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Abstract 

The permeability and coupled behavior of pore pressure and deformations play an important role in hydraulic 

fracturing (HF) modeling. In this work, a poroelastic displacement discontinuity method is used to study the 

permeability effect on the HF development in various formation permeabilities. The numerical method is 

verified by the existing analytical and experimental data. Then the propagation of a hydraulic fracture in a 

formation with a range of permeabilities is studied. The time required for propagation of an HF to 10 times 

its initial length is used to compare the propagation velocity in the formations with different permeabilities. 

The results obtained show that the HF propagation can be significantly delayed by a permeability less than 

almost 10
-9 

D. Also the effect of HF spacing on the propagation path is studied. It was shown that the stress 

shadowing effect of HFs remained for a longer spacing than in the elastic model due to the required time for 

fluid leak-off in the formation. Also the propagation angles are higher in the poroelastic model predictions 

than the elastic model. Therefore, it is proposed to use the poroelastic model when studying multi-HF 

propagation in order to avoid errors caused by neglecting the pore fluid effects on the HF propagation paths. 
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1. Introduction 

Hydraulic fracturing (HF) is among the most 

popular methods used in the oil and gas 

exploitation industry to increase the production 

rate. HF improves the natural connection of the 

wellbore and the reservoir by creating new 

fractures. Although this method is widely used in 

industry, there are yet some aspects that require 

further investigations to eventually lead to a better 

understanding of the mechanism of this method. 

Normally, rocks contain discontinuities (such as 

fractures and faults) and pore fluids. The presence 

of pore fluids in these discontinuities can 

significantly affect the stress and displacement 

fields of a rock mass. It has been shown that the 

crack propagation path may be different in a 

porous medium due to changes in the fluid flow 

and pore pressure [1]. The effect of permeability 

and porosity of a formation on the propagation of 

a hydraulic fracture and its pattern requires further 

investigations. In most studies, an elastic isotropic 

medium is considered for crack propagation [2-6], 

while HF is mostly used in formations with a very 

low permeability (i.e. shale formations). The 

initial permeability of the formation may 

substantially affect the propagation of a 

pressurized crack (i.e. hydraulic fracture). 

In many geomechanics problems such as 

hydraulic fracturing [7-9], the in-situ stress 

measurement [10-12], geothermal energy 

extraction process [13-16], and pore fluid and its 

subsequent effects play a crucial role. There have 

been a number of studies on the derivation of 

analytical or numerical solutions for the hydraulic 

fracturing problem in a poroelastic medium [9, 

17-20]. Ghasemi et al. have combined the 

displacement discontinuity and finite element 

methods to solve the problem of fracture flow and 

rock deformation in a hydraulic fracture 

simulation [21]. Huang and Ghasemi have studied 

the evolution of fractured reservoirs during gas 
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production [22]. Combining the finite 

element/boundary element methods, Safari and 

Ghasemi have investigated the effect of injection 

on the hydraulic fracture/natural fracture [23]. 

However, the propagation of a hydraulic fracture 

in a poroelastic medium has rarely been studied. 

Abhishek et al. have studied crack propagation in 

a pre-stressed inhomogeneous medium influenced 

by shear wave [24]. Remij et al. have studied the 

mode-II fracture propagation in a poroelastic 

medium using XFEM [25]. Abdollahipour et al. 

have developed a poroelastic displacement 

discontinuity method and investigated the 

propagation of a crack in a porous medium in 

various time intervals [9, 26]. Zhou et al. have 

determined the crack propagation angle of a 

hydraulic fracture under hydrodynamic and 

hydrostatic pressure joint action [27]. Ren et al. 

have studied hydraulic fracture propagation in two 

adjacent horizontal wells in an ultra-low 

permeability formation [28]. 

