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Abstract 

The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper 

introduces two intelligent models for identification of the porosity types using image analysis. For this aim, 

firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis 

techniques. The extracted features and their corresponding pore types of 682 pores were used for training 

two intelligent models, BPN (back-propagation network) and SAE (stacked autoencoder). The trained 

models take the geometrical properties of pores to classify the type of six porosity types including  

intra-particle, inter-particle, vuggy, moldic, biomoldic, and fracture. The MSE values for the BPN and SAE 

models were found to be 0.0042 and 0.0038, respectively. The precision, recall, and accuracy of the 

intelligent models for classifying the types of pores were calculated. The BPN model was able to correctly 

recognize 193 intra-particle pores out of 197 ones, 45 inter-particle pores out of 50 ones, 7 vuggy pores out 

of 9 ones, 10 moldic pores out of 12 ones, 2 biomoldic pores out of 3 ones, and 6 fractures out of 7 ones. 

Also the SAE model was able to correctly classify 193 intra-particle pores out of 197 ones, 46 inter-particle 

pores out of 50 ones, 8 vuggy pores out of 9 ones, 10 moldic pores out of 12 ones, 3 biomoldic pores out of 3 

ones, and 7 fractures out of 7 ones. The results obtained showed that the SAE model carried out a bit more 

accuracy for classification of the inter-particle, vuggy, biomoldic, and fracture pores. 
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1. Introduction 

Porosity is an important parameter of each 

reservoir rock. Indicating the space available for 

storage of fluid and a measure of the void spaces 

in a material, it is defined as a fraction of the 

volume of voids over the total volume between 0 

and 1 or as a percentage between 0 and 100%. 

There are several types of porosity in the structure 

of reservoir rocks, each of which playing a 

different role in flow features of the rocks. 

Porosity classification is a fundamental procedure 

from a geological viewpoint. The results of 

porosity classification can be employed to 

improve the modeling of reservoir conditions. 

Studying the thin sections has been one of the 

popular methods for classification of the porosity 

types in a rock. It is a time-consuming procedure 

for expert geologists to characterize each type of 

porosity in a thin section. 

In the last decade, many advances in image 

analysis, intelligent systems, and pattern 

recognition techniques have been made in 

different branches of scientific fields due to their 

accurate results and rapid measurements. To date, 

several researchers have worked on the 

capabilities of thin section images for rock 

characterization. Also many researchers have 

focused on the integration of image analysis 

techniques and intelligent systems by 

development of intelligent systems, especially 

neural networks. 

Lucia (1983) has proposed a classification of 

carbonate porosity based on the data derived from 
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visual description. This classification can be used 

in a field or for a routine laboratory description. 

Inter-particle porosity was classified according to 

the particle size and the dense or porous 

appearance of the inter-particle area. Vuggy 

porosity was classified according to the type of 

inter-connection. Separate vugs were connected 

through inter-particle pore spaces and classified 

by percent porosity, and touching vugs were 

connected to each other and classified by presence 

or absence [1]. 

Ehrlich et al. (1984) have worked on the analysis 

of reservoir pore complexes. There is a need to 

relate the petrology of reservoirs such as pore 

geometry to the petro-physical data. They 

developed a petrographic image analysis from the 

beginning to interface with the petro-physical 

data. Petrographic image analysis contains 

hardware and software that carry out four 

functions including image acquisition, image 

digitization, image segmentation, and image 

analysis. They generated separate spectra related 

to pore size and pore roughness from each image. 

In addition, surface area per unit volume of pores 

could be assessed [2]. 

Funk et al. (1989) have described pore size 

distributions using petro-physical properties and 

image analysis. They developed statistical 

relationships with image analysis techniques, 

which provided worth information for 

investigating anomalies in petro-physical 

properties [3]. 

