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Abstract
In geochemical exploration, there are various techniques such as univariate and
multivariate statistical methods available for recognition of anomalous areas. Univariate
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Simulation techniques are usually utilized to estimate the threshold value, which is the smallest
quantity among the values representing the anomalous areas. In this work, a
Threshold combination of the Sequential Gaussian Simulation (SGS) and Gap Statistics (GS)
methods was utilized as a new technique to estimate the threshold and to visualize the
Gap Statistics anomalous regions in the Hararan area, which is located in SE Iran, and consists of
copper mineralization that seems to be connected to a porphyry Cu-Mo system.
Reliability Furthermore, the most important advantage of this method is the reliable assessment of

the anomalous areas. In other words, the anomalous areas were discriminated in terms of
their probability values. The regions with high probability values were reliable and
appropriate to locate the drilling points for a detailed exploration. It not only decreases
the risk, cost, and time of exploration but also increases the drilling point reliability and
precision of reserve estimation after drilling. In this research work, the results of
analysis of 607 lithogeochemical samples for the element Cu were used. The SGS
method was performed on the transformed data and 50 realizations were obtained. In the
next step, the back-transformed realizations were utilized to obtain an E-type map,
which was the average of 50 realizations. Moreover, the results of the GS method
showed that the Cu threshold value was 228 ppm in the area. Therefore, using the E-type
map, areas with values greater than 228 ppm were introduced as the anomalous areas.
Finally, the probability map of the exceeding threshold values was acquired, and the
anomalous districts located in the southern part of the studied area were considered as
more reliable regions for future detailed exploration and drilling.

Hararan District

1. Introduction

The purpose of geochemical exploration is to
discover and evaluate the anomalous populations
of ore elements [1]. In mineral resource
categorization, mine planning, and mineral
exploration, identification of a geochemical
background and its distinction from the
geochemical anomalies are very important to
recognize, delineate, and model the mineral zones
[2]. Separating a geochemical background from
the anomalous areas and then identifying the
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mineralized areas is the key to geochemical data
processing and to recognize the threshold [3, 4].
There are various techniques available such as
mean+ 2SDEV to estimate the threshold,, which
are still applied approximately 50 years after its
beginning [5], and fence, mediant2MAD, Gap
Statistics (GS), and other spatial methods
including the fractal and multi-fractal analysis
techniques. Many authors have wused the
mentioned techniques in their research works



Abbaszadeh et al./ Journal of Mining & Environment, Vol. 10, No. 1, 2019

[6-20]. In addition, there are some multivariate
analysis methods involving factor analysis, cluster
analysis, principal component analysis, and so on,
which are used to identify the anomalous areas
that have been applied by a lot of researchers
[21-30]. In order to forecast the spatial attributes
and model the uncertainty of predictions in
locations that are un-sampled, the geostatistical
techniques have been increasingly applied as
powerful tools [2]. These methods have recently
been applied in geochemical studies by many
researchers [31-35].

An  important  geostatistical  interpolation
technique is called kriging, which is a robust
estimator and visualizer, but its smoothing effect,
particularly for the data that is skewed, is its major
disadvantage [2]. In order to overcome the
smoothing effect of the kriging estimator, the
conditional stochastic simulation has been
designed [36]. On the other hand, if the
distribution of dataset is non-Gaussian and kriging
is used, spatial heterogeneity that is the attribute
of a lot of such datasets is not capable of being
reproduced. To the contrary, there is Gaussian
simulation as an alternative method, which
provides more accurate results [2]. When the
distributions of continuous variables transform to
Gaussian or multi-Gaussian, they will be
simulated by the Gaussian simulation methods [2,
37]. In mining, Gaussian simulations are most
general. Although there are various Gaussian
simulations that are used as well as others,
Sequential Gaussian Simulation (SGS) is the most
commonly used method [38]. SGS was first
commenced by Isaaks (1990), and was based upon
the multi-Gaussian RF model assumptions [38].
This method has been applied by many
researchers in mining industries [2, 36, 39].

In this work, a combination of the GS and SGS
methods was used to separate and delineate the
anomalies from the background districts.
Moreover, this method was utilized to assess the
reliability of the anomalous regions, which is the
most important ability of this technique. In other
words, the probability values, which are the base
of the discriminating regions, were calculated in
the anomalous areas. In a detailed exploration,
regions with high probability values are reliable
and applicable to locate the drilling points. This
makes the precision of reserve estimation to
increase and the cost and time to decrease in a
drilling project.

