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Abstract 

An accurate reservoir characterization is a crucial task for the development of quantitative geological models 

and reservoir simulation. In the present research work, a novel view is presented on the reservoir 

characterization using the advantages of thin section image analysis and intelligent classification algorithms. 

The proposed methodology comprises three main steps. First, four classes of reservoir intervals are defined 

using a limited number of porosity and permeability values obtained from the core plugs of Kangan and 

Dalan formations. Then seven micro-scale features including distribution of pore types (interparticle, 

interaparticle, moldic, and vuggy), pore complexity, and cement distribution as well as textural 

characteristics are extracted from thin section images. Finally, the features extracted from each 

photomicrograph and its corresponding reservoir class are used as the training data for several intelligent 

classifiers including decision trees, discriminant analysis functions, support vector machines, K-nearest 

neighbor models and two ensemble algorithms, named bagging and boosting. The relationship between the 

micro-scale features and the reservoir classes was studied. Performance of all classifiers is evaluated using 

the concepts of accuracy, precision, recall, and harmonic average. The results obtained showed that the 

bagging decision tree delivered the best performance among the models and improved the accuracy of simple 

models up to 7.7% compared with the best single classifier. 

  

Keywords: Reservoir Characterization, Intelligent Classifiers, Boosting and Bagging Strategies, Image 

Analysis of Thin Sections, Kangan and Dalan Formations. 

1. Introduction 

Reservoir characterization and identification of 

reservoir quality are the first prerequisites of 

petroleum recovery. The ideal state of a reservoir 

rock is not always true, especially in 

heterogeneous carbonate rocks. In spite of high 

porosity, various digenesis processes and textural 

characteristics might dramatically reduce the 

permeability of carbonates. It is necessary to 

consider all these parameters simultaneously for a 

reliable reservoir characterization, which is 

possible throughout the advantages of data mining 

approaches. The present research work focuses on 

the advantages of thin sections prepared from core 

plugs to characterize heterogeneous carbonates. 

Integrating the capabilities of image analysis and 

data mining approaches introduces an alternative 

approach, which can classify reservoir intervals 

based on the results of petrography, pore 

geometry, pore complexity, and pore type 

distribution. Data mining, intelligent classifier and 

pattern recognition models have found their place 

in petroleum engineering for reservoir 

characterization and rock typing. Estimation of 

missing logs or parts of incomplete log suites was 

the first application of the back-propagation 

neural network [1]. The primary implementations 

of neural network, fuzzy logic, and neuro-fuzzy 

have proven the potentials of the models for 
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developing a relationship between the log data 

and the core laboratory measurement [2-10]. 

Recently, the singular expert systems have 

integrated through the advantages of evolutionary 

algorithms, and the hybrid intelligent 

methodologies have been proposed for 

permeability prediction and reservoir 

characterization [11-16]. In addition, fast and 

accurate intelligent-based shortcuts have been 

proposed in order to solve various issues of 

petroleum engineering including prediction of 

over-pressurized zones (Cranganu [17]), 

classification of rock masses (Aydin [18]), 

characterization of naturally fractured zones (El 

Ouahed et al. [19]), rock facies classification 

(Dubois et al. [20]), incipient mechanical fault 

detection (Hu et al. [21]), water saturation and 

fluid distribution evaluation (Al-Bulushi et al. 

[22]), the z-factor estimation for natural 

hydrocarbon gases (Kamyab et al. [23]), 

prediction of CO2 permeability of bituminous coal 

(Sharma et al. [24]), estimation of total and free 

fluid porosity from seismic attributes (Hatampour 

et al. [25]), and determination of the bubble point 

pressure (Elkatatny and Mahmoud [26]). A glance 

view on the literature shows that most of the 

previous research works have focused on the 

estimation and prediction tasks, while there are 

various intelligent classifiers available that can 

be used to find a precise evaluation of the 

reservoir rock properties. Moreover, foundation 

of the literature is based upon well log data, and 

the advantages of thin section images have been 

ignored. The main goal of the present research 

work was the improvement of reservoir rock 

characterization using various classification 

algorithms including single and integrated 

(bagging and boosting) strategies. A real case 

study from Kangan and Dalan formations was 

studied to verify the performance of the proposed 

approach. The novelty of this research work can 

be categorized into four parts. First, the advantage 

of thin section image analysis was employed for 

extracting the pore geometry and evaluating the 

pore shape complexity. Secondly, a quantitative 

petrography approach was introduced to measure 

the image features accurately. Thirdly, the 

performance of various classification algorithms 

was evaluated for permeability classification. 

Finally, an integrated fuzzy fusion of  

multi-classifiers was introduced to reap the 

advantages of all classifiers and cover the 

drawbacks of one model with another one. 

 

2. Data preparation 

The data necessary for this research work can be 

divided into two types: the core plug 

measurements and the image-based data that 

should be extracted from the thin section images. 

Fifty-six core samples each belonging to a 

different depth of Kangan and Dalan formations 

were available for the work. In the first step, three 

samples were prepared for each depth from the 

available rock samples of Kangan and Dalan 

formations. Two plugs were used for laboratory 

measurements of porosity and permeability, and 

the third one was for thin section preparation, 

which was saturated by blue epoxy dye in 

advance. The injected blue epoxy fills the porous 

media of the rock. The thin sections are prepared 

from the saturated samples, in which the pore 

spaces are easily distinguishable by the blue color. 