Mohaghegh and Ameri (1995) have discussed the 

importance of artificial neural networks (ANNs) 

to petroleum engineers and the advantages that 

this computing process has over other 

conventional methods and the mechanics by 

which neural networks achieve their objective. 

They expressed that ANNs could help petroleum 

engineers in solving some fundamental petroleum 

engineering problems. The aim of their work was 

to encourage engineers and researchers to 

consider it as a valuable tool in petroleum industry 

[4]. 

Van den Berg et al. (2002) have presented an 

alternative computer algorithm to separate 

touching grain sections in binary images of 

granular material. The algorithm detected 

characteristic sharp contact wedges in the outline 

of touching grain sections and created an  

inter-section after checking if the angle of the 

contact wedge was smaller than a threshold value. 

The result of grain-size distributions after 

applying automated separation techniques verified 

with the size distribution obtained with a 

laboratory laser particle sizer. The algorithm 

improved preservation of size and shape 

characteristics of the granular material [5]. 

Perring et al. (2004) have used automated digital 

image analysis to acquire quantitative 

petrographic data for igneous rocks. This method 

is not restricted to the study of igneous rocks [6]. 

Marmo et al. (2005) have proposed a numerical 

methodology based on the digitized image of thin 

sections to identify carbonate textures unaffected 

by post-depositional modifications. The 

methodology uses, as input, 256 grey-tone digital 

image, and by image processing gives, as output, 

a set of 23 values of numerical features measured 

on the whole image. A multi-layer neural network 

takes as input these features, and gives, as output, 

the estimated class. This technique showed 93.3% 

and 93.5% of accuracy to classify textures of 

carbonate rocks using digitized images on two test 

sets, respectively [7]. 

Al-Bazzaz and al-Mehanna (2007) have used 2D 

images of thin section and SEM to characterize 

the morphology of grains and pores for porosity, 

permeability, and means hydraulic radius 

calculations [8]. 

Martinez-Martinez et al. (2007) have 

demonstrated the efficiency of image analysis as a 

suitable tool for petrographic quantification of 

brecciated rock [9]. 

Dong et al. (2007) have performed analysis of 

pore size distribution of Arabian core samples. 

They used X-ray micro-tomography to image rock 

cuttings. The largest inscribed spheres in the pore 

space represent pores with throats representing the 

connections between them. They validated the 

result through comparison with networks derived 

by a different method from idealized sphere 

packing. The goal of their work was to input the 

models into pore-scale network models to predict 

macroscopic features. Pore spectra were 

decomposed and classified using pattern 

recognition and classification algorithms or used 

directly to assess physical parameters [10]. 

Grove and Jerram (2011) have developed an 

effective method to measure the total optical 

porosity of impregnated thin sections. The 

objective of the study included the search for 

developing a semi-automated model for 

identification and classification of five types of 

porosity in thin section images. A semi-automate 

algorithm was described, which combined the 

advantages of image analysis and discriminant 

classifiers to extract the features of pores from the 

images and categorize them in one of the five 
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classes, namely inter-particle, intra-particle, 

oomoldic, biomoldic, and vuggy [11]. 

Enbaia and Ramdzani (2014) have revised the 

limitation of pore geometry SEM measurements 

applied to both the synthetized and real formation 

samples with the usage of fundamental concepts 

and available data of pores. They used the digital 

image analysis to enhance the pore system 

interpretation. They discussed the concepts like 

pore throat, body and connectivity, and 2D and 

3D analyses to make the actual information of 

pore geometry that was more useful in drilling and 

completion design [12]. 

Suhaimi (2016) has characterized the distribution 

of pore geometry utilizing the available core data, 

thin section petrographic image analysis, mercury 

injection, capillary pressure, and a newly 

developed depositional model. Three pore types 

including inter-particle (inter-crystalline), separate 

vugs, and touching vugs were presented [13]. 

Recently, deep learning as a branch of neural 

networks has become one of the favorite methods 

for the researchers in different cases [14, 15]. 

