JME

Journal of Mining & Environment,
Vol. 9, No. 4, 2018, 817-828.
DOI: 10.22044/jme.2018.6604.1482

A new 2D block ordering system for wavelet-based multi-resolution
up-scaling

B. Tokhmechi'’, M. Rabiei’, H. Azizi* and V. Rasouli’

1. Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
2. Department of Petroleum Engineering, University of North Dakota, Grand Forks, USA

Received 6 January 2018; received in revised form 11 May 2018; accepted 12 May 2018
*Corresponding author: tokhmechi@ut.ac.ir (B. Tokhmechi).

Abstract

A complete and accurate analysis of the complex spatial structure of heterogeneous hydrocarbon reservoirs
requires detailed geological models, i.e. fine resolution models. Due to the high computational cost of
simulating such models, single resolution up-scaling techniques are commonly used to reduce the volume of
the simulated models at the expense of losing the precision. Several multi-scale techniques have also been
developed for simulating heterogeneous reservoirs including those in which a limited number of blocks
down-scale, i.e. splitting coarse blocks into fine cells around the well-zones in the case of simulation of
hydraulic fracturing. In these cases, locally computed basis functions are employed to construct a global
solver at a coarse-scale such as wavelet- and kernel-based up-scaling techniques. In this paper, a novel/robust
2D block-ordering system is presented, which enables solving multi-resolution up-scaling fluid flow
simulations. The results will be described for a simple model, and fluid flow equations will be developed in
order to show the structure of transmissibility matrix. It is confirmed that with a developed block-ordering
system not only the accuracy of history match increases but also the CPU time decreases.

Keywords: Kernel, History Matching, Multi-resolution Up-scaling, CPU Time.

1. Introduction

In simulating the fluid flow in porous media, a
linear system of equations is solved by relating a
vector of unknown variables to a vector of known
values via a square coefficient matrix. The
computer time and storage requirements of a
simulation run can be reduced by changing the
structure of the coefficient matrix using different
grid block-ordering schemes.

Natural ordering by rows (Figure 1a), by columns
(Figure 1b), D-4 ordering (Figure Ic), cyclic-2
ordering (Figure 1d), and D-2 ordering schemes
(Figure le) are examples of block-ordering
methods commonly used in single scale grid
blocks [1, 2]. For example, Figure la, block
number 1, has intersection with blocks 2 and 7
(which are shaded in the first row and first column
of the right hand side shaded matrix), and block
number 2 has intersection with blocks 1, 3, and 8
(which are shaded in the second row and second

column of the right hand side shaded matrix). The
coefficient matrices corresponding to these
ordering schemes can be formulated as a banded
matrix (tridiagonal, pentadiagonal, or
heptadiagonal non-zero entries) depending on the
dimension of the problem. These banded matrices
are composed of many zero entries outside the
band envelop between the uppermost and
lowermost diagonals, which are excluded from the
operations.

In these banded structures, the bandwidth is
defined as the maximum number of elements
within the band envelop in any row of the matrix
[3]. Bandwidth is expressed as 2 Xxn; 4+ 1, in
which n; is the number of blocks in the direction
we consider for ordering. For example, in Figures
la (n, = 6) and 1b (n, = 4), bandwidth is equal
to 13 and 9, respectively. Since all computations
are performed on the matrix entries within the
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bands, problems with smaller bandwidths are
more efficient to solve for less computations.

Multi-resolution grid blocks require tailored
ordering schemes due to the complexity of the
grids. Parashar et al. (1997) have used dynamic
locally adaptive mesh refinements for developing
parallel reservoir simulators [4]. Wheeler et al.
(1999) have applied multi-physics and multi-scale
simulation by decomposing the physical domain
into blocks according to the geometry, geology,
and physics/chemistry of several sub-domains [5].
However, there is a very limited documentation of
the ordering schemes used in the available
literature in the field of multi-resolution up-
scaling [6]. Local grid refinement is an approach
used for representing higher resolution areas (e.g.
hydraulic fracturing simulated models) using

19 | 20 | 21 | 22 | 23

13 | 14 | 15 | 16 | 17

commercial simulation softwares such as Eclipse
and CMG [7]. Multi-resolution block-ordering
systems presented by Shelton (2008) [8] and
Dewar (2007) [9] for aecrospace applications are
too complex for the purpose of fluid flow
simulations in hydrocarbon reservoirs.

