 

system). 

 

Table 1. Results of principal component analysis (closed system). 

 
Component 

1 2 3 4 5 6 

Cu (ppm) 0.678 0.205 -0.338 0.412 -0.017 -0.173 

Pb (ppm) 0.875 0.045 -0.333 -0.083 0.077 -0.046 

Mn (ppm) 0.449 -0.739 0.211 -0.005 0.087 -0.032 

Cr (ppm) -0.108 0.289 0.065 -0.092 0.053 -0.561 

Ni (ppm) 0.188 -0.566 0.448 -0.012 0.003 -0.282 

Be (ppm) -0.081 0.388 0.104 0.129 0.481 -0.205 

Mo (ppm) 0.623 0.377 -0.010 -0.023 -0.043 -0.115 

Sn (ppm) 0.236 0.353 0.547 0.303 0.147 0.102 

Ti (ppm) 0.371 -0.684 0.143 0.318 0.103 0.182 

Ag (ppm) 0.905 0.048 -0.318 -0.056 0.031 -0.053 

Zn (ppm) 0.191 0.085 0.131 -0.027 0.766 -0.011 

Co (ppm) -0.019 0.006 -0.072 -0.150 -0.112 0.403 

Ba (ppm) -0.154 0.159 -0.203 0.008 0.419 0.555 

W (ppm) -0.030 0.152 -0.040 0.669 -0.229 0.151 

As (ppm) 0.904 0.131 -0.100 -0.083 -0.057 0.003 

Sb (ppm) 0.254 0.553 0.573 -0.180 -0.170 0.122 

Bi (ppm) 0.672 0.404 0.295 -0.075 -0.137 0.158 

Hg (ppm) 0.716 0.368 0.337 -0.155 -0.106 0.058 

Fe (%) 0.551 -0.593 0.0241 0.228 0.005 0.056 

Au (ppb) 0.874 0.051 -0.332 -0.072 0.015 -0.052 
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Table 2 shows the correlation coefficient data in a 

closed number system and the correlation 

coefficient ALR and CLR transformed data. The 

correlation coefficient in ALR can be interpreted 

significantly more than CLR. According to 

Equation 4, the correlation coefficient between Pb 

and Zn, which are in the numerator, should be 

high. Also the correlation coefficient between Cu 

and Mo, which are in the denominator, should be 

high. According to the results obtained, the 

correlation coefficient between Cu and Mo as the 

mineralization elements in the closed number 

system (Table 2) is 0.461. In ALR, the correlation 

is equal to 0.825, which is closer to the amount of 

interest. In the clr transformed data, this amount is 

0.128, which is really different from the closed 

number system. Therefore, it can be concluded 

that the correlation coefficient obtained from ALR 

is interpretable and more accurate than the 

correlation coefficient obtained from CLR 

4.3. Geostatistical studies 

In this work, the SGeMS software was used for 

the geostatistical studies. Statistical analysis 

(histogram) of 392 raw data based on Figure 3a 

indicates a skewed and non-normal data. After 

transforming the data with the desired norm (the 

mean of data is close to zero and the variance is 

almost one), the histogram of data for all elements 

is illustrated in Figure 3b. 

 
Table 2. Correlation coefficient elements in rock samples (closed system) in upper part and correlation 

coefficient of elements based on results of additive logratio transform (low diagonal) and a centered logratio 

transform (up diagonal) in a lower part. 

 Pb Zn Cu Mo 

Pb 1 

Zn 0.186 1 

Cu 0.224 0.041 1 

Mo 0.046 -0.009 0.461 1 

 Pb Zn Cu Mo 

Pb 1 0.300 -0.258 0.458 

Zn 0.696 1 -0.396 0.483 

Cu -0.036 -0.026 1 0.128 

Mo -0.025 -0.012 0.825 1 

 

 
Figure 3. (a) Histogram of data in non-normal mood that shows skewedness and abnormality among them (b) 

Histogram of data frequency after becoming normal standard (for all four elements under study). 
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4.3.1. Variography and structural analysis 

After normalizing the data, in order to determine 

the direction of anisotropy, the variography in 

different directions was conducted for each four 

selected elements. After carrying out the 

variography and fitting a spherical model on the 

data, the isotropy was identified for each one of 

the four elements. Figure 4 shows the variography 

in the isotropic direction for the elements, and 

Table 3 shows the parameters of the variogram 

model. According to the definition of isotropy, 

anisotropy is the direction in which the 

concentration or grade has the highest variability, 

and therefore, it is expected that the fitted model 

has the least impact range and it is a model with a 

high slope. According to the definition of 

azimuth, the direction of isotropy and anisotropy 

together will build the angle of 90°. In other 

words, the most variability of concentration or 

grade happens in the direction that is 

perpendicular to the direction of mineralization. 