Bengio et al. (2007) have originally proposed 

stacking of autoencoders in order to boost 

performance of deep networks [16]. 

Baldi (2012) has presented a general mathematical 

framework to study both the linear and non-linear 

autoencoders. The framework allowed to derive 

an analytical treatment for the most non-linear 

auto-encoder, the Boolean autoencoder. Learning 

in the Boolean autoencoder is equivalent to a 

clustering problem that can be solved when the 

number of clusters is small and becomes NP 

complete when the number of cluster is large. 

NP is a complexity class used to describe certain 

types of decision problems. Informally, NP is the 

set of all decision problems for which the 

instances where the answer is "yes" have 

efficiently verifiable proofs [17]. 

Chen et al. (2014) have introduced the concept of 

deep learning. First, they verified the eligibility of 

stacked autoencoders by following spectral 

information-based classification. Secondly, a new 

way of classifying with spatial-dominated 

information was proposed. Then they proposed a 

novel deep learning framework to merge the two 

features that could obtain the highest accuracy of 

classification. Experimental results indicated that 

classification built in this deep learning-based 

framework provided competitive performance 

[18]. 

Schmidhuber (2015) has reviewed deep 

supervised learning, unsupervised learning, and 

indirect search for short programs encoding deep 

and large networks. Shallow and deep learners are 

distinguished by the depth of their credit 

assignment paths, which are chains of possibly 

learnable, causal links between actions and effects 

[19]. 

The proposed methodology in this paper is 

integration of image analysis and intelligent 

systems including shallow and deep learning of 

neural networks. 

2. Geology of Jahrum formation 

Several thousand meters of carbonate sediments 

were deposited in the Zagros basin. The Jahrum 

Formation is located in the Shiraz area. This 

formation has been assigned to the middle Eocene 

to Pliocene (Figure 1). 

The Jahrum Formation consists of 468 m of 

dolomite and dolomitic limestone, which are 

overlain with unconformable and erosional 

contact by the Asmari Formation [20]. Beneath 

the Jahrum Formation are the evaporites of the 

Sachun Formation [21]. This formation mainly 

consists of dolomite and limestone. In this study, 

the thin sections of core data of Jahrum Formation 

were available. 

3. Material and methods 

3.1. Image analysis 

Image analysis is defined as different computer-

based levels for identification, description, and 

diagnosis of the elements from an image. The 

levels of image analysis for identification of pore 

spaces include image acquisition, image filtering, 

image segmentation, and feature extraction. 

Image acquisition includes preparing the images 

from thin sections. A digital camera attached to an 

optical microscope was used to capture images of 

thin sections. Field of view is a significant factor 

of image analysis, and is selected based on visible 

pores. 

The second step of image analysis is image 

filtering. Inappropriate mounting of slides, uneven 

thickness of the section, and dirt on the thin 

section can adversely affect the quality of images 

[22]. The quality of images affect the performance 

of feature extraction algorithm. 

The image segmentation includes identification 

and isolation of the pixels that belong to the same 

class, which can be used for creating a 

representation of image to detect the important 

elements for a research work [9]. The image 

segmentation should be done for separating the 

pores from the rest of a thin section image. In the 

RGB model, the red, green, and blue colors are 

combined to create a wide range of colors. The 

https://en.wikipedia.org/wiki/Complexity_class
https://en.wikipedia.org/wiki/Decision_problem
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model assigns the intensity level of red, green, and 

blue on a scale of 0 to 255, where 255 represents 

the maximum intensity. The segmented images 

will be used for extracting the geometrical 

parameters. Specifying incorrect definition of 

pores will cause inaccuracy in the type of 

porosity. 

The last step of image analysis is feature 

extraction. The accuracy of image analysis 

depends on the extracted features. The accurate 

extraction of features authenticates the precision 

of methodology. Feature extraction defines the 

significant characteristic of images. The extracted 

features ought to be signalizing different pores. 