Even the wunconventional multi-resolution
up-scaling methods reported in the literature for
fluid flow simulation such as wavelet-based [10-
12], and Kernel-based [13, 14] lack any
explanations on the block-ordering systems
applied.

In this paper, an innovative block-ordering system
for wavelet-based up-scaling is presented. In the
next sections, the block-ordering, up-scaling, fluid
flow simulation, and optimization procedures are
explained in detail.

15 5 19 9 23

13 3 17 7 21

Figure 1. Various block-ordering systems and the resulting coefficient matrices. a) natural ordering by
rows, b) natural ordering by columns, c) D-4 ordering, d) cyclic-2 ordering, e) D-2 ordering.
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2. Wavelet-based up-scaling methodology
Wavelets are orthogonal functions that represent
data in terms of averages and fluctuations.
Wavelet methodology is capable of decomposing
the fine models into various levels with different
frequency bandwidths. It is possible to select
various bandwidth coefficients by defining a
variability threshold. As a result, cell sizes where
variability is high are smaller (higher levels of
decomposition) than cell sizes in an area with less
variability (lower levels of decomposition).
Therefore, it is a good fit for multi-resolution
up-scaling purposes.

Equation 1 represents a common mother wavelet
[15, 16].

L (1-b,
t)=—— Li=1.2....k
v, (1 ﬁw[ ]J

where 1 (t) is the mother wavelet in time (in our
case, location) of t, and a and b are the scale and
translation parameters, respectively. The result of
a wavelet-based up-scaling technique is a
quad-tree multi-resolution network in which
averages are numbers assigned to a block and
fluctuations are significant features controlling the
size of the blocks. More fluctuations result in
smaller block sizes.

There are two distinct wavelet-based up-scaling
approaches in the literature [17]. The first
approach is to apply wavelet transformation to the
flow equations to generate a coarsened pressure
equation [17-20]. In the second approach, the
wavelet filtering procedure is used to reduce the
number of data points without compromising the
statistics [21-23]. This approach leads to quad-tree
(in 2D models) or octree (in 3D models) Cartesian
up-scaled grids.

It has been shown by Vahedi et al. that there is an
inverse relation between the calculation time and
the model’s error; while functions with a larger
number of coefficients for the first level of
up-scaling such as Bior 1.3 reduce the flow
simulation time, it will increase the error [24].
Conversely, using functions with a smaller
number of coefficients (Haar) leads to a higher
simulation time with lower error.

In this work, we applied the latter up-scaling
approach and used Haar mother wavelet because
of its simple form and widespread applications.
The Haar mother wavelet is displayed in Figure 2.

v, (t)=2"w(2"t -k )t R 2)

(1)

&19

where n represents the scale factor, k represents
translation, t represents the time (in our study,
location), and y,, j is the Haar function.

a-+

Figure 2. Haar mother wavelet.

Equation 3 is the average term of Equation 1 in 2
dimensions, which 1is reached from tensor
multiplication:

3)

where ¢ is the scale function, which is orthogonal
to mother wavelet, and its mean is equal to 1:

‘/’,f,kl,kz(x’y):(”;I (x )(P_fz(y)

“)

Three fluctuations are also achieved in directions
x, y, and diagonal. For 2D wavelet based
up-scaling, transform has to be applied on data
base in one of the directions (for example, x), and
average has to be achieved (Eq. 1). Then
transform equation has to be applied on average
coefficients (Eq. 3) in order to reach the final
results.

3. Permeability up-scaling
heterogeneous reservoir

A synthetic 32 X 32 heterogeneous reservoir is
generated, for which, permeability values are
shown in Figure 3. Different colored blocks in this
figure correspond to wavelet-based
multi-resolution up-scaled blocks in Figures 4 and
5.