Fluid pressure change induces a change in the 

matrix deformation and stresses, and at the same 

time, matrix deformation induces a change in the 

fluid volume and fluid pressure. These pore 

pressure and stress changes affect the fracture, and 

incur further fracture deformation. Biot [29-31] 

has pioneered the poroelastic theory, which 

accounts for these coupled interactions. The 

fundamental solution to the displacement 

discontinuity method (DDM) contains a 

displacement jump. Therefore, this method is 

ideal for problems involving fractures and 

discontinuities. However, the original formulation 

of DDM [32] and its higher order 

implementations [33-35, 1, 36, 37] are limited to 

the elastic problems. In the poroelastic studies of 

fractures, DDM has been previously coupled with 

other numerical methods such as FDM and FEM 

[38-40]. 

In this work, a fully coupled hydro-mechanical 

DDM model is used to investigate numerically the 

effect of initial permeability of the formation on 

the propagation of hydraulically induced fractures. 

First, the formulation is briefly introduced, and 

then after verification of the proposed method, a 

variety of numerical models are build and 

analyzed to investigate the effect of permeability 

and fracture spacing on fracture propagation. 

2. Research methodology 

A constant element poroelastic-displacement 

discontinuity method (CEP-DDM) [1, 9, 26] will 

be used to account for the coupling effects of pore 

pressure and matrix deformation. 

The effect of permeability change allowing a pore 

fluid flow has been considered in the analyses. 

The pore pressure is distributed uniformly in the 

fractures. Table 1 shows the hydro-mechanical 

(based on field data) properties used in the 

modelings [41-45]. The following assumptions 

and simplifications are used in the analyses: 

 σx = 57 MPa and σy = 47 MPa are two  

far-field orthogonal stresses acting in a plane. 

 Crack propagation angle in models is 

predicted based on the σ fracture criterion 

proposed by Erdogan and Sih [46]. 

 The propagation of cracks in the  

CEP-DDM model is based upon the algorithm 

shown in Figure 1. 

 
Table 1. Hydro-mechanical properties of rocks used in analyses [41-45]. 

Rock G K ν Ku νu Km  B M  k c 

Ruhr sandstone 9 13 0.12 30 0.31 36 0.65 0.88 41 0.02 0.20 5.3×10
-3 

Tennessee Granite 24 40 0.25 44 0.27 50 0.19 0.51 81 0.02 0.0001 1.3×10
-5 

Granite 19 35 0.27 41 0.30 45 0.27 0.55 84 0.02 0.0001 7×10
-6 

Berea Sandstone 6 8 0.20 16 0.33 36 0.79 0.62 12 0.19 190 6 

Westerly Granite 15 25 0.25 42 0.34 45 0.47 0.85 75 0.01 0.0004 2.2×10
-5 

Weber Sandstone 12 13 0.15 25 0.29 36 0.64 0.73 0.28 0.06 1 2.1×10
-2 

Ohio Sandstone 6.8 8.4 0.18 13 0.28 39 0.74 0.50 9 0.19 5.6 3.9×10
-2 

Pecos Sandstone 5.9 6.7 0.16 14 0.31 41 0.83 0.61 10 0.20 0.8 5.4×10
-3 

Boise Sandstone 4.2 4.6 0.15 8.3 0.31 42 0.85 0.50 4.7 0.26 800 4×10
-1 

 

where G, K, and ν are the shear modulus, bulk 

modulus, and Poisson's ratio, respectively. The 

subscript u presents the undrained parameters, α is 

the Biot coefficient, B is the Skempton's 

coefficient, M is the Biot modulus, Φ is the 

porosity, k is the permeability, and c is the 

generalized consolidation coefficient. 
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Figure 1. Algorithm used in CEP-DDM for crack propagation in a poroelastic medium [9]. 

 

3. Constant element poroelastic DDM 

Originally, DDM was proposed and formulated 

for the analysis of elastic media. Its inherent 

formulation based on a displacement jump made 

this boundary element method ideal for the study 

of fracture mechanics problems. However, DDM 

can only model fractures according to the 

elasticity theory. Pore pressure and its coupling 

effect with mechanical deformation play an 

important role in many geomechanics problems 

such as hydraulic fracturing. To consider these 

effects in DDM, it should be extended to the 

poroelasticity theory, which accounts for the 

hydro-mechanical effects of a porous 

environment. DDM requires a fundamental 

poroelastic solution for an extension to 

poroelasticity. Based on the dislocation theory, 

Abdollahipour derived a point-plane strain 

displacement discontinuity solution in a 

poroelastic medium [1]. Appendix A presents this 

solution. 