The utilized data was obtained from the
lithogeochemical samples in the Hararan area,
which appeared to possess the potential for
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Cu-Mo porphyry mineralization. The deposit was
located in the northern latitudes 56°, 40’, 49" to
56°, 42', 40" and the eastern longitudes 29°, 27',
20" to 29°, 29, 46" in the Baft geological sheet
(1:100,000 series) in SE Iran [40]. The samples
were systematically collected according to a
regular grid pattern. The sampling density was
48.56 samples/Km® that corresponded to 1:5000
lithogeochemical surveys. 607 rock samples were
analyzed by Amdel laboratory for 45 elements.
However, only the results for the element Cu were
used in this work. The map of the studied area and
the location of the sampling points are shown in

Figure 1(a). In this research work, the
geostatistical studies were applied using the
SGeMs, WinGslib, Golden Surfer, and GS’
softwares.

2. Geological setting

The most ancient rock wunits cropped out
extensively in most parts of the studied area
belong to the Eocene period. These units
including the andesite and andesite porphyry and
andesite volcanic breccias diorite to granodiorite
rocks placed in the north, SE, and south parts of
the studied area, respectively. Moreover, the
tonalite and granodiorite rocks belong to the
Eocene period placed in the central, west, and NW
parts of the area. As well, dacite dykes with NE to
SW trend are dispersed in most parts of the area.
In addition to the felsic to intermediate rocks
mentioned earlier, the other outcrops with
Quaternary period mainly consist of colluviums
with  andesite  volcanic, colluvium  with
agglomerate component, and quartz stockworks

[41] (Figure 1(b)).

3. Methodology

3.1. Sequential gaussian simulation

Sequential simulation is a stochastic modeling
algorithm obtaining multiple realizations based on
the same input data. This data could be either
categorical or continuous [42, 43]. Regarding the
kind of data, Sequential Gaussian Simulation
(SGS), Direct Sequential Simulation (DSS) or
Sequential Indicator Simulation (SIS) are utilized
[44].The mainly straightforward algorithm to
produce realizations of a multivariate Gaussian
field is given by the sequential theory [45, 46].
SGS requires standard Gaussian data with unit
variance and zero mean, so for SGS, the data is
transformed to Gaussian through a quantile
transformation [47]. Each variable is simulated
sequentially in accordance with its normal
conditional cumulative distribution function
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(CCDF) via a simple kriging estimation method. within a neighborhood of the position being
The conditioning data comprising all the formerly simulated [45, 46, 48]. Performance of the SGS

simulated values and all the original data exists

method consists of the following steps [38].

3262500
TURKMENISTAN

@0

s2e20004 !
3251500-: .
mwoo-: “
3260500

3260009

3259500

AFGHANISTAN !
\
1

3259000

3258500 , ., *

PAKISTAN

325004 :2..°

169500 470000 470500 471000 471500

e Town * Porphyry deposit
g Urumieh-Dokhtar A Study area ’
magmatic arc
a)
Legend
3262500
@ andestte aglomerate
ES5] sntenie porphny 3262000
andestte
‘ - '@."i andesite volcanie 2
7o) collvum with 3261500
[:’f,;] andestte component
m collvom wath
s aglomerate component i
g of o giocite to granodiorite 3261000

E.E granodiorite tonalite
Tk quartT stockwork
dastice dyvke
ALTERATION ZONE
- hydrotermal breacta
arpllic
-

propllitic

- subcification

3260500

1

P

3260000

=3l
N1
xSy
fwy
LEYX%

i

S
i

N

R
325950045

N
17NN
,\4 s
P
LEVES

ImN
1

’a

!

3259000

SRR b3

CEOLOCICAL MAP

HARARAN AREA

NS
3258000—-. 2

o o000

b)

Figure 1. (a) Location of the Hararan area and its sampling point: left picture shows the geographical position of
important copper porphyry deposits and Cu porphyry mineralization of Hararan in the Urumieh-Dokhtar
magmatic arc. Location of the studied area is defined by a triangle shape. Right picture depicts the
lithogeochemical sampling points in the Hararan area. (b) Geological map of the Hararan area (1:5000): most
rock units cropped out extensively in most parts of the area belong to the Eocene age.
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1. Complete a whole exploratory data analysis
of the original data comprising the domain
definition and variography.

2. After identifying the domains, examine
whether the data is required to be de-trended, i.e.
whether the simulation should be applied to the
residuals.

3.  Obtaining the matching Gaussian
distribution, carry out the normal score
transformation to the original data.

4. Acquire the variogram models with a
Gaussian distribution for the variable that is
transformed.

5. Draw a chance path through each domain to
be simulated. To avoid artifacts, the route for the
simulation is randomly delineated.

