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Abstract 
Computer graphics offer various gadgets to enhance the reconstruction of high-order 
statistics that are not correctly addressed by the two-point statistics approaches. Almost 
all the newly developed multiple-point geostatistics (MPS) algorithms, to some extent, 
adapt these techniques to increase the simulation accuracy and efficiency. In this work, a 
scrutiny comparison between our recently developed MPS algorithm, the cross-
correlation-wavelet simulation (CCWSIM), and a well-known MPS algorithm, 
FILTERSIM, is performed. The main motivation to benchmark these two algorithms is 
that both exploit some digital image processing filters for feature extraction. Indeed, 
both algorithms compute the similarity (or dissimilarity) between data events in 
simulation grid and training image in the feature space. In order to compare the accuracy 
of the algorithms, some statistics such as facies proportion, variogram, and connectivity 
function are computed. The results obtained reveal an excellent agreement of the 
CCWSIM realizations with the training image rather than FILTERSIM. Furthermore, on 
average, the required simulation runtime for CCWSIM is at least 10 times less than that 
for FILTERSIM. 

1. Introduction 
Most geoscientific applications require the 
numerical modeling of geology. For decades, this 
modeling has been done using two-point statistics 
algorithms, which are not appropriate to model the 
complex geological features. The classical 
geostatistical techniques just consider the linear 
correlation of a pair of points in space through 
variogram-based methods. [1-3]. However, they 
have not been designed to reconstruct high-order 
statistics relating to complex spatial structures [4]. 
Hence, high-order geostatistics has been 
suggested to go beyond the bivariate moments and 
reconstruct such complex geological formations 
[5, 6]. 
As the data itself does not permit to extract its 
high-order statistics due to scarcity, multiple-point 
geostatistics (MPS) borrows the higher-order 
statistics from a conceptual training image. This 
image contains prior numerical information 

(architecture, dispersion, proportion, etc.) that is 
collected from previous explorations or related 
cases [7]. The first MPS algorithm utilizes the 
training image to infer the conditional distribution 
function (CDF) of a random variable [5]. 
However, the computational cost of the first 
algorithm is extremely high and makes it non-
functional. The second MPS algorithm, SNESIM, 
relies on a tree structure to eliminate the first 
algorithm problems and improve the 
computational efficiency [8]. In fact, it uses a tree 
structure to store the data events before starting 
the simulation process. Later, in order to decrease 
the computational load and improve the accuracy 
of SNESIM, several modified versions were 
proposed [9, 10]. Another effective pixel-based 
MPS algorithm, direct sampling (DS), inspired its 
original idea from Shannon [11], who introduced 
a method to re-build the text by conditioning to 
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previous stitched letters. This algorithm samples 
its favorite data event directly from the training 
image pixel-by-pixel. DS is the first MPS 
algorithm without the pattern database [12]. 
Although DS decreases RAM consumption, due 
to its pixel-based background, it is not a very fast 
algorithm [13]. A creative remedy has been 
proposed by Rezaee et al. to enhance the 
efficiency of DS. In their algorithm, one or more 
layers of pixels around the desired pixel in the 
training image are patched into the simulation grid 
[14]. 
With the growth of computer hardware, the  
pixel-based algorithms [8, 12] were substituted 
with pattern-based ones [14-19]. Pattern-based 
algorithms, similar to a jigsaw puzzle, reconstruct 
stochastic realization through stitch patterns into 
the simulation grid regarding the desired data 
events [20]. Although primary pattern-based 
algorithms produce more visually-appealing 
realizations, the lack of an effective plan for 
retrieval patterns leads to increase in the 
computational cost, i.e. search the entire patterns 
to find the eligible pattern [21]. In the 
FILTERSIM algorithm, the first pattern-based 
algorithm, the computational load is considerably 
decreased through some digital image-processing 
filters [16]. In this algorithm, several filters are 
utilized to extract, cluster, and reduce the 
dimension of the most important features in 
patterns. In a similar way, wavelet decomposition 
was proposed as a pre-processor to reduce the 
dimension of the patterns before the clustering 
step in some pattern-based algorithms [22, 23]. 
However, these approaches are RAM-demanding 
and do not have a significant enhancement in the 
performance of pattern-based algorithms. 
Although pattern-based algorithms reduce the 
CPU cost, the data conditioning problem has not 
been addressed properly in these algorithms. In 
the meantime, some algorithms give rise to hard 
and soft data conditioning through image 
processing techniques and optimization-based 
methods [24-27]. 
A brief review of the MPS algorithms evolution 
shows their close relation with computer graphics 
algorithms in texture synthesis [20, 26, 28, 29]. 
Mariethoz and Lefebvre have conducted a 
scrutiny study around the historical development 
and comparable concepts of both disciplines [30]. 
A typical application of texture synthesis methods 
named cross-correlation function (CCF) and 
image quilting (IQ) [31] has been successfully 
tested in the Tahmasebi et al.'s work (CCSIM) 
[19]. However, CCSIM suffers from the recursive 