From the standpoint of sedimentology, the rare 

component of a rock can be naturally blue; due to 

this fact, all the blue spaces of the thin section can 

be considered as pore. Thin section images were 

captured under plane polarized light. The 

magnification was adjusted to 12.5X, in which 

both the texture and pore characteristics were 

clearly detectable. In the present work, first, the 

thin section images were processed using medial 

and low-pass filters to remove the possible noises 

and improve the image quality. Secondly, the 

color image was converted to a gray scale image 

to extract the cement distribution. In addition, the 

porous media of the images was extracted through 

an image binarization process to study the pore 

space geometry quantitatively. 

3. Reservoir classification 

Kangan and Dalan formations are the main 

reservoir rocks of South Pars Gas Field, the 

biggest gas accumulation in the world located in 

the southern borders of Iran. The Kangan and 

Dalan formations refer to Early Triassic and Late 

Permian, respectively. Limestone is the main 

lithology, while dolomite, anhydritic dolomite, 

and thin bed of shaly intervals have been recorded 

in the drilled wells from top to bottom of the 

formations. The limestone intervals of the Kangan 

and Dalan formations have been categorized as 

heterogeneous type, while several digenetic 

processes affect the primary sediments. Figure 1 

confirms that there is no exact relationship 

between the porosity and permeability in the 

limestones of the Kangan and Dalan formations, 

which is the evidence of digenesis processes. 

It seems impossible to find a direct relationship 

between the porosity and permeability of the 

http://www.sciencedirect.com/science/article/pii/S1875510017300902
https://link.springer.com/search?facet-creator=%22Salaheldin+Elkatatny%22
https://link.springer.com/search?facet-creator=%22Mohamed+Mahmoud%22
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samples due to their high heterogeneity. In order 

to solve this issue, the samples are classified into 

four types based on the porosity and permeability 

obtained in the laboratory according to the 

following description: class#1: Low porosity and 

low permeability; class#2: High porosity and low 

permeability; class#3: High porosity and fair 

permeability; class#4: high porosity and high 

permeability (Figure 2). Ten percent was the  

cut-off porosity value for division into the low and 

high categories. In addition, the following ranges 

were used for low, fair, and high permeability: 

low (<10 mD), fair (10-100 mD), and high  

(>100 mD). 

Table 1 represents the numerical porosity and 

permeability values for a limited number of core 

plugs measured in the laboratory. Although 

class#4 is the most desirable class from the 

standpoint of a petroleum geology for reservoir 

characterization, the frequency of its data is less 

than the other classes. 

 

 
Figure 1. The cross-plot of core permeability versus porosity in the samples of Kangan and Dalan formations. 

 

 
Figure 2. The defined classes of reservoir quality based on the porosity and permeability of the samples of 

Kangan and Dalan formations. 

 

4. Feature extraction 

In this section, the concepts and fundamentals of 

the extracted geometrical features, definition of 

pore complexity, criteria of cement points, and 

textural classification of the studied images are 

discussed in detail. 

4.1. Pore geometry 

The binary image was used to determine the size 

and geometrical characteristics of the pore spaces 

such as the perimeter, area, minor diameter, major 

diameter, equivalent diameter, roundness, 

elongation, anisotropy, solidity, and rectangularity 

(extent). Extraction of pore shape features is the 

prerequisite of pore type identification and 

calculating the abundance of various types of 
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porosity in the thin section image. The pore size 

measurement and pore geometry are readily 

accessible through point counting of the black 

objects of the binary images. Table 2 represents a 

brief introduction of these features. The 

geometrical parameters are determined for all the 

mesopores (50-100 µm) and macropores  

(>100 µm) of an image. The corresponding type 

of each pore space was obtained based on the 

extracted geometrical features through the  

pre-developed Matlab code for pore type 

identification, as discussed by Ghiasi-Freez et al. 

[27]. Then the areas of all pore spaces belonging 

to the same class were added together. The 

percentage of each type of porosity in the image 

was calculated by dividing the total area of that 

type by the total area of pore spaces larger than 50 

µm. The percentages of porosity types including 

interparticle, interaparticle, moldic (oomoldic and 

biomoldic), and vuggy in the images were 

employed as inputs of the classifier models. 

Figure 3 compares the distribution of permeability 

versus the ratio of each type of pore space to the 

total optical porosity in the defined classes. The 

figures show that the porosity type and the amount 

of total optical porosity affect the permeability in 

parallel, which means that a high reservoir quality 

can be guaranteed by a highly effective optical 

porosity. 

Figure 4 clarifies that the product of porosity type 

and total optical porosity is considered as a single 

parameter. Interparticle porosity is the only 

effective porosity type among the interaparticle, 

moldic, and vuggy porosities. Large isolated 

molds and vugs entrap the fluid and reduce the 

fluid flow in the rock. Micro-porosity shows no 

relationship with permeability due to the lack of 

connection between pores and high percentage of 

micrite surrounding the micro-pores. 