 

 
Figure 1. General stratigraphic column for Tertiary interval in Shiraz area [20]. 

 

3.2. Artificial neural networks  

(intelligent systems) 

The main purpose of this work was to develop an 

intelligent model using the training data. There are 

several types of intelligent systems. Each of them 

has a set of parameters that are required to be 

optimized. Shallow and deep learning of neural 

networks were employed to develop two 

intelligent models for classifying pore spaces of 

reservoir rocks. 

3.2.1. Shallow learning of neural network 

The structure of a feed-forward neural network is 

mentioned in Figure 2. A feed-forward neural 

network often has one hidden layer of sigmoid 

neurons and an output layer of linear neurons. The 

neurons with non-linear transfer functions permit 

the network to learn non-linear relationships 

between input and output [23]. This neural 

network was trained with a back-propagation 

learning algorithm [24]. A back-propagation 

neural network (BPN) is a supervised learning 

method. BPN computes the difference between 

the calculated output and corresponding desired 

output from the training data. Then the error 

propagated backward through the network and the 

weights are adjusted during a number of 

iterations. The training stops when the best 

approximations of desired values are calculated 

[25]. 

3.2.2. Deep learning (SAE) of neural network 

Deep learning also known as deep structured 

learning, hierarchical learning or deep machine 

learning is a branch of machine-learning based on 

learning representations of data. An observation, 

for example an image, can be represented in many 

ways such as a vector of intensity values. The  

sub-categories of deep learning method is 

described in Figure 3. 

In a simple case, you could have two sets of 

neurons: the ones that receive an input and the 

ones that send an output. When the input layer 

receives an input, it passes on a modified version 

of the input to the next layer. In a deep network, 

there are many layers between the input and 

output, and the layers are not made of neurons 

allowing the algorithm to use multiple processing 

layers composed of multiple linear and non-linear 

transformations [19, 26-32]. 

There are a huge number of various deep learning 

architectures such as autoencoders. They have 

been applied to fields like computer vision. Most 

of them are branched from some original parent 

architectures. It is not always possible to compare 

the performance of multiple architectures all 

together because they are not all evaluated on the 

same datasets. A research work in this area 

attempts to construct better representations and 

create models to learn these representations from 

large-scale unlabeled data. Some of the 
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representations are inspired by advances in 

neuroscience, and are loosely based on 

interpretation of information processing and 

communication patterns in a nervous system such 

as neural coding, which attempts to define a 

relationship between various stimuli and 

associated neuronal responses in the brain [33]. 

 

 
Figure 2. Structure of a feed-forward neural network [24]. 

 

 
Figure 3. Sub-categories of deep learning method. 

 

3.2.2.1. Autoencoders 

A single autoencoder is a two-layer neural 

network used for unsupervised deep learning of 

efficient coding [34, 35]. The target of an 

autoencoder is to learn a representation for a set of 

data, typically for the purpose of dimensionality 

reduction [36]. An autoencoder consists of an 

encoder layer and a decoder layer. The encoder 

layer maps the input to a hidden representation. 

The decoder layer attempts to map this 

representation back to the original input [23]. In 

other word, the encoding layer encodes the inputs 

of the network, and the decoding layer decodes 

the inputs. As a result, the number of neurons in 

the encoding layer is equal to the input 

dimensionality [37]. An autoencoder applies  

back-propagation. An autoencoder is shown in 

Figure 4. 

The autoencoder attempts to learn a function, 

         . In other words, it tries to learn an 

approximation to the identify function so as to 

output  ̂ that is similar to   [38]. In other words, 

the target of an autoencoder is to compute a code 

h of an input instance x from which x can be 

recovered with high accuracy [37]. 