manner for data conditioning. For this goal, 
Tahmasebi et al. have developed a multi-scale 
algorithm to improve the computational efficiency 
as well as data conditioning [24]. 
The accuracy and computational efficiency of the 
MPS algorithms depend directly upon how the 
similarity distance (SD) is computed [17, 19]. 
Actually, the scheme of evaluation and search 
dimension affect the simulation accuracy and 
yield cost, respectively. Tremendous efforts have 
been made to address this critical issue [32-35]. In 
this work, we compared the quality and efficiency 
of our recently developed algorithm, CCWSIM, 
with a fast version of the original FILTERSIM 
algorithm [16, 20]. CCWSIM exploits two 
effective digital image-processing techniques to 
improve the simulation results in terms of 
accuracy and efficiency. In CCWSIM, an 
effective combination of CCF and discrete 
wavelet transform (DWT) leads to a significant 
enhancement in the simulation results [36]. 
However, since each one of these tools has been 
separately used in different MPS methods [19, 23, 
25], we developed a novelty hybrid of them. 
In this paper, first, the mathematical aspect of 
DWT is described. Next, the DWT role in 
dimension reduction of the CCF is highlighted. 
Then the CCWSIM algorithm is explained, and a 
modified equation is presented to compute CC 
through wavelet coefficients. Next, to validate the 
simulation results, the reproduction of essential 
statistics is investigated. Subsequently, the 
capability of CCWSIM in honoring hard data is 
compared with FILTERSIM. In the last section, 
the performance of the two filter-based algorithms 
is evaluated in the case of an exhaustive collection 
of TIs. 

2. Background of CCWSIM 
As mentioned earlier, CCWSIM utilizes two 
effective digital image-processing techniques to 
improve the simulation results in terms of 
accuracy and efficiency. Let us have a brief 
review of the CCWSIM principle and explain the 
important duty of DWT in the improvement of 
MPS results. 

2.1. Cross-correlation-wavelet-simulation 
(CCWSIM) 
Cross-correlation function (CCF) is widely 
applied as a criterion to measure the degree of 
similarity between patterns. [19, 37]. Due to the 
inherent properties of CCF to find the best-
adapted pattern, it can be quite expensive for large 
images. Hence, different non-exhaustive families 
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of CCF have been developed to improve the 
computational efficiency [38]. In our algorithm, a 
simple but effective DWT-based remedy is 
proposed to reduce the computational load of 
CCF. We use the DWT property that allows for 
quick compresses of a regionalized image by 
skipping some non-significant coefficients. 

2.2. DWT principle 
Wavelet transform decomposes any signal into a 
set of orthogonal basis functions. A 2D signal can 
be regarded as a square integrable function in the 
Hilbert space. Thanks to the multi-resolution 
characteristic of the wavelet decomposition, it 
presents a set of orthonormal function through 
translating and dilating of primary basis function, 
recognized as the mother wavelet B  (where 
B={H,V,D}). 
Considering pat(x, y) as a 2D dataset of size 
N N , DWT of the pat at level j has been 
formulated by Fan and Xia [39]: 
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Where B and LL are the mother wavelet and 

scaling function, respectively, 2 jj
NN  , , ,J k ia

	are the approximate coefficients (a) and , ,
B
j k iZ are 

the detail coefficients at level j in horizontal, 
vertical and diagonal directions, respectively 
(H,V,D). 
Practically, the 2D DWT on any discrete signal 
proceeds in two major steps. In the first step, the 
signal is decomposed by some low- and high-pass 
filters. Next, the down-sampling procedure is 
applied to the resulting frequency sub-band rows 
and columns. Indeed, after each decomposition 
level j, one omnidirectional low frequency and 
three directional high frequency sub-bands that 
are called the approximate and detail coefficients, 
respectively, are obtained [40]. Then according to 
the decomposition level, the process is continued 
using the resulting approximate coefficients to 
provide the approximate and detail coefficients for 
the next decomposition level. It is worth 
mentioning that after every filtering step, 75% of 
the detail coefficients are lost but due to the 
intrinsic property of wavelet decomposition, the 
vital potential patterns are carefully preserved 
[41]. The DWT approximate coefficients try to 

preserve the most important local and global 
variability in a given pattern. The two levels of 
DWT of an image and its corresponding sub-
bands are shown in Figure 1. 
 