Standard deviation (SD) and permeability values
of the wavelet-based up-scaled blocks are reported
in Figures 4 and 5, respectively. SD measures
presented in Figure 5 show a high level of
variability in the up-scaled blocks with the lowest
value of 9.5 md in the largest block and the
highest measure of 164.9 md in the finest block.
This variability confirms that the heterogeneity of
the reservoir is preserved in the multi-resolution
up-scaled model.

in a synthetic
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In order to demonstrate the strength of the applied
multi-resolution  up-scaling  approach  in
maintaining the variability of a heterogeneous
reservoir, a single resolution up-scaling procedure
was performed on the dataset given in Figure 3. It
should be demonstrated that 31 blocks are resulted
from multi-resolution up-scaling (Figure 5).
Therefore, it was tried to reach a similar number
of blocks in single resolution un-scaling (Figure
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6). There are 32x 32 = 1024 fine blocks available
(Figure 3). Thus 6 x 6 = 32 fine blocks were
merged to reach 29 up-scaled blocks (Figure 6).
For example, up-left block in Figure 6 was
resulted from merging 6 x 6 up-left blocks in
Figure 3. The up-scaled blocks (#29 blocks) and
the corresponding SD measures are shown in
Figure 6.
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Figure 3. Permeability (md) value distribution in the synthetic heterogeneous reservoir.
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Figure 4. Standard deviation of the permeability values in the wavelet-based up-scaled blocks.

Figure 5. Permeability values of the wavelet-based up-scaled blocks.
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32.1 27.5 28.8 27.0 23.1

34.9 36.2 374 35.1 27.6 21.4

16.6 243 44.9 53.0 18.7

9.8 9.5 21.4 38.0 214

9.8 9.1 15.9 22.5 69.0 39.9
12.5 79.9

Figure 6. Standard deviation of permeability in single resolution up-scaled grid block.

A comparison between multi-resolution up-scaled
models (Figure 5) and single resolution up-scaled

models (Figure 6) demonstrates how variability is
preserved in the multi-resolution up-scaled model:

Original variance of permeability

1061

Weighted average of variance in the wavelet-based up-scaled model 1091
Weighted average of variance in the single resolution up-scaled model 1126

4. Proposed block-ordering system

This section outlines the step by step procedure
for the proposed ordering system in the
multi-resolution grid block:

1. Sort all blocks in an ascending order first
by their center point’s ‘Y’ coordinates and then by
their ‘X’ coordinates, and assign labels
accordingly (Figure 7).

2. Calculate dx (distance in X direction) and
dy (distance in Y direction) for adjoining blocks
with similar Y coordinates.

3. Select the smallest blocks (based on their
dx and dy) and calculate the coordinates of their
corner points using the following operations:

X, . =X —(di) )]
min center 2 .

X, =X + d_x) 6

max center 2 - ( )
_ dy

Y min =Y center ( 2 ]mm (7)
d

Ve =Veanr %) ®)

4. Merge all four neighboring blocks with
minimum dx (Figure 8). Calculate the coordinates
for the center of merged block and label this block
by adding one to the largest block number in the
model.

5. Repeat steps 3 and 4, and calculate the

coordinates of the merged blocks (Figures 9, 10,
and 11).
The 16 blocks in Figure 10 will be merged into
four blocks. In situations where more than one set
of four blocks are to be merged, labeling will be
done based on the X and Y coordinates of the sets,
starting from the smallest.

6. At each step, coordinates of the corner
points of all blocks will be saved in a matrix with
size N*4, in which N is the number of blocks.
Table 1 shows the calculated coordinates of the
block corner points in Figure 7.

7. Calculate intersections between
neighboring blocks in Figure 7, in ‘X’ (Table 2)
and ‘Y’ (Table 3) direction. For example, block 1
in Figure 7 has an ‘X’ sideway intersection with
block 4 (Table 3) and two ‘Y’ sideway
intersections with blocks 2 and 3 (Table 4).

12

Figure 7. Labeling the multi-resolution blocks using the developed procedure.
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Figure 8. Merging the smallest blocks and re-labeling the merged blocks (showed in black) (first iteration).
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Figure 9. Merging the smallest block and re-labeling the merged blocks (showed in black) (second iteration).

Figure 10. Merging of the smallest block and re-labeling the merged blocks (showed in black) (third iteration).

Figure 11. Merging of the smallest block and re-labeling the merged blocks (showed in black) (fourth iteration).
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Table 1. Calculated coordinates of the corner points of all blocks.