 
Table 1. Numerical values of core laboratory measurements for porosity and permeability of the studied 

samples. 

# 
ɸ 

(%) 

K 

(mD) 
Class # 

ɸ 

(%) 

K 

(mD) 
Class # 

ɸ 

(%) 

K 

(mD) 
Class # 

ɸ 

(%) 

K 

(mD) 
Class 

1 5 1.6 1 15 26.4 1.4 2 29 24 5 2 43 10 19 3 

2 5 0.39 1 16 26.3 0.39 2 30 24 5 2 44 23.7 40 3 

3 7 2 1 17 11.28 0.137 2 31 17.1 3.3 2 45 22.1 65 3 

4 6 0.55 1 18 11.96 2.49 2 32 33.5 3.5 2 46 15 54 3 

5 1.98 1 1 19 14.9 4.5 2 33 19.84 11.5 3 47 18.4 48 3 

6 1.98 1 1 20 22.8 0.6 2 34 21 11.2 3 48 23.2 340 4 

7 4 0.76 1 21 23.7 0.65 2 35 15.65 11 3 49 21 213 4 

8 2 1 1 22 18 1.8 2 36 11 10 3 50 28 181 4 

9 6 0.2 1 23 18.58 0.18 2 37 14.01 26.18 3 51 19 180 4 

10 2 0.1 1 24 12.8 5 2 38 21.88 15 3 52 19.5 158 4 

11 5 0.4 1 25 14.1 0.6 2 39 14.88 32.13 3 53 28.5 105 4 

12 1.5 2 1 26 17.2 0.62 2 40 10.5 20 3 54 21.4 123 4 

13 3 0.2 1 27 21.8 3.9 2 41 11 33.5 3 55 26.4 155 4 

14 29 1 2 28 15 2.8 2 42 21 15.5 3 56 22.3 142 4 

 
Table 2. The geometrical features of pore spaces extracted from the binary images [27]. 

Geometrical feature Mathematical formula 

Roundness (Perimeter)
2
/(4π×Area) 

Elongation Major diameter/Minor diameter 

Solidity Area/Convex area 

Eccentricity Distance between foci of the ellipse/Major diameter 

Rectangularity Area/Bounding box area 

Anisotropy Equivalent diameter/Major diameter 
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Figure 3. The distribution of permeability versus the ratio of (a) moldic, (b) interparticle, (c) interaparticle, and 

(d) micro-porosity. 

 

  

  

 
Figure 4. The relationship between permeability and the product of total porosity and (a) percentage of moldic 

porosity, (b) interparticle porosity, (c) interaparticle porosity, (d) vuggy porosity and micro-porosity. 

(a) 

(b) 

(c) 

(d) 
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4.2. Pore complexity 

In addition, the extracted pore geometry 

characteristics are employed to calculate the pore 

complexity of each image. The roundness and 

elongation of pores are used as inputs of the 

following equation [28]: 

7
PoreComplexity ( roundness)

22.14

3
( elongation)
7.65

  



 (1) 

The mean value of pore complexity of all studied 

pore spaces is considered as the image pore 

complexity, which is used as an input for the 

classifier models. The pore complexity value 

ranges from 1 to 10 theoretically for the simple 

and complex pores, respectively. In Eq. 1, the 

numbers 7 and 3 prescribe the contribution of 

roundness and elongation in the complexity of 

pores. The weight of roundness is considered 

larger as its variations have larger effects on the 

geometrical complexity of pores. 22.4 and 7.65 

are the maximum roundness and elongation, 

respectively, among all the studied pore spaces. 

These values may differ for another case study. 

4.3. Cement percentage 

The cementation performs the role of a 

permeability destructive factor in heterogeneous 

carbonates. The main type of cement in the 

Kangan and Dalan formations is anhydrite and 

calcite. Both types of cements are white, and they 

are easily distinguishable in the images. 

Therefore, a simple point counting procedure on 

gray scale images is used to calculate the total 

percentage of cement in the thin section images. A 

try-and-error examination shows that in the gray 

scale images, all pixel values greater than 165 can 

be considered as cement. The intensity histogram 

of images is shown in Figure 5. 

Studying the thin sections shows that the cement 

growth affects the permeability by plugging the 

pore throat. Figure 6 illustrates some samples with 

a high percentage of cement growth. In spite of 

fair porosity, the permeability is dramatically 

reduced by the cement growth. The cement pixels 

were highlighted in the right-side images by white 

color. In Figure 6a, the the rock matrix was 

gradually converted to cement, while the cement 

was filled some oolitic pores (ɸ = 8.7% and K = 

0.6 mD). Figure 6b shows that cementation 

mostly happens in grains. Both the isolated pores 

and cementation cause a low permeability in spite 

of a high porosity (ɸ = 14.1% and K = 1.6 mD). 

Figure 6c is an example of the destructive cement 

growth in all possible interparticle pore spaces, 

which convert the porosity to non-effective 

because throats and pore connections are plugged 

by the cement (ɸ = 22.8% and K = 0.6 mD). 