 
Figure 1. Two levels (j) of DWT: approximate 

coefficients (a2) and directional (H, V, D) detail 
coefficients. 

 
DWT has some interesting features: (1) In order to 
reach an acceptable level of decomposition, the 
number of levels can be increased according to the 
size of the image and the scale of the features. (2) 
Due to the different attributes and structures in an 
image, there are significant numbers of mother 
wavelet function to maximize feature extraction. 
(3) At each decomposition level, the decomposed 
image can be perfectly restored by Inverse-DWT 
(IDWT). 
In this work, the Haar wavelet was selected for 
wavelet decomposition. The main reason is that 
the Haar wavelet has the simplest and the most 
appropriate wavelet function to analyze signals 
with unforeseen changes. The Haar wavelet B
and scaling function LL are presented as [42]: 
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2.3. CCWSIM algorithm 
CCWSIM can handle both unconditional and 
conditional simulations. Similar to some pattern-
based algorithms, our algorithm renovates the 
patterns in a one-sided path referred to as the 
“unilateral” or “raster” path [26]. The simulation 
procedure initializes from one corner in SG and 
continues in a straightforward order. After 
reaching the end of the path, the simulation 
restarts at the beginning of the next track. The 
one-sided path in a lattice grid is shown in Figure 
2. 
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Figure 2. Lattice SG with pre-defined one-sided 

path. 
 
Since CCWSIM is a pattern-based algorithm, at 
each iteration, a piece of pixel was patched to SG. 
Similar to different IQ approaches, we also 
applied an overlap region (OR) instead of the 
whole data event to compute SD. However, the 
main difference and what makes the CCWSIM 
more efficient is the use of the cross-correlation-
wavelet (CCW) coefficients to compute SD. 
Actually, CCWSIM utilizes filters to capture the 
most important features in a given pattern and 
maps them in a reduced space. Indeed, 
computation of SD between patterns is done in the 
wavelet feature space. Given a TI and OR of size
M N , our modified version of CC, referred to 
as CCW, at pixel position (s,t) can be defined as: 
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where 2 jj
NN , 2 jj

MM , TI
jcA is the 

wavelet approximate coefficients of TI in level j, 
and OR

jcA is the wavelet approximate coefficient of 
OR at level j. 
It is to be noted that the final vector length of OR 
after j levels of decomposition will be j jM N . 
Hence, depending on the level of the wavelet 
decomposition j, the dimension of the primary 

pattern can be reduced significantly. For instance, 
a 2D TI of size 1000 × 1000 has a vector length of 
1,000,000. If 3 levels of wavelet decomposition 
are done, the length of the final vector will be 
15,625, which is dramatically less than the 
original length. In addition, there are the same 
benefits for OR. A Scheme of the CCW 
coefficients computation is depicted in Figure 3. 
Henceforth, there are two different scenarios 
depending on the type of simulation 
(unconditional or conditional). For the 
unconditional simulation, some of the high-ranked 
SDs are selected, and the final pattern is randomly 
drawn from the pool of candidates. 
In this work, the hard data (HD) conditioning was 
performed in a similar fashion as introduced by 
Tahmasebi et al. [24]. As mentioned earlier, 
computation of SD between patterns is done 
through the CCW coefficients. Indeed, the 
preserved patterns must see the following 
essential conditions: (1) SD between patterns and 
OR should be minimized; and (2) The patterns 
must respect HD not only inside the search 
template but also within a certain pioneer area. 
For more details about the conditioning method, 
the readers are invited to see [24]. Referring to our 
previous remark, DWT has an excellent ability to 
back-transform the decomposed patterns into the 
original space. More precisely, DWT is a bijective 
decomposition that permits to switch to the 
original space in each decomposition level. 
According to this feature, shifting the desired 
pattern to the original space is done by IDWT in 
the final stages of simulation. The switching 
procedure of a qualified pattern from the wavelet 
space to the original space is shown in Figure 4. 
To summarize, a pseudo-code for CCWSIM is 
given in Table 1. 
 

 

 
Figure 3. Computation of CCW coefficients using decomposed TI and OR (red-dashed line) in the wavelet 

feature space. 
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Figure 4. Desired pattern in wavelet space (red line) and reconstruction procedure to original space. 