BIOCk Xmin Xmax Ymin Ymax

1 650 675 0 12.5

2 675 700 0 12.5

3 600 650 0 25

4 650 675 12.5 25
5 675 700 12.5 25
6
7
8
9

700 800 0 50

600 650 25 50

650 700 25 50

400 600 0 100
10 600 700 50 100
11 700 800 50 100
12 0 400 0 200
13 400 500 100 150
14 500 600 100 150
15 600 800 100 200
16 400 500 150 200
17 500 600 150 200
18 200 300 200 250
19 300 400 200 250
20 400 500 200 250
21 500 600 200 250
22 0 200 200 300
23 600 800 200 300
24 200 300 250 300
25 300 400 250 300
26 400 500 250 300
27 500 600 250 300
28 0 200 300 400
29 200 400 300 400
30 400 600 300 400
31 600 800 300 400

Table 2. Calculated intersections of the blocks in Figure 7 in ‘X’ direction.
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5. Fluid flow simulation
Block pressure (P) for all blocks can be calculated
using the following equation:

4*P=B ©

where A is the N x N matrix of transmissibility, N

is the number of blocks (equal to 31 in the current
example), P represents a vector of unknown block
pressures that will be optimized later, and B
represents the vector of boundary condition.
Equations used for -calculating the related
elements in matrix 4 are as follow [2, 3, 25]:

2fc
E =T" =
H%'f x"é’ fuleAxx ﬂl+lB(),l+leL+] (10)
k., Ay, Az, k. IntSecy, Az,
L™ I 4;
25
w =T" = L
i‘%" il :u,—lBo,,—leH + B, Ax, (1 1)
k. IntSecy, Az, , k. Ay Az,
L i1 i dj
28.
N | =T" = < 12
"-/'*% Tigey ;LljBa,/ Ay,‘ ﬂ,nBo.MAy j+l ( )
k, Ax Az, k, IntSecx; Az,
28.
s =T = e 13
’-f*; Vit lu/leo,/flAy -l ﬂjBa,/ Ay,- ( )
k, IntSecx Az, k, Ax;Az; |

where S, is a unit coefficient (in this case, equal
to 0.001127); w;, By, and ky, are the viscosity,
formation volume factor, and permeability of
block i, respectively; Ax;, Ay;, and Az; correspond
to the block sizes in directions x, y, and z.
IntSecy;,, and IntSecy;_, are intersections
between two blocks in direction ‘Y’ (extracted
from Table 3). IntSecxj,, and IntSecx;_; are
intersections between two blocks in direction ‘X’

(extracted from Table 2). Ty* | is transmissibility
i+
between a block and its right hand side neighbor
block (e.g. transmissibility from block 12 to 13).
Ty* | is transmissibility between a block and its
i—3.J
left hand side neighbor block (e.g. transmissibility
from block 13 to 12). Ty' | is transmissibility
Lj+5
between a block and the neighboring block
directly above it (transmissibility from block 12 to

22). T;* | is transmissibility between a block and
iLj-5

2
the neighboring block directly below it
(transmissibility from block 22 to 12).

824

Transmissibility in each block (diagonal elements
in matrix A) is calculated using Equation 14:

n+l

mn: o
T :{E;fj +W/" +N/ +S8], +th } i=j (14)

where At is the prediction time between steps n
and n+1. H{llfl is calculated using Equation 15:

v _[VugCo )
Hi./l =| L
a,BoRq/'

c i.j

(15)

in which V, is the volume of each block
(dx.dy.dz), ¢ is the porosity of each block, a, is a
constant (in this case, equal to 5.615), and Byger
is the formation volume factor for each block. Co
is the total oil compressibility calculated using
Equation 16:

Co=Sw, Cw, +(1-Sw, )Co, , +Cr, (16)
Synthetic reservoir’s characteristics are shown in
Table 4. Transmissibility of the blocks in Figure
4, calculated based on these characteristics, are
reported in Table 5.