 

 
Figure 5. The intensity histogram for cement pixels indicating that the pixel values bigger than 165 belong to 

cement pixels. 
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Figure 6. Three samples with extensive cement growth in the porous media (a) cement growth in the oolitic 

pores, (b) cementation in the rock matrix and grains, and (c) destructive cement growth in the interparticle pores 

and throats. 

 

4.4. Textural characteristics 

The studied images were classified into four 

categories including mudstone, wackstone, 

packstone, and grainstone based on the Dunham 

classification [29]. Figure 7 shows the distribution 

of each texture type in the permeability classes. 

All samples of class#1, less one, are mudstone, 

which means that contiguous mudstone facies is 

susceptible for a low permeable zone in Kangan 

and Dalan formations. 

Figure 8 illustrates four types of samples with a 

grainstone texture, while the petro-physical 

properties are considerably different. A facies 

with a grainstone texture can be an excellent 

reservoir zone if the post-depositional processes 

have not destroyed the petro-physical properties. 

Figure 8a shows an exception example, where a 

grainstone texture belongs to class#1, in which a 

high percentage of cement (37%) filled all the 

porous media and both porosity and permeability 

were completely destroyed (ɸ = 2% and K = 1 

mD). Figure 8b is another grainstone that belongs 

to class#2, in which the isolated moldic pore 

spaces provided high percentages of porosity but 

permeability was negligible because the pores 

were not connected (ɸ = 26.4% and K = 0.4 mD). 

Figure 8c represents a grainstone of class#3 in 

which low sorting is obvious, and the calcite 

(a) 

(b)

) 

 (a) 

(c)

) 

 (a) 
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cement somehow fills most of the interparticle 

pores (ɸ = 21% and K = 15.5 mD). Finally, Figure 

8d is a perfect case of carbonate texture in which 

both porosity and permeability are high and the 

throats are not plugged. Such a situation grants the 

best reservoir quality for a rock (ɸ = 19% and K = 

180 mD). Cement growth was not widely filled 

with the pore spaces and pore throats. 

 

 
Figure 7. Frequency of Dunham texture in the defined classes of permeability in the studied limy formation. 

 

 
Figure 8. Four grainstone samples with different pero-physical characteristics belonging to (a) class#1, (b) 

class#2, (c) class #3, and (d) class#4. 

 

The abundance of each type of porosity versus the 

texture type in the permeability classes is 

represented in Figure 9. The high abundance of 

interparticle porosity beside garinstone texture 

created a high quality reservoir rock, while the 

interparticle porosity ratio in class #1 and class#2 

was negligible. In addition, grainstones of class#3 

have moderate abundance of interparticle porosity 

(Figure 9a). The major abundance of moldic 

porosity was detected in grainstones of class #2, 

which meant that the moldic pores were isolated. 

The presence of high percentages of modlic pores 

in a grainstone texture does not improve the 

permeability (Figure 9b). On the other hand, 

(c)

) 

 (a) 

(d)

) 

 (a) 

(a)

) 

 (a) 

(b)

) 

 (a) 
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micro-porosity is the main porosity type in 

mudstone samples. As expected, the micro-pores 

have no positive effects on fluid flow inasmuch as 

it is dominant in class#1 samples (Figures 9d and 

9e). The interaparticle porosity was detected in all 

classes. Commonly, interaparticle pores perform 

as a non-effective porosity in carbonates unless 

fractures connect them through the rock fabric 

(Figure 9c). The vuggy porosity is not abundant in 

the Kangan and Dalan formations, and some 

samples of class#2 show the presence of vug 

pores. There is no evidence that a low percentage 

of vug pores in class#2 samples promotes the pore 

connectivity (Figure 9f). The presence of 

interparticle pores directly affects the reservoir 

quality in the studied samples if the cementation 

process has not blocked the pore throats. The 

abundance of porosity types, total optical porosity, 

mean pore complexity, cement percentage, and 

textural characteristics of each image are 

extracted. The image-based data is annexed to the 

corresponding class. The training matrix of 

intelligent classifiers involves nine columns. The 

first nine columns are inputs including optical 

porosity, texture type, mean pore complexity, 

cement percentage, and abundance of 

interparticle, moldic, interaparticle, vuggy, and 

microporosity. The last column represents the 

reservoir class, labeled as 1, 2, 3, and 4. 

5. Materials and methods 

Data mining is the process of efficient algorithm 

implementation for the exploitation of valuable 

information hidden in a set of data points. 

Working with a limited number of data points 

brings some uncertainties in the algorithms 

decision. In the present paper, the applications of 

various simple and ensemble data classifier 

algorithms including K-nearest neighbor (KNN) 

classifiers, support vector machines (SVM), 

discriminant analysis (DC), multi-layer perceptron 

(MLP), decision trees (DT), bagging, and 

boosting are addressed for reservoir classification. 

Two factors are considered for selecting the 

algorithm: first, their popularity among the 

researchers. Secondly, difference in the 

mathematical and statistical fundamentals, which 

helps to analyze the data from different 

viewpoints. 