 
Table 1. A pseudo-code for CCWSIM algorithm. 

Require: (TI, sizeTI, sizeOL, realization_number, SG, sizeSG, wavelet_level) 
           for i = 1 to last uninformed block in SG do 
                   define a unilateral path in SG 
                 if i = 1 
                   drop a random patch to SG 
                 else 
                   extract OR 
                   compute DWT (TI) and DWT (OL) 
                   compute CCW (TI, OL) 
                   sort (SD) and find best-matched pattern 
                   calculate IDWT (desired pattern) 
                   past pattern into SG 
………… end if 
            end for 

 
3. Numerical results and discussion 
In this work, all the training images were obtained 
from an open-source training image library 
(http://www.trainingimages.org/training-images-
library.html). The first exercise was conducted 
with a binary training image (TI). In this TI, the 
sinuous sandy channels are surrounded by a shaly 
background, which represents a real oil reservoir. 
We used the same procedure as Mariethoz et al. to 
generate TI [12]. We applied the Stanford 
geostatistical modeling software (SGeMS-v.2.1) 
to provide the FILTERSIM realizations, firstly 
developed by Remy et al. [43]. The reference 
image, TI, and 250 HD are demonstrated in Figure 
5. We developed a new MATLAB code to 
generate the CCWSIM realizations. 
First of all, the input parameters should be tuned 
to run the algorithms. The simulation grid (SG) 
dimension was 256x256 for both algorithms. In 
the CCWSIM algorithm, the sizes of the template 
and OR area were selected to be 20x20 and 8, 
respectively. Since the size of TI was relatively 
small, one level of DWT was computed. The 
template and inner template sizes in the 

FILTERSIM algorithm must be odd numbers, 
thus their sizes were tuned to 21x21 and 7x7, 
respectively. The number of pattern clusters was 
considered to be 100. The SGeMS input 
parameters for FILTERSIM are reported in Table 
2. 
50 realizations for each algorithm were generated. 
The mean of the realizations (an E-type map) was 
also calculated. Two random realizations and the 
E-type map are depicted in Figure 6. This figure 
shows that CCWSIM reproduces convoluted 
structures much more accurate rather than 
FILTERSIM. It is obvious that CCWSIM 
preserves better the connectivity of the sandy 
channels. We could choose a bigger template to 
improve the reproduction of the connectivity in 
FILTERSIM but it will dramatically increase the 
simulation time. 
As shown in the CCWSIM E-type map, it 
reproduces the curved and complex architecture of 
the TI well. The runtimes for the CCWSIM and 
FILTERSIM algorithms for each realization were 
about 5.8 and 61 seconds, respectively. 
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(a) (b) 

Figure 5. TI with two facies: sandy channel in a shaly background (a) and the reference image and 250 HD (red 
cycles) randomly selected from that (b). 

 
Table 2. SGeMS input parameters for FILTERSIM algorithm. 

Algorithm name filtersim_cate 
GridSelector_Sim value sim_grid 
Property_Name_Sim value sim_data 
Nb_Realizations value 50 
Seed value 211175 
PropertySelector_Training grid ti 
Property v 
Scan_Template value [21 21 1] 
Patch_Template_ADVANCED value [7 7 1] 
Nb_Facies value 2 
Treat_Cate_As_Cont value 0 
Trans_Result value 1 
Hard_Data grid hd 
property z 
Use_SoftField value 0 
SoftData_properties count 0 
TauModelObject value [1 1] 
Region_Indicator_Prop value simdata__real0 
Use_Region value 0 
Nb_Multigrids_ADVANCED value 3 
Debug_Level value 0 
Cmin_Replicates value [10 10 10] 
Data_Weights value [0.5 0.3 0.2] 
CrossPartition value 0 
KMeanPartition value 1 
Nb_Clusters_ADVANCED value 100 
Nb_Clusters_ADVANCED2 value 2 
Use_Normal_Dist value 0 
Use_Score_Dist value 1 
Filter_Default value 1 
Filter_User_Define value 0 

 
Figure 6. Two realizations and ensemble average of 50 realizations obtained from CCWSIM (a, b, and c) and the 