That is because the ore minerals directly enter the 

waste zone, and vice versa. 

The best model that can be fitted on the variogram 

model is spherical. According to Figure 4, the 

experimental variograms show the spherical 

nested structures. Actually, a nested structure is 

the sum of several variograms having various 

ranges and sills. In this case study, the spherical 

model equation for lag distance h is as follows 

[45]: 

1 2 3

1 0

3

3
2 3

( ) ( ) ( ) ( )

( )

3
( ),

( ), ( ) 2 2

,

  




 

 

 

h h h h

h C

h h
C h a

h h a

a

a

C h

   



 

 

(5) 

where C stands for the ceiling of variogram when 

it is added to the nugget effect (C0), a stands for 

the impact range of variogram, which is very 

small in this interval. Also lag h determines the 

distance between the studied samples. 

 

 
Figure 4. Variography of four elements in isotropy direction a) Pb element in azimuth of 90° b) Zn element in 

azimuth of 90° c) Cu element in azimuth of 90° d) Mo element in azimuth of zero degrees. 

 
Table 3. Parameters of variogram model. 

Element Direction Nugget (C0) Sill (C+C0) Range (a) 

Pb 90°
 

0.1 0.59, 0.41 192.5, 1540 

Zn 90°
 

0.1 0.45, 0.4 105, 1662.5 

Cu 90°
 

0.1 0.55, 0.25 820, 100 

Mo 0°
 

0.1 0.6, 0.176491 175, 1715 
The unit of range is in m 
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4.3.2. Kriging 

Using the variogram model and normalized data, 

the elements were estimated using ordinary 

kriging. In order to perform the ordinary kriging 

as an estimator, the data should be independent 

from coordinates (the stationary-lack of trend), 

and their average value has to be unknown. After 

analyzing the data and ensuring that these two 

conditions are met, the results of this method are 

shown in Figure 5 for all four elements. It should 

be noted that for a better view of the area, before 

opening the numerical system, we changed the 

stage (the code on Matlab software) to real space. 

Also the kriging results changed to a non-

Gaussian distribution. 

Copper and molybdenum in the central parts of 

the region show enriched values (Figure 5). This 

can prove that these two elements were the 

mineralization elements, and the correlation 

coefficient between these two elements was very 

high. Lead, as the zonality index element in the 

western and northwestern and northeastern and 

southwestern parts of the region, is enriched. Zinc, 

as the zonality index element in the western, 

northwestern, and southwestern parts, is enriched 

as well. According to these maps, we can use 

these elements to check the status of mineral 

exploration and to locate the mineralization. 

 

 
Figure 5. Maps of ordinary kriging (ok), respectively, for the four elements Pb, Zn, Cu, and Mo (data using an 

inverse logarithmic transform from open mood has become the primary mode). 

 

4.3.3. Sequential gaussian simulation 

Application of an appropriate method is really 

important to show the variability of concentrations 

in the upper and lower parts of the deposits. The 

SGS method illustrates the variability of the 

concentration of the elements by eliminating the 

smoothing effect of the kriging method. 

In this work, for each element, to obtain 100 

realizations on data, the simulation was repeated 

for 100 times. Using the average of all simulation 

maps, the E-type map was obtained. After the 

simulation and validation of all simulations, an 

appropriate simulation was selected for each 

element, which was very similar to the normal and 
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raw data in the statistical and geostatistical 

viewpoints (Table 4, Figures 6 and 7). The Omni-

directional variograms of three randomly selected 

realizations of the zonality elements and also the 

raw data and kriging maps are displayed in  

Figure 7. Comparing these Omni-directional 

variograms of realization with the raw data and 

kriging variogram shows that the realization 

reproduction is reasonably well (Figure 7). Figure 

8 shows suitable simulations for each element. 

After simulation, the simulated data for each 

element were back-transformed. 

According to Figure 8, increasing the 

concentration of the selected elements is almost 

like the OK maps. In the simulation map, increase 

in concentration is different, which is due to the 

removal of the smoothing effect of OK. In fact, in 

the conducted simulations, local variability 

(sudden increase in concentration) obviously 

contradicts the OK method. It is clear that the 

correlation coefficient between molybdenum and 

copper (as the mineralization elements) is very 

high. Copper and molybdenum enrichment is 

almost visible throughout the region. If these 

elements are required to be explored in this area, it 

can be supposed that the deposits of interest are of 

porphyry mineralization type. The reason is that 

the mineralization in this area is hosted in granitic, 

granodioritic, and quartz dioritic rocks. 