5.1. Discriminant analysis 

A statistical machine-learning algorithm was 

employed for feature extraction, data reduction, 

and classification issues. The weight or coefficient 

factors of discriminant functions were calculated 

using a training matrix. A set of discriminant 

functions were trained to assign the input array to 

one of the pre-defined categories based on the 

discriminant score of the functions. Then the 

unseen data was assigned to one class, which had 

the maximal discriminant score. The scores were 

defined in terms of posterior probability of 

belonging to each class [30]. The general form of 

discriminant function was derived as: 

T

i i
i

i

i

i

(X ) (x ) n
H (X)

2 2

ln
ln(2 ) ln P(C )

2

    
   




  

 (2) 

Different types of discriminant functions 

including linear, quadratic, and mahalanobis were 

defined, which could be utilized based on the type 

and hierarchy of the training data. Details of the 

discriminant analysis can be found in [27]. 

5.2. Support vector machine 

The algorithm is a supervised statistical data 

mining approach introduced for the first time by 

Cortes and Vapnik [31] for text recognition. A 

support vector machine classifies the data in three 

steps. First, the SVM maps the available training 

data as points in space. Then it uses a non-linear 

transform to convert the input vectors into a 

higher dimension space, and finally, it separates 

the categories by optimal linear hyperplane so that 

an obvious margin can be detectable between the 

data in two classes. More details about the SVM 

algorithms can be found in [32]. 

5.3. Decision tree algorithm 

Decision trees are predictive algorithms adopting 

their name from their tree form structure. Three 

types of nodes are defined for a decision tree 

algorithm including decision, uncertainty, and leaf 

nodes, which are shown by circle, square, and 

triangle in the graphical flowchart, respectively. A 

classification path is started from the root, 

continued in the branches, and finally, ended to a 

leaves in which the class label is defined. The 

branches play the role of conjugations for the 

inputs and outputs. The decision rules for different 

conditions are defined using if clauses. In a 

decision tree, all possible scenarios of a problem 

are considered based on certain conditions 

transparently. The process of classification is 

observable in a white box model, which makes the 

classification procedure explicit. Comprehensive 

and transparent nature, and computational 

simplicity as well as easiness of application are 
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the advantages of the decision tree model. Three 

types of singular decision trees including simple, 

medium, and complex decision trees as well as 

two ensemble types named boosted and bagged 

trees are employed for reservoir classification. 

 

 
Figure 9. The abundance of (a) interparticle porosity, (b) moldic porosity, (c) interaparticle porosity, (d) micro-

porosity (side-view)(e) micro-porosity (top view), and (f) vuggy porosity versus the texture type in the studied 

samples. 

 

(a)

) 

 (a) 
(b)

) 

 (a) 

(c)

) 

 (a) 

(d)

) 

 (a) 

(e)

) 

 (a) 

(f)

) 

 (a) 
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5.4. K-nearest neighbor classifiers (KNN) 

A simple and non-parametric approach was 

extensively employed in the classification 

proposed by Cover and Hart [33]. The present 

form of KNN is the modified version by Altman 

[34]. The data points are classified based on the 

desirable number of categories defined by the user 

and the most similar instances of the input points 

that consist of the k closest training examples in 

the feature space. The k number defines the 

number of neighbors influencing the 

classification. The instance similarity between the 

data points (xi) and a fix point (x) is measured 

through a common distance metric such as 

Euclidean and Hamming for continues and 

discrete variables, respectively. The data is ranked 

based on the closeness to point x. The KNN 

classifier is also known as lazy learning 

algorithms insomuch it postpones all the 

necessary computations to the classification time. 

In the present work, different types of KNN 

classifiers named fine KNN, medium KNN, 

coarse KNN, cosine KNN, cubic KNN, and 

weighted KNN were trained and verified. 

5.5. Ensemble methods 

All the aforementioned classifiers benefit from 

some advantages and suffer from some 

inaccuracies in generalization of data points. This 

fact is more obvious when the number of data 

points is limited and the data complexity is high. 

The theoretical studies and practical experiences 

suggest that there is no best methodology for all 

classification problems. The respective 

distribution of training data points applies a 

crucial impact on the accuracy of the utilized 

classifier. If the respective distribution in each 

class of data is normal, then discriminant analysis 

performs accurate, and if not, other methods such 

as Kernel-based SVM and KNN perform better. 

Integrating multiple classifiers may improve the 

generalization and stability of single algorithms. 

In the current work, two ensemble strategies 

named bagging and boosting were used to 

improve the results and reduce the variance of 

singular algorithms. Both strategies integrate a 

group of weak classifiers to generate a more 

accurate model that performs better and more 

stable. In an ensemble approach, several models 

are trained based on the same learning algorithm, 

and then the results are fused to obtain the final 

output more accurate. 

5.5.1. Bagging 

The bagging strategy, also called bootstrap 

aggregation, was introduced by Breiman [35]. 

This method employs a learning method, and it 

has been applied to several statistically similar 

sets of training data. Three steps are necessary to 

develop a bagged classifier. First, new sets of 

training data are generated by random sampling 

with replacement from the original training data 

set. Then several single classifiers are trained 

using the new generated training datasets. Finally, 

a weight averaging is used to combine the 

obtained models. Although it is usual to 

implement this strategy for decision trees due to 

the high degree of instability of these algorithms, 

it can be utilized for other intelligent classifiers. 