The influence functions of a poroelastic-based 

DDM may be found by distributing the solution 

presented in appendix A over a domain of Ψ
Γ
 in 

the direction of s axis in Figure 2. Consider local 

stress in the direction of s axis in Figure 2 due to a 

unit normal displacement discontinuity (Dn = 1). It 

can be obtained using the following integrals. 

   
a

a

dn

xx d
0

112

0

 (1) 

  
a

a

ds

xx d 112  (2) 
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where  0
112 and 112 are the fundamental 

solutions presented in Eqs. (A.3) and (A.4), 

considering i = j = 1 and k = 2. The complete 

 

 
Figure 2. An element in local coordinates. 

 

influence functions (including a time-independent 

part and a time-dependent part) have been 

described by Abdollahipour et al. [20, 9]. 

The original DDM contains two discontinuities, 

i.e. normal and shear displacement discontinuities 

(Ds and Dn, respectively). Poroelastic DDM adds 

one more discontinuity for flux Df. These three 

discontinuities are unknown at the beginning of 

the numerical simulations in many fracture 

problems in poroelastic formations. Rather they 

must be solved incrementally in the time domain, 

while considering stress and pore pressure 

histories for each element. Hence, histories of 

pore pressures and stresses are used to build a set 

of equations to be used in the numerical 

implementation of the method [9]. 

A set of three integral equations (one integral 

equation for each discontinuity) can be used to 

determine the displacement and flux 

discontinuities. As shown in Eqs. (3)-(5), these 

integrals are based upon the displacement and flux 

discontinuity histories of shear stress, normal 

stress, and pore pressure. 
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 (5) 

where Ψ is the element locus, and i, j, k, and l are 

subscripts that vary from 1 to 2 assuming the 

Einstein’s summation convention on them. In 

Figure 3, (x,y) is the global coordinate system and 

 21, xx  is the local coordinate system whose 

axes, 1x  and 2x , respectively, coincide with the 

tangential )s(  and normal )n(  directions of the 

element. 

The influence function (  t,,xdn

kl  ) is a 

local stress component at point x and time t due to 

a unit normal displacement discontinuity located 

at λ and occurring at time Ω. Other functions (
ds

kl  

and 
df

kl ) have similar meanings. Ps, Pn, and Pf are 

the influence functions for shear and normal 

displacement discontinuities and flux 

discontinuities Ds, Dn, and Df, respectively. 
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Figure 3. Global and local coordinate systems. 

 

Considering constant elements and using 

collocation points at the mid-point of each 

element, the discontinuities are distributed 

constantly over each element. Constant time steps 

Δt are considered, and Ds, Dn, and Df change 

linearly with time. 

The system of Eqs. (3)-(5) is numerically solved 

according to the following steps: 

 Discretization of the geometry into m 

elements. 

 Discretization of the time to h steps from 

0 to t. 

 Approximation of Ds, Dn, and Df over 

each element  m,1  and time-step  h,1 . 

 Construction of a linear system of 

equations based on the numerical integration of 

Eqs. (3)- (5). 

 Solving the system of equations at the end 

of the first Δt, and determination of Ds, Dn, and Df 

at the middle of each element. 

 Ds, Dn, and Df are marched through time, 

at the end of each, Δt is found until reaching the 

last Δt. 

Following the above steps, Eqs. (3)-(5) may be 

presented in a double-summation form of integrals 

over time and space. For example, Eq. (4) at point 

x
α
 and time t may be presented as: 
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


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 (6) 

The discretization of 3 parts of Eq. (6) are 

collocated at the middle of all elements for normal 

stress boundary condition σn. Following a similar 

procedure, the coefficients σs and p can be 

obtained. Eventually, for a total of M boundary 

elements, there will be 3M linear equations for 

3M unknown discontinuities (Dn, Ds, Df) at any 

time t. These linear equations can be presented by 

matrix notation as: 






1

0

h
nnhh DBAD



  (7) 

The complete procedure and formulation have 

been explained in our previously published work 

[20]. We further implemented an algorithm to 

simulate crack propagation in a porous rock [9]. A 

combination of these methods will be used in the 

following sections to study the effect of 

permeability on HF propagation. 