3.2.2.2. Stacked autoencoders 

Stacked autoencoder is unsupervised pre-training, 

layer by layer, as input is fed through. Once, the 

first layer is pre-trained, it can be used as an input 

of the next autoencoder. Therefore, an 

autoencoder on the row input xk is trained to learn 

primary features   
   

 (Figure 5A). Next, these 

primary features are used as the raw input to 

another autoencoder to learn the secondary 

features,   
   

 (Figure 5B). Following this, these 

secondary features are used as a raw input to a 

softmax layer (Figure 5C). Actually, the final 

layer can deal with the traditional supervised 

classification, and the pre-trained neural network 

can be fine-tuned using back-propagation. The 

output of softmax node is in terms of the 

probabilities of each class. Therefore, gradients at 

each node are computed with softmax and cross 

entropy performance function. Finally, three 

layers are combined to form a stacked 

autoencoder with two hidden layers and a final 

softmax classifier layer (Figure 5D) [38]. 
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 Figure 4. Autoencoder mechanism [38]. 

 

 

 
Figure 5. Stacked autoencoder mechanism. Detailed explanation of A, B, C, and D is mentioned in text [38]. 
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4. Calculation 

In this section, the benefits of image analysis and 

intelligent systems were combined while the 

inputs of intelligent models were prepared through 

image analysis. In this work, the method 

introduced by Lonoy (2006) was used to classify 

the types of porosity [39]. 

4.1. Data preparation with image analysis 

The four steps of image analysis were considered. 

The images were captured under different fields 

of view. The trial-and-error examinations 

demonstrated that the field of view at 40X was 

suitable. To improve the quality of images and 

remove the noises from the images, three types of 

filters including the median, erode, and dilate 

filters were used. The median filter removes small 

discontinuities without geometrical changes 

within pores. The erode and dilate filters erode 

and enlarge the edges of pores, respectively. In all 

images, blue pixels were considered as pores 

because the understudied samples were saturated 

with blue epoxy. To specify the interval of color 

intensity for pixels related to the pores, the 

intensities of red and green colors were below 203 

and the intensity of blue color trespassed 170. All 

pixels with the mentioned red, green, and blue 

intensities were converted to a unique blue, and 

the remaining pixels became white. This  

blue-white image is a 3D one, every pixel 

including three components of red, green, and 

blue. The 3D image was converted into a 2D or 

binary image. Each pixel of a binary image is 

identified with the zero and one character. In a 

binary image, pores are shown by black pixels 

(zero) and other parts of image are defined by 

white pixels (one) (Figure 6). 

Several geometrical features were tested in order 

to choose the most suitable ones for assessing the 

size and shape of pores. Finally, the following 

features were chosen: 

Area, area/box, major axis, minor axis, aspect 

ratio, box (X/Y), mean diameter, mean ferret, 

IOD, radius ratio, roundness, size (length), size 

(width) (Table 1). 

A graphical description of geometrical properties 

is demonstrated in Figure 7. The geometrical 

features of 960 pores were extracted from 59 

images of thin sections. 

 

 
Figure 6. Flowchart of data preparation with image analysis. 
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Table 1. Definition of selected features. 

Marking Feature Definition 

1 Area Number of pixel in a pore 

2 Area/Box Ratio between area of pore and area of its bounding box 

3 Major axis Length of major axis of ellipse 

4 Minor axis Length of minor axis of ellipse 

5 Aspect ratio Ratio between major axis and minor axis of ellipse equivalent to object 

6 Box (X/Y) Ratio between width and height of pore’s bounding box 

7 
Mean 

diameter 

Average length of diameters measured at 2 degree intervals and passing through object’s 

centroid 

8 Feret (mean) Average caliper (feret) length 

9 IOD Multiplication of area and average intensity 

10 Radius ratio Ratio between maximum and minimum radius 

11 roundness Ratio of perimeter to area of a pore 

12 Size (length) Feret diameter along major axis of pore 

13 Size (width) Feret diameter along minor axis of pore 

 

 
Figure 7. Graphical description of selected geometrical features. 1) Area, 2) Area/Box, 3) Major axis, 4) Minor 

axis, 5) Aspect ratio, 6) Box (X/Y), 7) Mean diameter, 8) Mean ferret, 9) IOD, 10) Radius ratio, 11) Roundness, 

12) Size (length), 13) Size (width). 