It was explained earlier that bandwidth expressed
as 2Xmn;+1 is the maximum number of
elements within the band envelop in any row of
the matrix. By this definition, the maximum
bandwidth in the coefficient matrix shown in
Table 5 happens in rows 22 and 23, and is equal to
16. To take advantage of the fact that smaller
bandwidths result in fewer computations,
block-ordering should be done in whichever
direction that results in a coefficient matrix with a
smaller bandwidth. If the blocks in Figure 3 were
labeled based on minimum dx, as shown in Figure
12, the resulting coefficient matrix would have a
maximum bandwidth of 18. Therefore, in this
example, ordering of the blocks based on
minimum dy, which resulted in a smaller
bandwidth, and hence, less computation time, is
the preferred direction for labelling.

Vector B in Equation 9 is calculated using the
following equation:

)

n+l
no_ i.j n n CON
Qi_j __|: At P,] +qmc”:| L=y

where P{Lj and q{,‘sc” are pressure and oil
injection/production in each block (as shown in
Table 4). The calculated values for vector B are
reported in Table 6.
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Table 3. Calculated intersections of the blocks in Figure 7 in ‘Y’ direction.
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Figure 12. Re-labeling of the up-scaled blocks based on minimum ‘X’.

Table 6. Calculated values for vector B.

Block (i) B,

1 -92214.0
2 -40317.5
3 -193416.6
4 -136161.8
5 -92225.7
6 -318159.5
7 -168403.8
8 -137232.1
9 -148118.7
10 -250907.4
11 -230679.8
12 -2407301.9
13 -170312.1
14 -115509.7
15 -1522922.7
16 -328609.1
17 -114422.8
18 -261669.2
19 -704664.6
20 -613163
21 -154698
22 -534817.9
23 -704438.6
24 -174785.8
25 -306070.9
26 -393609.4
27 -224253.8
28 -124400.2
29 -112726.2
30 -82513.1
31 -2061.8

6. Solver: Gaussian elimination

In the previous sections, the procedures for [ a,;,..ay |b,

developing the coefficient matrix A (Table 5) and i a a,..a, |b2 (18)

vector B were explained. To solve the resulting
system of equations, Gaussian Elimination, which
is a simple and fast optimization method, was
used. The Gaussian elimination procedure can be
described by the following simple steps [26, 27]:
1. Define augmented matrix of 4 denoted as A

by including B into A as the last column:

826

2. Convert linear system A * P = B to another
linear system A’'*P = B’, whose augmented

matrix A is in row echelon form. 4 is in row
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echelon form if it satisfies the following
condition:

e For i€ [1.N — 1], the leftmost non-zero
element of i row is at a column that is strictly to
the left of the column containing the leftmost non-

zero element of the (i+1)" row. For example,
1234
0567] is in row echelon. In order to
0089
convert A to row echelon form, the following

matrix

three operations should be done:
1. Switch two rows of A.

2. Multiply all numbers of a row by the
same non-zero value.

3. Suppose that a; and a; are two vectors of
A. Update row g; to g; + ca;, where ¢ can be any
real value.

Any matrix A can be converted into a matrix in

row echelon form by performing the above three
steps.
3. Now solve the N row of A in order to

calculate N* P. Then substitute N* P in (N-1)"
row in order to calculate (N-1)" P. Repeat the
back-substitute procedure to obtain a unique
solution for P.

Equation A * P = B is solved using the Gaussian
elimination method. Figure 13 shows the results

of pressure simulation in all blocks after one-day
of production.

7. Conclusions

Very limited attempts have been made for
block-ordering procedures in multi-resolution
up-scaled reservoir simulations. The developed
approaches in other disciplines such as aerospace
are usually too complex and not usable in
reservoir simulations. In this study, a simple,
generalized  block-ordering scheme for
multi-resolution up-scaling was introduced and
explained 1in detail. The procedure for
implementing this ordering scheme for developing
the coefficient matrix and solving the linear
system of equations was described step by step
using a synthetically generated grid block. It was
shown that how using this block-ordering scheme
could result in a coefficient matrix with a smaller
bandwidth with optimized CPU processing time.
The developed methodology will help in adapting
different block sizes for the grid block; fine grids
will be used for areas with high variability and

827

3435(3434|

Figure 13. Calculated pressures for the blocks in Figure 8 after one day of production.

coarse grids for areas that show a smooth change
in properties. Preserving the variability of the
properties in the reservoir model will increase the
accuracy of the fluid flow in reservoir simulations.
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