 

 

4. Verification of proposed method 

The constant element poroelastic-displacement 

discontinuity method (CEP-DDM) is evaluated 

against an analytical solution as well as the field 

measurement results. 

4.1. A suddenly pressurized crack 

Sneddon has provided the exact crack opening 

displacement for a pressurized crack based on the 

elasticity theory. The crack has a length of 2L 

(with LxL  , i.e. the crack center coincides 

with the origin of the coordinate system) and is 

pressurized by internal pressure p, as shown in 

Figure 4 [47]. 

  2212
xL

G

p
w f 





 (8) 

where p is the internal pressure, G is the shear 

modulus, ν is the Poisson's ratio, L is the crack 

half-length, and x is the distance from the crack 

center. 
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Figure 4. Pressurized crack of Sneddon’s problem. 

 

A poroelastic medium exhibits two distinct 

behaviors. At the very beginning of the loading, 

the pore fluid cannot dissipate. Therefore, the 

poroelastic medium shows an elastic response 

with undrained parameters. As time passes by, the 

pore pressure migrates to further boundaries, and 

eventually dissipates completely. At this time, a 

drained behavior (i.e. elastic response of the 

medium with drained parameters) emerges. 

Hence, the Sneddon's solution may be used to 

predict the early and late behaviors of the crack 

opening displacement in a poroelastic rock simply 

by using the undrained and drained parameters, 

respectively. The numerical results for crack 

opening at the first time step is compared with the 

Sneddon’s solution using the undrained 

parameters, while the numerical results at t = 8000 

s are compared with the results of the Sneddon’s 

solution using the drained parameters. A length of 

L = 0.5 m and the properties of Table 2 with an 

internal pressure of 30 MPa and a time step size of 

Δt = 0.05 s are used for verification. Parameter B 

in Table 2 is the Skempton's coefficient. Figure 5 

presents the numerical and analytical results for a 

pressurized crack. 

As it can be seen, the numerical results (using 

only 20 constant elements in the numerical model) 

match the analytical results well in both the 

drained and undrained conditions. 

 
Table 2. Rock properties for suddenly pressurized 

crack verification. 

Parameter Value 

(GPa)G 13 

νu 0.31 

ν 0.12 

(mdarcy)k 1 

φ 0.02 

α 0.65 

c (m
2
/s) 0.002 

B 0.88 

 

 
Figure 5. Analytical and numerical results of the crack opening displacement in a short time (undrained 

condition) and a long time (drained condition) after loading initiation. 

 

4.2. Field measurements 

Rito and Emura [48] have measured time changes 

of the pore water pressure in a 400 m drilled 

borehole. A mud weight pressure of 2960 KPa 

was reported for the bottom of the borehole. They 

measured the pore pressure by a GD-CONE 

measurement equipment at a 60 cm distance from 

the bottom hole. Figure 6 shows a scheme of the 

borehole and measurement location. Figure 7 

demonstrates the numerical and field 
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measurement results of pore pressure changes. 

The pore pressure was measured for 20000 s in 

the field; however, since the numerical results 

reached a constant pressure, these results are only 

provided for 14000 s. The pore pressure predicted 

by the numerical model converges the mud weight 

pressure (2960 KPa), as expected. However, the 

field measurements are slightly lower (almost 

2800 KPa) at the end of the measurements. It can 

be due to the lost circulation effects neglected in 

numerical simulation. The ability of the numerical 

model in prediction of the time-dependent 

behavior is well-presented in both verification 

examples. This verifies the accuracy and 

applicability of the proposed numerical model. 

 

 
Figure 6. Field measurement of pore pressure at 400 

m depth. 

 

 
Figure 7. Numerical and field measurement results 

of changes of pore pressure with time. 