 

4.2. Training intelligent systems 

The geometrical properties extracted in the image 

analysis stage were used as inputs of intelligent 

systems, from which 682 and 278 pores were 

considered for the training and testing procedures, 

respectively. 

For preparation of the training data, 509  

intra-particle, 103 inter-particle, 37 vuggy, 20 

moldic, 5 biomoldic porosity, and 8 fracture were 

investigated. The largest percentage of the 

training data belonged to the intra-particle pore. 

Inter-particle pores had the most complex 

geometrical shapes. Also the testing data included 

197 intra-particle, 50 inter-particle, 9 vuggy, 12 

moldic, 3 biomoldic porosity, and 7 fracture 

(Figure 8).  

The extracted geometrical features and their 

corresponding pore types of 682 pores were used 

for training two intelligent systems, namely BPN 

and SAE. Intelligent systems along with training 

save the area of the studied pores in the memory.
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Figure 8. Histograms of distribution of pore types. 

 

4.3. Construction of BPN model  

(back-propagation network) 

The training algorithm was applied for updating 

the weights and bias values of a three-layered 

error back-propagation algorithm. The 

specifications of the created model is mentioned 

in Table 2. The performance of the BPN model 

was equal to 0.0057 for the training data. 

After training the network, the test data was 

introduced to the BPN model and the type of 

porosity was determined. The measured mean 

squared error (MSE) for the test data was equal to 

0.0042. 
 

Table 2. Specifications of BPN model. 

Feed-forward back-propagation Type of network 

TRAINLM Training function 

LEARNGDM Adaption learning function 

MSE Performance function 

3 Number of layers 

30 Number of neurons 

TANSIG Transfer function between layers 

 

4.4. Construction of SAE model  

(stacked autoencoder) 

The two autoencoders were stacked to construct 

the SAE model. In the first autoencoder, the 

hidden layer included 30 neurons, and the 

PURELIN function was used as the transfer 

function. In the second autoencoder, the hidden 

layer included 40 neurons, and the LOGSIG 

function was employed as the transfer function. 

With stacking these two autoencoders, the SAE 

model was created. The characteristics of the 

constructed model are introduced in Table 3. The 

performance of the SAE model was equal to 

0.0012 for the training data.  

After training the network, the test data was 

introduced to the SAE model, and the type of 

porosity was determined. MSE for the test data 

was equal to 0.0038. 
 

Table 3. Characteristics of SAE model. 
Stacked autoencoder Type of network 

TRAINSCG Training function 

Cross entropy Performance function 

First autoencoder 

3 Number of layers 

30 Number of neurons 

PURELIN Transfer function between layers 

Second autoencoder 

3 Number of layers 

40 Number of neurons 

LOGSIG Transfer function between layers 
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103 

37 
20 5 8 

197 

50 
9 12 3 7 

0

100

200

300

400

500

intraparticle interparticle vuggy moldic biomoldic fracture

N
u

m
b

er
 o

f 
p

o
re

s 

Different type of pores training data testing data



Abedini et al./ Journal of Mining & Environment, Vol.9, No.2, 2018 

522 

 

4.5. Performance of models 

After the training and constructing procedures, an 

error calculation step was performed to analyze 

the ability of the intelligent models for new 

geometrical features that could be introduced as 

the testing data. The extracted geometrical 

features of 278 pores were selected for testing the 

two intelligent systems. The accuracy of the 

models was calculated. The type of porosity 

predicted via the intelligent models was compared 

with the type of porosity determined by an expert 

geologist. 