6. For each node to be simulated, estimate the
conditional distribution via simple kriging in the
Gaussian space. The variance of conditional
distribution is called the simple kriging variance
(osk (u)), and its mean is named the estimated
simple kriging value (Y*(u)). The Gaussian mean
of distribution is zero while simulation is applied
to residuals later than de-trending.

7. Obtaining a simulated value for each node,
Ys (u), draw from the conditional distribution at
random.

8. Add the simulated value (Ys (u)) as the
conditioning data for the nodes that are simulated
later. This is essential to guarantee the variogram
reproduction.

9. Loop the process until all domains and all
nodes have been simulated.

10. Ending the simulation, check that
histogram (univariate distribution) of values that
is simulated is Gaussian; also verify the variogram
model of simulation the same as the original
model variogram.

11. Back-transform the normalized simulated
values into the original variable space.

12. Add back the trend if the simulation was
performed on residuals.

13. Check that the original distribution and the
variogram of the original values are the same as
the histogram for the back-transformed data and
the variogram that is obtained from the simulated
values, respectively.

It should be regarded although there are statistical
fluctuations in simulation while data distribution
is transformed to Gaussian and vice versa; they
should be unbiased and logical in the variance and
mean [49].

The following controls should be carried out after
having all nodes simulated. Reproduction of [49]:

(1) The actual summary statistics;
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(2) The data values at data positions;
(3) The enter covariance model;
(4) The actual histogram.

3.2. Gap statistics

The gap statistics (GS) method is applied while
there is a more delicate gap in the data. In this
method, the data distribution should be Gaussian;
thus in the first step, the data must be converted so
that they can conform the normal form as well as
possible. The second step is the standardization of
data so that they have a mean with zero value and
a variance equal to one; the goal of
standardization is to remove the effects of scales.
The standardized data is called (Z). The third step
is to sort the transformed data in an ascending or
descending form; the next steps include the
following [50, 51]:

The mean of two standardized values that were
placed sequentially was obtained. These values
were called (mi).

Obtain the absolute distinction between the
resulting succeeding values in the ordered array,
which may be named the standardized gaps.

The greatest standardization gaps will tend to take
place next to tails of distribution, and
approximately never take place next to the mean.
Nevertheless, the geochemical threshold values
can take place anywhere through the variety of
values; this trend should be removed. This is
applied by multiplying the gap standardized by
the supposed frequency at the center of gap as
specified from an appropriate normal curve.
Therefore, the calculated values are called the
adjusted gaps (Gi).

The greatest value is selected among the
calculated Gi. Then mi corresponding to Gi is
introduced as the gap statistics value. Finally, the
threshold is acquired using Equation 4, in which
the calculation stages are shown by the following
equations:

G, =F(m)[Z,,—-Z,]i=1273.. (1)
1 5
F(m)=0.398% 2 @)
[Z,0+2,]
m, =—2L1= - 3
i > ®)
Threshold = (gap statistics x standard devialion) + mean (4)

4. Results and discussion
4.1. Descriptive statistics
Before calculating the primary statistical
parameters, preprocessing of the geochemical data
including replacement of the censored and outlier
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data was performed. The histogram and
descriptive statistics of raw copper concentrations
from 607 samples are presented in Figure 2 and
Table 1, respectively. The values representing the
mean, standard deviation, and skewness were
equal to 118.9 ppm, 243.35 ppm, and 5.82 ppm,
respectively. As illustrated in the histogram and
skewness coefficient, the copper distribution is
highly far from normal and positively skewed. In
order to perform the SGS and GS methods, the
data should be transformed by a suitable
transformation function to follow a Gaussian
distribution. Note that due to the influence of
skewness, a method like ordinary kriging can
produce poor results.

Since the input data for the SGS and GS methods
have to be a standard Gaussian distribution, first,

the copper data was transformed by utilizing a log
transformation function. Then the logarithmic data
was standardized using the Z score method; the
mean distribution was subtracted from each
observation and divided by the standard deviation
of the distribution. The statistical parameters of
the transformed data (i.e. the variance value close
to 1 and mean of about 0) control the accuracy of
the transformation. The histogram of the new
variable with Gaussian distribution and its
statistical parameters are shown in Figure 3 and
Table 1, respectively. Regarding the statistical
values such as variance (equal to 1), mean (equal
to 0), and skewness (equal to 0), the correctness of
transformation was confirmed.

Table 1. Descriptive statistical parameters of element Cu in the Hararan area.