 

5. Effect of permeability on hydraulic fracture 

propagation 

In order to investigate the effect of permeability 

on the crack propagation time, a hydraulic fracture 

in a poroelastic medium was considered. The 

required time for a crack to propagate to 10 times 

its original length was recorded in numerical 

modeling. Various permeabilities for reservoir 

rocks from 1 mD to 1 pD (based on Table 1), 

which is equivalent to high permeable rocks such 

as sandstones to very low permeable rocks such as 

shales, were considered in numerical models. A 

crack of length 50 cm was used in the initial 

model. Time steps for the time-dependent 

analyses were constant and equal to Δt = 0.05 s. 

As illustrated in Figure 8, reduction of 

permeability has resulted in an increase in the 

propagation time or, in other words, slower HF 

propagation. However, a significant change in the 

propagation time or speed appears in the 

substantial changes of permeability. The most 

required time for HF propagation is for very low 

permeable rocks, i.e. shales and tight gas 

formations. Fluids in a rock with a lower 

permeability require a longer time to migrate from 

a crack to the reservoir; hence, reducing the HF 

propagation speed. Since the hydraulic fracture 

length in a low permeability formation is the key 

to a successful HF operation, the results of these 

modelings show the requirement of a higher 

pumping time for a hydraulic fracturing of these 

reservoirs. 

 

 
Figure 8. Required time for a crack propagation to 

10 times its initial length in rocks with various 

permeabilities. 

 

6. Effect of spacing on initial HF propagation 

angle 

Neighboring HFs may affect the initial 

propagation path of each other. In order to 



Abdollahipour et al./ Journal of Mining & Environment, Vol. 9, No. 4, 2018 

900 

 

investigate this effect, 2 HFs with various 

spacings were considered. The same loading 

conditions as the previous models were used. The 

numerical study was carried out considering the 

elastic and poroelastic conditions to 

simultaneously compare the effect of permeability 

and hydro-mechanical coupling on the 

propagation paths. Initial HFs have initial lengths 

of L = 1 m. A ratio of spacing to initial HF length 

of S/L = 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, and 4.0 for 

models and S/L = 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 

6.0, 8.0, and 10.0 were used for the elastic and 

poroelastic models, respectively. The properties 

are based on Table 2 for both the elastic and 

poroelastic models. It is clear in Figures 9 and 10 

that in a closer HF spacing, propagations are 

diverging from the adjacent HF. In the elastic 

study, the effect of adjacent HF is diminished 

after S/L = 4.0. However, the situation is quite 

different in the same model but under poroelastic 

conditions in Figure 10. 

 

 
Figure 9. HF propagation of two adjacent cracks in elastic medium. (a) to (g) correspond to S/L = 0.25, 0.5, 0.75, 

1.0, 1.5, 2.0, and 4.0. 

 

 
Figure 10. HF propagation of two adjacent cracks in poroelastic medium. (a) to (i) correspond to S/L = 0.25, 0.5, 

0.75, 1.0, 1.5, 2.0, 6.0, 8.0, and 10.0. 
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The adjacent HFs keep affecting each other up to 

S/L = 10. This shows the different behaviors of an 

elastic study and a poroelastic study. Since fluid 

penetration into formation takes time, the stress 

shadowing effect of HFs has remained for a 

longer spacing than in the elastic model. 

Figure 11 compares the initial propagation angles 

in various S/L values for both modelings. It is 

clear that for the same S/L ratio, the poroelastic 

model predicts a higher propagation angle (i.e. a 

higher diverging angle from the adjacent crack) 

than the elastic model. This shows that the 

poroelastic effects may change the predicted 

propagation path in the presence of more than one 

crack. The results of HF propagation from elastic 

studies in multi-HF propagation should be used 

with caution. 

 

 
Figure 11. Initial propagation angle for various 

spacings in elastic and poroelastic analyses of 2 

adjacent HFs. 