This investigation provided the final results for 

classification of each porosity type but did not 

clarify what accuracy the models had in 

differentiation of pores individually. The models 

might predict vuggy porosity as interparticle 

porosity. Thus it was essential to separately 

investigate the accuracy of models for classifying 

the different types of porosity. For this aim, the 

extracted features of 278 pores including 197 

intra-particle, 50 inter-particle, 9 vuggy, 12 

moldic, 3 biomoldic porosity, and 7 fracture were 

used. 

Performance of the intelligent models for 

identifying different pores were compared in 

Table 4. It was shown that the BPN model 

correctly identified 193 intra-particle pores out of 

197 ones, 45 inter-particle pores out of 50 ones, 7 

vuggy porosity out of 9 ones, 10 moldic porosity 

out of 12 ones, 2 biomoldic porosity out of 3 ones, 

and 6 fracture out of 7 ones. The SAE model 

correctly identified 193 intra-particle pores out of 

197 ones, 46 inter-particle pores out of 50 ones, 8 

vuggy porosity out of 9 ones, 10 moldic porosity 

out of 12 ones, 3 biomoldic porosity out of 3 ones, 

and 7 fracture out of 7 ones. 

 
Table 4. Comparison between results of two intelligent models. 

Types of porosity 
Result of BPN model 

intra inter vuggy moldic biomoldic fracture 

intra 193 4     

inter 5 45     

vuggy  2 7    

moldic 1 1  10   

biomoldic     2 1 

fracture     1 6 

Precision (%) 96.98 86.54 100 100 66.67 85.71 

Recall (%) 97.97 90 77.78 83.33 66.67 85.71 

Accuracy (%) 94.60 

Types of porosity 
Result of SAE model 

intra inter vuggy moldic biomoldic fracture 

intra 193 4     

inter 4 46     

vuggy   8   1 

moldic  2  10   

biomoldic     3  

fracture      7 

Precision (%) 97.97 88.46 100 100 100 100 

Recall (%) 97.97 92 88.89 83.33 100 100 

Accuracy (%) 96.04 

 

5. Results and conclusions 

- Porosity classification plays a significant role in 

the permeability evaluation and reservoir 

characterization. Therefore, the target of this work 

was porosity classification using image analysis 

and intelligent systems. Pore types including 

intra-particle, inter-particle, vuggy, moldic, and 

fracture are common and important in carbonate 

rocks [40]. These porosity types were perused in 

the studied thin sections. 

- The main factors influencing the accuracy of 

intelligent models are quality, quantity, and type 

of training data. Various geometrical features of 

six types of porosity were studied in order to 

determine the wide range of porosity types. The 

types of verified porosity were determined by an 

expert geologist. Then their geometrical features 

were calculated. According to the objective 

followed in any pattern recognition study, a 

suitable kind of input data must be selected. 

- For recognizing specific pores within an image, 

one is required to investigate those features used 

by human brain to differentiate between pores and 

other parts. The geometrical properties of pores 

were applied by human brain for differentiating 

pores. Therefore, in this work, the advantage of 
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geometrical properties was used as a tool to 

differentiate and classify pores. 

- It is impossible to precisely classify the types of 

porosity in thin sections by exclusively using 

optical investigation and without support of 

intelligent techniques. Therefore, two suitable 

models were presented to meet this aim in this 

work. 

- Thirteen geometrical features of pores were 

extracted from segmented images. Then these 

features were used as the inputs of two kinds of 

intelligent systems. The training set of selected 

pores with different and complex geometrical 

shapes causes the accurate performance of 

intelligent models as an applicable tools for 

classifying six types of pore spaces. Therefore, the 

developed functions can be confidently used in 

the future works. 

- Deep learning is a fast-growing field. Recently, 

the autoencoder concept has become more widely 

used for learning generative models of data [41]. 