Mean (ppm) Median (ppm) Std. Deviation (ppm) Variance (ppm)”

Skewness

Cu 118.9 62
Transformed data 0 0

243.35 59220.68 5.82
1 1 0

Frequency

0 y T T
0.00 500.00 1000.00 1500.00

Cu

T T
2000.00 2500.00

Figure 2. Histogram of raw copper element in the
Hararan area.
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Figure 3. Histogram of transformed copper element
in the Hararan area.
4.2. GS on simulated data
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In order to compute the threshold of the Cu data in
the Hararan area, the GS method was used. Based
on the principles of GS mentioned in Section 3.2,
a programming code was used. Consequently, the
threshold value of the Cu data was obtained to be
228 ppm in the studied area.

4.3. Simulation of copper concentration based
on SGS

4.3.1. Spatial analysis

In order to explain the spatial structure and control
the anisotropy of the transformed data, the
omni-directional and  several directional
semi-variograms (for directions N-S, N45°E, E-
W, and N45°W) were computed with 22.5 degree
tolerance, and were modeled. Then the theoretical
models of spatial variability were fitted to the
experimental semi-variograms.

The spatial model of wvariability for the
transformed Cu data depicted two components of
continuity: a spherical structure with geometry
anisotropy and a nugget effect. Interestingly, the
region had a maximum range (600 m) in the
azimuth 90° that could verify the main trend of
Hararan mineralization as being in the W-E
orientation with an anisotropy ratio of 1.5.

Figure 4 displays the semi-variograms in two
directions on the basis of the transformed data
with the spherical model that is fitted to the
experimental variogram, while Table 2 depicts the
parameters of the theoretical model fitted to the
semi-variograms. As it can be seen, a high content



Abbaszadeh et al./ Journal of Mining & Environment, Vol. 10, No. 1, 2019

of the nugget effect demonstrates the high
variability of the regional variable (Cu) even at
short ranges, and the variograms show periodic
variations (hole effect), especially in the N-S
direction (AZ = 0), representing periodic grade
fluctuation or vein type mineralization.

4.3.2. Geostatistical simulation

SGS was implemented by the SGSSIM algorithm
in the SGeMs software, and a regular 2-D grid
with the 64 x 62 m blocks were produced within
the estimation space. For each block, fifty
conditional simulations were produced by
utilizing the semi-variogram model parameters of
the transformed copper data and the ordinary
kriging estimator. The representation of two
realizations, which were selected randomly, and
an E-type map, which was obtained from
averaging 50 realizations, are displayed in

Figures. 5(a-c). As mentioned, the final results are
presented in an E-type map. Therefore, in order to
compare the SGS results with the kriging method,
the ordinary kriging map of data was obtained and
displayed in Figure 5(d). Unlike the kriging
technique, the SGS technique can simulate the
data for each block in whatever number the user
needs. This property is the main benefit of the
SGS technique in comparison with the kriging
interpolation technique because it provides the
user with the capability of having wider
possibility models of related distribution in an ore
body. Therefore, as it can be seen in Figures 5(c)
and 5(d), there is a much lower smoothing effect
in the spatial distribution of the E-type map in
comparison with the kriging map.

Table 2. Variogram model parameters of transformed Cu data in the Hararan area.

Variable Cy Sill Range (m)

Maximum Continuity Direction

Anisotropy Ratio

Transformed data 0.6 1 600

W-E 1.5

Anisotropy Ratio: major axis/minor axis; Direction: major axis orientation for the ellipse of the spherical structure; Range:
spherical structure major range (m); Sill: (C+Cy) for spherical structure; Cy: nugget effect.

plot 4: variogram - azth=90, dip=0

| IR P I I NN I B I |

distance

b)
Figure 4. (a) Sample semi-variogram of transformed Cu data for the directions N-S (a) and E-W (b). The black
line corresponds to the theoretical model fitted to the experimental semi-variograms.
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Figure S. Representations of two randomly chosen realizations (a, b), E-type map (c¢), and kriging map (d) of
spatial distribution of Cu element in the Hararan area through applying SGS (the results obtained are on the
basis of the normal score transformed).
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4.3.3. Validation of simulation results

The simulation results are considered to be
acceptable while their validation was done.
Validation of the output of a sequential
geostatistical simulation (realizations) was carried
out in two steps. The first step was applied by
comparing the experimental semi-variogram
model of the transformed Cu data to the
semi-variograms of a set of realizations. However,
some differences between the sample model and
the variation realizations named fluctuations are
reasonable, which may have special causes such
as: (a) the parameters of the semi-variogram
model, (b) the algorithm that is used for the
simulation, and (¢) the number of conditioning
data to be used for the simulation. The results of
this comparison were depicted in Figure 6. (The

11

08

07+

Semivariogram

06~

041

green line and black lines are representative of the
semi-variogram model and semi-variogram
realizations, respectively.)