 

7. Conclusions 

The presence of displacement jump in the 

fundamental solution of DDM makes it ideal for 

the fracture and discontinuity problems. However, 

the original formulation of DDM is limited to the 

elastic problems. Many problems in geomechanics 

such as geothermal problems and hydraulic 

fracturing are better presented in a porous 

medium. A constant element poroelastic 

displacement discontinuity method (implemented 

in the CEP-DDM code) was proposed and used to 

study the effect of permeability on the 

propagation time of a hydraulically-induced 

fracture. 

Before analyzing the problem, a verification study 

was performed using an analytical solution and 

the field measurement results. Both verifications 

showed a reasonable accuracy and trend of the 

proposed numerical results with the analytical and 

field measurement results. 

Numerical simulation of the propagation of a 

hydraulically-induced fracture showed that a 

decrease in permeability resulted in an increase in 

the time required for a crack to reach a specified 

length. It should be noted out that a significant 

change in the propagation time only appears in the 

dramatic changes of permeability of the 

formation. This significant increase of 

propagation time appears in a permeability less 

than almost 10
-9 

D, corresponding to low to very 

low permeability of reservoir rocks. 

Also the effect of HF spacing on the propagation 

path was studied. It was shown that the effect of 

adjacent HFs on the propagation path in 

poroelastic models was much more than the 

elastic models. It was shown that the stress 

shadowing effect of HFs remained for a longer 

spacing than in the elastic model because of the 

required time for fluid leak-off in the formation. It 

is proposed to use the poroelastic model when 

studying a multi-HF propagation in order to avoid 

the errors caused by neglecting the pore fluid 

effects on the HF propagation paths. Also the 

propagation angles are different in the elastic and 

poroelastic models. 
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Appendix 

Eqs. (A.1)-(A.8) describe the complete stress and displacement fields, pore pressure, and flux in a poroelastic 

medium [1]. 
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where (uij)
0
, (σijk)

0
, (pi)

0
, and (qij)

0 
are the undrained parts showing the time-independent behavior of the 

material, and Δuij, Δσijk, Δpi, and Δqi are drained parts, showing the time-dependent behavior of the materials; 

uij is the displacement. It should be noted that the first subscript in uij presents the displacement component 

and the second subscript (and the last subscript in any other parameter) denotes the dislocation mode (1 

shows the slip mode and 2 shows the normal mode), σijk is the stress field, pi is the pore pressure, and qij is 

the flux. 
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 چکیده:

اسدتفاده از روش ناپیوسدت ی   بدا    ی شکسدت هیددرولیکی دارنددر در ایدو پدژوهش،     سداز  مددل نقش مهمی در  شکل رییتغفشار منفذی و  توأماننفوذپذیری و رفتار 

های مختلف بررسی شددر مددل    شده برای محیط پوروالاستیک اثر نفوذپذیری بر گسترش شکست هیدرولیکی در سازند متخلخل با نفوذپذیری جابجایی توسعه داده

شکسدت هیددرولیکی در محدیط متخلخدل بدا      های تحلیلی و نتایج آزمایش اهی و میدانی موجود اعتبارسنجی شدر سپس گسترش  عددی استفاده شده توسط حل

مبنا برای مقایسه سرعت گسدترش   عنوان  بهدامنه متفاوتی از نفوذپذیری بررسی شده استر زمان لازم برای گسترش شکست هیدرولیکی به ده برابر طول اولیه آن 

  بده دارسدی   71-3هدای کمتدر از    ت هیدرولیکی در نفوذپذیریی با نفوذپذیری مختلف استفاده شدر نتایج نشان داد که سرعت گسترش شکسها طیمحشکست ی در 

نشان داده شد که اثر سایه تدنش در محدیط پوروالاسدتیک     داری شکست ی بر مسیر رشد شکست هیدرولیکی بررسی شدر همچنیو اثر فاصله یابدر کاهش می شدت

انه شکست هیدرولیکی از مددل پوروالاسدتیک اسدتفاده شدود تدا از یطاهدای       شود در مطالعه گسترش چندگ بیشتر از محیط الاستیک استر در نتیجه پیشنهاد می

 ناشی از نادیده گرفتو اثرات سیال منفذی بر مسیر گسترش شکست هیدرولیکی پرهیز شودر
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