The structure of decision trees can be thoroughly 

altered by small changes or modifications in 

training data points. The instability problem is 

easy to solve if several training datasets are 

available from a similar distribution. For each 

bootstrap training dataset, a singular classifier is 

trained, and then averages the results of singular 

models to reduce the instability effect. 

5.5.2. Boosting 

Boosting is another ensemble strategy employed 

for improving the results of singular classifiers 

proposed by Freund and Schapire [36]. Unlike 

bagging, the appearance probability of elements in 

the newly generated training datasets is unequal. 

The input vectors are weighted and some of them 

have a higher chance to contribute to the new sets. 

Two types of weights are defined in the boosting 

strategy: first, for adjusting the contribution of 

data points (Bi), and secondly, for integration of 

the singular classifiers (Wj), where j = 1,…, m. At 

the beginning, the initial weight of all input 

vectors is equal (Bi = 1/n) for the given training 

data [Xi, Yi | i = 1, 2… n], where Xi and Yi are the 

input and output vectors, respectively. The 

singular classifiers (Cj(x)) are trained using the 

subsets of initial training data. The accuracy of 

single classifiers and their contribution weights 

(Wj) are calculated as below. 
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The data point weight (Bi) is tuned in each 

iteration of the algorithm to increase the weight of 

misclassified data and clarify the effect of difficult 

cases for the classifier, as below. 
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Then new subsets of training data are developed, 

and the single classifiers are trained. The cycle is 

repeated until the maximum predefined iteration 

of the user is reached. Finally, the ensemble 

classifier is obtained using a weighted averaging 

of the single classifiers: 

))((
1

xCwdelEnsembleMo i

m

i

i 


 (6) 

The contribution weight (Wi) of single classifiers 

depends on their performance and accuracy. The 

classifier with a higher accuracy and a lower error 

receives a larger weight and more contribution to 

the final decision. 

5.6. Validation of classifiers 

There are two well-known strategies of model 

verification, named K-fold and held-out. The 

held-out strategy was suggested for colossal 

dataset, while K-fold cross-validation is perfect 

when working with a limited number of data 

points (Yadav and Shukla [37]). The K-fold 

examination divides the training data into K 

subsets and then trains the classifier K times; each 

time, one of the subsets is used for validation. 

Finally, the mean values of K model accuracy is 

represented as the final accuracy of the classifier. 

The computational time of k-fold strategy is high, 

especially with a large value of K; however, in the 

present research work, the classifiers were 

evaluated using the K-fold cross-validation (K = 

10). In addition, the performance of the classifiers 

was evaluated using four evaluation metrics, 

named accuracy, precision, recall, and harmonic 

average. The accuracy is the most general form of 

a metric to evaluate the overall performance. 
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where N is the number of data points. Precision 

and recall are useful when dealing with 

imbalanced datasets, which separately represent 

the performance of the classifier for each 

category. The data was divided into two parts, 

named desired and undesired, to calculate the 

precision of each class. The desired group is 

generated from the samples of interest of the 

studied class classified correctly, while the 

undesired data includes samples of other classes 

misclassified as the studied class. 

iPrecision or Recall (Class )

Number of desired samples

Number of desired undesired samples





 (8) 

The formula of Recall is the same as precision, 

while the undesired data is defined as the samples 

of the class of interest misclassified as the other 

classes. Precision and recall can be generalized to 

the model by applying a weight averaging on the 

value of all classes. The weight value of each 

class is equal to the ratio of data population in the 

class to the total number of samples. Finally, the 

harmonic average of precision and recall is 

calculated using the following formula. 

i i

i i

Harmonic _ average

2 Precision(class ) Recall(class )

Precision(class ) Recall(class )



 



 (9) 

6. Results and discussion 

In the current section, the results of classification 

of algorithms for a real case study are reported. 

Not only the total model accuracy was considered 

for all classes but also precision and recall as well 

as harmonic average were calculated to analyze 

the performance of each class self-sufficiently. 

Table 3 represents the accuracy of all trained 

models through 10-fold cross-validation. 

6.1. Overall accuracy evaluation 

In this sub-section, the performance of the trained 

models was investigated in overall using the two 

concepts of accuracy and weighted harmonic 

average. Among the different decision tree 

models, the simple, medium, and complex trees 

were selected and trained. A Gini’s diversity 
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index was used as the split criterion for all the 

models, while the maximum number of splits was 

4, 20, and 100 for the simple, medium, and 

complex models, respectively. The simple 

decision tree with an accuracy of 86.3% had the 

best performance, which meant that increasing the 

number of splits had no effect on the model 

accuracy. 

The performance of the linear and quadratic 

discriminant functions was very close, while the 

quadratic discriminant showed a higher accuracy 

(an accuracy of 87.2% and a harmonic average 

superior to 86.8%). Both models were regularized 

by diagonal covariance. 

The support vector machine was another 

algorithm employed for the permeability 

classification. Various types of Kernel functions 

including linear, quadratic, cubic, fine Gaussian, 

medium Gaussian, and coarse Gaussian were 

employed to find a model with the best 

convergence. The box constraint level of the 

models was one. The only difference between the 

fine, medium, and coarse Gaussian Kernel 

function was the Kernel scale that was 0.71, 2.8, 

and 11 for fine, medium, and coarse, respectively. 