The second step used to examine the validity of
the simulation was comparison of the cumulative
distribution frequencies (CDFs) of all realizations
with the transformed Cu data (CDF). Figure 7
shows the CDFs of some realizations and raw data
in various colors.

As depicted in Figures 6 and 7, not only there is a
suitable coincidence between the semi-variograms
obtained from the simulation and the semi-
variogram of the raw data but also there is an
appropriate coincidence between their CDFs.
Hence, in this work, the simulation results are
acceptable and can be utilized for the next steps.
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Figure 6. Comparison of experimental variogram model reproduction acquired by realizations (black lines) with
experimental omni-directional variogaram of original data (green line) in the Hararan area.
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Figure 7. CDFs of some realizations and primary Cu data in the Hararan area.
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4.3.4. Display of anomalous areas

Having produced and wvalidated the ultimate
simulated models (50 realizations), the E-type
map, which is the average of realizations, was
obtained, and selected to display the anomalous
areas in the studied area. As mentioned earlier, the
threshold value for the element Cu, acquired by
the GS method, is equal to 228 ppm in the studied
area. Therefore, Figure 8(a) displays the map of
the anomalous areas, which exceeds the target
value for the Cu eclement data produced by the
E-type map in the Hararan area.

4.4. Determination of reliability of anomalous
areas

As mentioned earlier, the SGS algorithm is able to
create various realizations, i.e. each grid node in
the studied area is estimated as the number of
realizations. Therefore, this capability was utilized
to define a criterion of reliability of anomalous
areas of Cu mineralization. However, there are
some degrees of uncertainty for estimation of
anomalous regions. In order to evaluate the
quality of estimations, a probability map of
threshold exceeding was generated using the
realizations. Consequently, at each grid node, a
bulk of 50 realizations was transformed into a
probability of exceeding the target value. Figure

3262500 L
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3260000 “ F (ppm)
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3258500

L.

8(b) displays the probability map of exceeding the
target value for the Cu element data in the
Hararan area. As it can be seen in the probability
map, the anomalous areas were discriminated on
the basis of various probabilities shown in
different colors. The regions that represented high
probability values (70-100%) are reliable, and can
be used for a detailed exploration and drilling to
estimate more accurate reserves. This affair will
decrease the risk, time, and cost of a detailed
exploration. In Figure 8(b), these districts are
depicted in red color, and are located in the
southern part of the studied area. Moreover, due to
the lack of drilling in the studied area, the copper
values obtained from the mineralized points in the
outcrop zones were utilized for validation of high
probability areas. These points are represented in
the probability map (Figure 8b) as black and white
asterisks. As it can be seen in this figure, the
validation points with high outcrop copper values
(white asterisks) are often consistent with high
probability points, especially in the southern part.
It emphasizes that the outcrops and anomalous
areas in the southern part of the district have more
importance and priority for a detailed exploration,
and could be explored at deeper levels by drilling
for a probable deep and high grade mineralization.
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Figure 8. (a) Anomalous areas (discriminated by gap statistic method) displayed in red color, produced by
simulation in the Hararan area. (b) Probability map of exceeding values in the Hararan area.
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5. Conclusions

In exploration geochemistry, recognition of the
anomalous areas is necessary and important. In
order to recognize them, there are various
methods. In this work, a new technique, i.c. a
combination of the SGS and GS methods was
applied. Compared to various existing methods of
identifying the anomalous areas, this method not
only separates background from anomaly and
represents the anomalous areas but also identifies
the reliability of the exceeding critical values. The
analysis of 607 lithogeochemical samples for the
element Cu was utilized in this work. After
transforming the data to a standard Gaussian
distribution, 50 realizations were simulated by the
SGS algorithm, and an E-type map that was the
average of 50 realizations was obtained. As well,
based upon the principles of the GS method, the
threshold of the transformed data (228 ppm) was
acquired. Therefore, regions with values higher
than the threshold value were represented in an E-
type map, and introduced as the anomalous
districts in the studied area. Consequently, a
probability map of the anomalous areas (with
values greater than 228 ppm) was obtained from
50 realizations, and the anomalous districts that
were located in the southern part of the studied
area displayed a high probability and were
identified as the reliable districts for a detailed
exploration.

Eventually, a combination of the SGS and GS
methods is suggested as a new powerful technique
to identify the anomalous areas and the
assessment of their reliability, which is the most
important advantage of it. The determination of
reliability is important and can be used in
decision—making procedures such as drilling
projects in a detailed exploration to decrease the
risk, cost, and time of exploration.
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