The stacked autoencoder has two facades: a list of 

autoencoders and a multiple layer perceptron 

(MLP). During pre-training, the first facade is 

used, model is treated as a list of autoencoders, 

and each autoencoder is trained separately. In the 

second stage of training, the second facade is 

used. These two facades are linked since the 

autoencoders and the sigmoid layers of the MLP 

share parameters and the latent representations 

computed by intermediate layers of the MLP are 

fed as input to the autoencoders. 

- The models might assess vuggy porosity as 

inter-particle porosity. Therefore, it is necessary to 

separately check the accuracy of the models in 

order to identify different types of pores. Among 

278 pores, 197 intra-particle, 50 inter-particle, 9 

vuggy, 12 moldic, 3 biomoldic, and 7 fracture 

were identified. Accuracies of the BPN and SAE 

models were 0.9460 and 0.9604, respectively. 

Recall of the two intelligent models for 

classifying the six types of porosity was compared 

in Figure 9. 

 

 
Figure 9. Comparison between Recall of BPN and SAE models for classifying pore types. 

 

- The SAE model carried out a bit more accuracy 

for identifying the inter-particle, vuggy, 

biomoldic, and fracture pores. The SAE model 

performed as accurate as the BPN model for 

classifying the intra-particle and moldic pores. 

- Using image analysis and intelligent systems are 

useful for porosity classification. Between the two 

types of intelligent systems including shallow 

learning (BPN) and deep learning (SAE), the SAE 

model operates better than the BPN model. 

- There is a relationship between porosity and 

permeability, and therefore, the proposed method 

in this work can help extraction and investigation 

of petro-physical features of thin sections as well 

as permeability prediction. 

- It must be mentioned that the model might have 

restriction in classifying the complicated samples. 
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چکیده:

نتاییز توتویر   تخلخل سنگ مخزن، پارامتری اساسی برای توصیف سنگ مخزن است. در این پژوهش، برای شناسایی انواع تخلخل، دو مدل هوشمند با استتااده از   

های استتخراج شتده و    شد. ویژگیهای خایی در هر توویر استخراج   ناییز توویر از فضا روششود. بدین منظور، ابتدا سیزده پارامتر هندسی با استااده از  معرفی می

متورد   (SAE)گتذار انباشتته    و ختود رمتز   (BPN)خطتا   پس انتشتار فضای خایی برای  موزش دو مدل هوشمند پیشروت  222نوع فضای خایی متناظر، مربوط به 

ای،  ی، حاتره ا دانته  نیبت ی، ا دانته  درونخلختل شتامل   بندی شش نوع ت های خایی برای طبقه های هندسی فضا های  موزش یافته، از ویژگی استااده قرار گرفتند. مدل

هتای   محاسبه شد. ستسس، معیتار   1192/1و  1102/1به ترتیب  SAEو  BPNهای  کنند. میانگین مربعات خطای مدلقایبی، بیومویدیک و شکستگی استااده می

Precision ،Recall  وAccuracy بندی تخلخل محاسبه شد. مدل  های هوشمند برای طبقه مدلBPN ،739  تخلختل   41از  04ای،  دانه تخلخل درون 731از

، SAEهمچنتین، متدل    شکستگی را به درستی شناستایی کترد.   1از  2تخلخل بیومویدیک و  9از  2تخلخل قایبی،  72از  71ای،  تخلخل حاره 3از  1ای،  دانه بین

شکستتگی   1از  1تخلختل بیومویتدیک و    9از  9قایبی،  تخلخل 72از  71ای،  حاره تخلخل 3از  2ای،  دانه تخلخل بین 41از  02ای،  دانه ل درونتخلخ 731از  739

 ستگی داشت.ای، بیومویدیک و شک ای، حاره دانه های خایی بین بندی فضا ، دقت بیشتری برای طبقهSAEدهد مدل  بندی کرد. نتایج نشان می را به درستی طبقه

 .گذار انباشته گیری عمیق، خود رمز بندی تخلخل،  ناییز توویر، شبکه عوبی، یاد طبقه کلماتکلیدی:

 

 

 

 