Among the SVM models, the linear Kernel 

function had the best convergence for 

permeability classification with an accuracy of 

86.3% and a harmonic average of 86.9%. 

Five types of KNN models, named fine, medium, 

coarse, cubic, and weighted, were trained. The 

number of neighbors for the fine, medium, and 

coarse models was 1, 10, and 100, respectively, 

while the distance metric was Euclidean for all the 

three models. The number of neighbors for both 

the cubic and cosine models was 10, while the 

distance metric was cosine and Minkowski, 

respectively. The distance weight of all 

aforementioned KNN models was equal. The last 

model was weighted KNN with 10 neighbors, and 

the Euclidean distance in which the distance 

weight was squared invers. The medium KNN 

was the best, while the accuracy of the coarse 

KNN model was dramatically low. Increasing the 

number of neighbors caused many 

misclassifications, and all samples of class #3 and 

class#4 were wrongly classified. 

Finally, the performance of the two ensemble 

models was evaluated based on the theories of 

bagging and boosting. The accuracies of bagging 

and boosting were 91.3 and 94.9, respectively. 

The harmonic averages being 91.1 and 94.7 for 

bagging and boosting, respectively, also 

confirmed the model performances. As expected, 

the ensemble models represent reliable results, 

and improve the accuracy of permeability 

classification up to 7.7% compared with the best 

single classifier. 

6.2. Single class evaluation analysis 

The overall evaluation results indicatd that the 

intelligent classifiers were reliable considering all 

permeability classes. In this sub-section, the 

classifier performance was evaluated for each 

permeability class using the advantages of 

confusion matrix, which could be consequently 

employed to compute precision and recall. The 

medium decision tree, quadratic discriminant 

analysis, linear SVM, medium KNN, and bagged 

tree represented the best performance, each in its 

category, as shown in bold in Table 3; therefore, 

they were selected for per class evaluation using 

the advantages of confusion matrix. A confusion 

matrix is a square n × n matrix comparing the 

performance of the classifier, whereas the main 

diagonal elements denote the number of correct 

decisions. On the other hand, the value for 

element Cij showed the samples of class i, which 

were misclassified as class j. Table 4 shows the 

confusion matrix of all aforementioned classifiers. 

The values for precision, recall, and harmonic 

average of each class were calculated through the 

confusion matrix. Finally, the weight average of 

precision and recall for each classifier was 

computed. Table 5 states that the best 

classification is obtained for class 4, in which all 

classifiers, except linear SVM, correctly classify 

all data points. The second rank belongs to 

class#1 so that three classifiers including QDA, 

linear SVM, and ensemble bagged tree recognized 

the correct class for all samples. The best 

precision of class#3 was 96.5%, which was 

obtained by the ensemble bagged tree, and then 

the medium KNN showed an accuracy of 92%. 

Unfortunately, the recall value of medium KNN 

for class#3 was 74.1%, which was 16.2% lower 

than the recall value of ensemble bagged tree. The 

ensemble bagged tree performed better than all 

models for class#3 permeability prediction 

considering the precision and recall values for all 

models. The last but not the least rank belongs to 

class#2, in which the precision and recall values 

are smaller compared to the other permeability 

classes. Overall, the ensemble-bagged tree 

presented the best classification of permeability 

using the petrographic and image analysis data. 
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Table 3. The accuracy and harmonic average of all trained classifiers for permeability classification. 

Algorithm Type of Classifier 
Evaluation metrics 

Accuracy (%) Harmonic average (%) 

Decision Tree 

Complex Tree 85.5 85.2 

Simple Tree 86.3 86.1 

Medium Tree 85.5 85.2 

Discriminant Analysis 
Linear Discriminant 86.3 85.9 

Quadratic Discriminant 87.2 86.8 

SVM 

Linear SVM 87.2 86.9 

Quadratic SVM 85.5 85.6 

Cubic SVM 84.6 84.9 

Fine SVM 65.8 66 

Medium SVM 86.2 86.1 

Coarse SVM 84.6 84.3 

KNN 

Medium KNN 86.3 85.9 

Coarse KNN 39.3 27 

Cubic KNN 85.5 85.2 

Cosine KNN 81.2 80.3 

Weighted KNN 85.5 85.2 

Ensemble 
 

Ensemble Boosted Tree 91.3 91.1 

Ensemble Bagged Tree 94.9 94.7 

 
Table 4. The confusion matrix of five cassifiers with the best performance each within its category. 

Actual Class 

Predicted Class 

Simple tree QDA Linear SVM Medium KNN Ensemble Bagged 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 34 2 0 0 36 0 0 0 36 0 0 0 35 1 0 0 36 0 0 0 

2 4 26 4 0 4 27 3 0 4 26 4 0 5 26 2 1 2 31 1 0 

3 0 4 25 2 7 1 23 0 1 5 25 0 2 5 23 1 0 2 28 1 

4 0 0 0 16 0 0 0 16 0 0 1 15 0 0 0 16 0 0 0 16 

 
Table 5. The precision and recall of five cassifiers with the best performance each within its category. 