 
Table 4. Statistical parameter of zonality elements and output grid for selected realization. Comparing these 

results of selected realization with raw data shows that the realization reproduce data for high values. 

 

Raw Data Simulated Data 

Pb Zn Cu Mo 
 Pb Zn Cu Mo 

Selected realization 38 86 32 38 

Mean 148.7 128.3 227.8 41.5 
 

148.5 127.9 227.1 41.2 

Variance 10.26 34.3 12.9 16.8 10.22 34.25 12.45 16.75 

 

 
Figure 6. Cumulative distribution function of selected realizations reproducing sample zonality element 

histogram. Cumulative distribution function of E-type and kriging could not reproduce data for high values. 
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Figure 7. Omni-direction variograms of three randomly-selected realizations and raw data and kriging map. 

 

 
Figure 8. Maps of sequential Gaussian simulation to achieve the best realization among 100 realizations, 

respectively, for four elements Pb, Zn, Cu, and Mo (using an inverse logarithmic transform, data was changed 

from open mood to initial state). 
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5. Discussion 

According to the simulation maps of elements 

obtained, an appropriate model of geochemical 

halos can be produced. According to the SGS 

results, copper is enriched in the central parts of 

the region. Also this element shows low and 

medium concentrations in the northwestern and 

southern parts, respectively (Figures 5 and 8). 

Lead and zinc, as the front halo elements, are 

enriched in the northwestern part of the region. 

Most likely, the central part is located in or nearby 

the mineralization region. In order to achieve 

better and more accurate results, it is required to 

evaluate the erosion level in the southern and 

northwestern parts of the studied area. Analyzing 

the geochemical zonality reveals important 

implications in relation to the deposit erosion and 

mineralization level. In order to calculate the 

zonality coefficients, K-coefficient of 

mineralization (K) and coefficient of productivity 

were obtained for each element. In K-coefficient 

of mineralization, the concentration of element 

from each sample is divided into the mean of the 

element in the anomalous zone. In the coefficient 

of productivity approach, the K-coefficient of 

mineralization is multiplied by the mean from 

each element (Table 5). 

According to the classification of erosion level for 

this zonality index (Table 6) and the results of 

Table 5, the northwestern, southern, and central 

parts of the studied area are located in the supper-

ore and lower-ore, respectively. Actually, the 

deposit is strongly eroded in the southern part of 

the area so that the under deposit elements are 

remained. Also there are two hidden 

mineralizations of Pb-Zn (northwestern part) and 

Cu porphyry (central part) in the Baghqloom area. 

Furthermore, the zonality index of the deposit was 

compared with different types of standard models 

in order to investigate the potential of Cu 

mineralization in the Baghqloom zone (Figure 9). 

According to Figure 9, the zonality index of the 

central and northwestern parts are located above 

the surface of the western part of the Sungun 

deposit zonality pattern. Thus it is expected that 

the Cu porphyry mass is in shallower depths of 

150-200 m. Also there is a hidden mineralization 

of Pb-Zn deposit in a higher depth. From a 

topographical viewpoint, the studied region has a 

general slope. According to the geological map 

(Figure 1), the streams flowing from the east to 

the west show that the slope region is towards the 

west. According to the created mineralization 

model, it can be concluded that the hidden 

mineralization is located in the central and 

northwestern regions (Figure 10). 

 
Table 5. Coefficient zonality of central, northwestern, and southern parts of Baghqloom area. 

Area Element K Productivity Cu.Mo Pb.Zn Pb.Zn/Cu.Mo 

Central 

Cu 0.38 90.3 
120.1 …….. 

23.22 
Mo 0.24 1.33 

Pb 0.86 86.6 
……. 2788.5 

Zn 0.29 32.2 
 

Area Element K Productivity Cu.Mo Pb.Zn Pb.Zn/Cu.Mo 

Northwestern 

Cu 0.75 609.15 
9.12 …….. 

131455.31 
Mo 0.008 0.015 

Pb 1 2965.3 
……. 119872.5 

Zn 0.75 404.25 
 

Area Element K Productivity Cu.Mo Pb.Zn Pb.Zn/Cu.Mo 

Southern 

Cu 0.85 305 
1515.85 …….. 