Permeability 

Class 

Evaluation Metrics 

Simple tree QDA Linear SVM Medium KNN Ensemble Bagged 

Pr (%) Re (%) Pr (%) Re (%) Pr (%) Re (%) Pr (%) Re (%) Pr (%) Re (%) 

1 89.5 94.4 90 100 87.8 100 83.7 100 94.7 100 

2 81.2 76.4 79.4 79.4 83.8 76.4 83.8 76.4 93.9 91.1 

3 86.2 80.6 88.4 74.1 83.3 80.6 92 74.1 96.5 90.3 

4 88.8 100 94.1 100 100 93.7 88.8 100 94.1 100 

Average 86.1 86.3 87 87.2 87.1 87.1 86.6 86.3 94.8 94.8 

 

7. Conclusions 

In spite of several literatures concerning the 

implementation of intelligent models for 

permeability estimation, the present research work 

differs from the previous ones as explained below. 

First, most of the previous research works focused 

on the prediction of continuous values of 

permeability using the conventional well log data, 

while the present article discussed the potentials 

of intelligent classifiers for classification of 

reservoir intervals considering not only the Darcy 

value but also their porosity percentage. In 

addition, we introduced the advantages and 

capability of thin section images for reservoir 

characterization and recognition of permeable 

zones of the Kangan and Dalan formations. A 

graphical comparison among the predicted 

reservoir class using intelligent classifiers and 

those derived from core data is shown in Figure 

10. Thickness of the studied interval was around 

35 m. There is a full agreement between the core 

derived and the intelligent classifier predictions in 

31 m. of the studied intervals, while the ensemble 

bagged tree performed better than the others did. 

Implementation of data mining algorithms for real 

cases of carbonates rocks includes many 

complexities due to high heterogeneity and 

variations of fluid movement in such rocks. Here, 

micro-scale data was extracted from thin sections 

and used for macro-scale reservoir 

characterization. In fact, the results obtained for 

each point were generalized to an interval depth 
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that should be considered heterogeneous. The 

present comparison was done based on the limited 

number of available data points. A higher number 

of data points leads to a higher resolution in the 

reservoir characterization. 

Finally, it is worth mentioning that all the results 

of this research work are based on the data points 

available from the Kanagan and Dalan formations 

from one well of South Pars Gas Field. Certainly, 

a generalized and universal model for the whole 

gas field requires an extended number of data 

points. In addition, the geological conclusions 

about the texture and diagenesis processes of the 

Kanag and Dalan formations may differ in other 

wells. 

 

 
Figure 10. Image plot represents the predicted classes of reservoir quality using ensemble bagged and the 

measured classes based on core laboratory measurements. In the GR, NPHI, and RHOZ well logs, the lithology 

columns are attached to the reservoir characterization columns. 
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 چکیده:

. در پژوهش حاضر، یک نگااه ددیاد بارای    استسازی مخزنی  شناسی و شبیههای کمی زمینهای لازم برای ایجاد مدل ترین مؤلفه ارزیابی دقیق مخزنی یکی از مهم

داده استفاده شده است. روش ارائه شاده متشاکا از ساه مرحلاه      بندی طبقه های الگوریتمارزیابی مخزنی ارائه شده که در آن از مزایای آنالیز تصویر مقاطع نازک و 

های کنگان و دالان، چهار کالا  مجازا بارای سان      آمده از آنالیز مغزه سازند به دست. در مرحله اول، بر پایه تعداد محدود اطلاعات تخلخا و تراوایی استاصلی 

، ای حفاره ، قاالبی و  ای داناه ، درون ای داناه مخزن کربناته تعریف شده است. سپس هفت شاخصه میکروسکوپی تصاویر مقاطع نازک مشتما بر توزیع فضاهای باین  

استخراج شده از تصااویر باا کالا  متناا ر      های شاخصهبافتی استخراج شده است. در مرحله آخر،  یها شاخصهپیچیدگی هندسی فضاهای خالی، توزیع سیمان و 

 تارین  نزدیاک گیری، تاابع آناالیز تفکیاک کنناده، ماشاین باردار پشاتیبان، مادل         بندی نظیر درخت تصمیمهای طبقههای آموزشی الگوریتممخزنی به عنوان داده

هاای مخزنای ماورد    هاای میکروساکوپی و کالا    ، استفاده شده است. ارتباط بین مشخصهبندی بستهتقویت کننده و  های نامهمسایگی و دو الگوریتم ترکیبی، به 

دهاد روش  بندی با در نظر گرفتن مفاهیم دقت، صحت، فراخوانی و میانگین هماهن  ارزیابی شده است. نتایج نشان مای های طبقهبررسی قرار گرفت. عملکرد مدل

% بهباود داده  1/1بندی را در مقایسه با بهترین مدل ساده تاا  های مختلف داشته است و دقت طبقهگیری بهترین عملکرد را در میان مدلخت تصمیمبندی دربسته

 است.

ازندهای کنگاان و  ، آنالیز تصویر مقاطع ناازک، سا  بندی بستهتقویت کننده و  های استراتژیهوشمند،  بندی طبقه های روشارزیابی سن  مخزن،  کلمات کلیدی:

 دالان.