0.0288 
Mo 0.39 4.97 

Pb 0.08 4.22 
……. 43.76 

Zn 0.122 10.37 
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Table 6. Geochemical zonality model for Cu porphyry based on different types of standard models [42]. 

Erosion Level Pb.Zn/Cu.Mo 

Supra-ore  100 

Upper-ore 100-10 

Ore 10-1 

Ore 1-0.1 

Lower ore 0.1-0.01 

Sub-ore  0.01 

 

 
Figure 9. Standard chart of different types of Cu porphyry models. 

 

 

Figure 10. Geochemical zonality modeling of Baghqloom deposit based on geological map. 

 

6. Conclusions 

In the exploration studies, when conducting 

statistical processing, it is important to take into 

account the compositional nature of the 

compositional data, and transform it from a closed 

system (due to false correlation coefficient) to an 

open system using centered, isometric, and 

additive logratio transformations. Among 

transformations, the additive logratio is more 

common because it is simpler both in application 

and in interpretation. Also due to the small size of 

the sampled area compared to the whole studied 

area, it is recommended to use the geostatistical 

simulation methods that are able to predict the 

best and worst events. Among these methods, the 

SGS method is the most efficient and flexible 

method that examines all the possible scenarios. 

The results of the kriging and Gaussian 

simulations are compatible to a considerable 

extent, and both results represent significant 

concentrations of copper and molybdenum 

mineralization, especially in the central part of the 
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deposit. Since the case study is a porphyry type 

deposit, this increase is sporadic. This shows that 

the correlation between these two elements is 

substantial in additive logratio transformation. 

Geochemical exploration using geochemical halo 

modelling has introduced the central regions as 

suitable areas for a detailed exploration of copper 

mineralization, which was found based on the 

available shallow depth evidence. Enormous 

fracture in the altered zones of the Baghqloom 

area shows that this mineralization has occurred 

as a result of hydro-fracturing caused by high 

pressured hydrothermal fluids. In general, 

according to the geological studies, it can be 

concluded that this area has a high mineralization 

potential. 
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‌چکیده:

سیسوتم عوددی    .شووند  می حمطر ،هستند بسته دیعد سیستم دارای که ترکیبی های داده رتصو به معمولاًوجود قید مجموع ثابت،  علت به ئوشیمیاییژ یها داده

بوا محاسوبه یوریم همبسوت ی      .اسوت برابر واحود   ثابت و رها معمولاًباشند. مجموع مقادیر متغیر میکه شامل چند متغی شودهایی گفته میبسته به مجموعه داده

ویژگوی ایوچ چنویچ     ست.ا ذبکا و قعیواغیر که شوود موی  دیده بسته دیعد سیستم یردمقا در یشافزا یکمقایسه آن با سیستم عددی باز  سیستم عددی بسته و

ا از حالت بسوته بوه بواز وجوود     هتبدیل داده برایهای مختلفی بدیچ منظور روش شود.می ها آن یرو برهای آماری استاندارد تکنیک کارگیری  بههایی، مانع از داده

 تواننود  موی  آمواری زمویچ  هوای سوازی شوبیه سازی وجوود دارنود.   ی تخمیچ و شبیههاآماری مختلفی شامل روشهای زمیچسازی کانسار، روشدارد. به منظور مدل

 اسوت،  بوالایی  پوذیری انعطوا   دارایکه  آماریسازی زمیچشبیه روش چیتر ییاجرا قابل .کنند تولید را کدام هر رخداد احتمال درصد با کانسار از مختلفی هایمدل

ت بوه  در ابتدا با استفاده از تبدیلا عنصر 71داده لیتوژئوشیمیایی، متشکل از  937 کرمانغلوم در منطقه باغ ،پژوهشدر ایچ  .است متوالی گاوسی سازیشبیه روش

تحقو    611سازی بوا  رمال تبدیل شده و سپس شبیه، به استاندارد نکننداکتشا  منطقه کمک شایانی میکه در  یعناصر اند. سپسهسیستم عددی باز تبدیل شد

هوا نشوان   یسواز هیحاصول از شوب   یهوا نقشه د.شآماری تحق  معتبر انتخاب سازی با استفاده از اعتبار سنجی آماری و زمیچپس از شبیها انجام گرفت. ه بر روی آن

 است. یدر مناط  مرکز سازیکانیاز عناصر  یدهنده غلظت غن

 .کرمان -غلومباغ ،یمتوال یگوس یسازهیشب ،آماری زمیچ سازیهیبسته، شب و باز یعدد ستمیس ،یبیترک هایداده کلمات‌کلیدی:

 

 

 

 