FILTERSIM algorithm (d, e, and f). 
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3.1. Validation tests 
In the next investigation, in order to validate and 
also compare the simulated realization results, 
three statistics were checked. These criteria 
include: (1) facies proportion, (2) variogram, and 
(3) connectivity function. Although reproduction 
of these single- and two-point statistics cannot 
guarantee the reproduction of the high-order ones, 
they are still informative on the overall 
reproduction of spatial pattern reproduction. 
For the first criterion, the proportion of the sandy 
channels was computed in 50 realizations and 
compared with the RI proportion, as shown in 
Figure 7 (a): (1) Both algorithms have a stable 
behavior in reproducing sandy channel proportion 
in realizations. (2) Although the proportion of the 
channels in RI is about 0.27, FILTERSIM 
systematically tends to reproduce less sandy 
channel facies in realizations (0.18). (3) The 
intervals between the channel proportion in the 
CCWSIM realizations and in TI are really close. 
However, CCWSIM reproduces a little more the 
channel proportion. 
Another paramount criterion for measuring  
two-point statistics is the variogram. We selected 
10 realizations randomly from each algorithm and 

compared their variograms with the one computed 
with RI. The variograms were computed in the 
North-South and East-West directions, as 
presented in Figure 7 (b, c). One can see that 
CCWSIM better reproduces the variogram of RI 
compared with FILTERSIM. Indeed, the slope 
and sill of the CCWSIM variograms are in more 
conformity with the RI one. 
For last investigating around the traditional 
statistics, the connectivity function of the 
realizations was computed. The connectivity 
function is defined as the conjunction probability 
of a pixel located at a certain lag and direction of 
other pixels [44]. Since the long-range 
connectivity of channels was in the East–West 
direction, the connectivity function was computed 
along this direction, as shown in Figure 7 (d). A 
visual inspection shows that the connectivity of 
the RI and CCWSIM realizations are in good 
agreement. It seems that FILTERSIM fails to 
reproduce the connectivity of channels in 
realizations. One reason can be the unrealistic 
reproduced proportion of facies in the 
FILTERSIM realizations that can impact on the 
shape and decay of the connectivity function [45]. 

 

  
(a) (b) 

  
(c) (d) 

Figure 7. Proportion of channels (a), variograms of realization in NS (b), EW (c) and probability of connection in 
reference image, FILTERSIM, and CCWSIM realizations (d). 
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3.2. Data conditioning 
In this section, the performance of the CCWSIM 
and FILTERSIM algorithms was compared in 
terms of data conditioning. We considered 4 
sparse hard data (HD) in channel facies as the 
conditional points. Then 50 conditional 
realizations were generated, and so their E-type 
map. The E-type map and two randomly selected 

realizations are shown in Figures 8(a-f). Both 
algorithms highlight the presence of channels in 
the four pre-defined locations. More precisely, 
CCWSIM shows the explicit structures in the 
neighborhood of HD but FILTERSIM simply 
superimposes HD in the simulating process 
without considering the spatial continuity of the 
channels. 

 

 
Figure 8. Conditional realizations forced by 4 HD (red crosses) for CCWSIM (a and b) and FILTERSIM (d and 

e) and their E-type maps obtained from 50 realizations (c and f), respectively. 
 
3.3. Conditioning to geobody 
Geobody extraction is an effective remedy for 
enhancing reservoir characterization, detecting 
anomalies, and determining facies. An 
independent geobody (object piece) is dropped in 
SG as a conditional patch to examine the behavior 
of our algorithm in terms of reproduction of a 
given geobody. Theoretically, it is expected that a 
relatively reliable behavior appears near the 

geobody. Using an object piece, 50 realizations 
were generated, and then the corresponding  
E-type map was computed. Thanks to the 
FILTERSIM algorithm freezing all the 
conditional data in SG, we did not do the geobody 
test for FILTERSIM. The geobody, a single 
realization, and an E-type map are presented in 
Figure 9 (a-c). Obviously, CCWSIM emphasizes 
the given geobody in the realizations perfectly. 

 

   
(a) (b) (c) 

Figure 9. Utilized geobody for conditioning (a), one single realization conditioned to the geobody (b), and its 
corresponding E-type map (c). 

 
4. Other TIs 
In this section, two algorithms using other TIs that 
are widely used in MPS exercises are compared. 
These TIs have two different structures: (1) 
Small-scale structures like pores and grains (a, c, 
and d). (2) Large-scale fabrications like fractures 
or channels (b, e, and f). For each algorithm, one 
single randomly conditional realization is shown. 

These realizations can better reveal the pros and 
cons of our algorithm and FILTERSIM. 
Fractures TI contains some fractures along a 
regular trend. All the input parameters for both 
algorithms were considered equal. TI, one 
realization for CCWSIM, and FILTERSIM are 
shown in Figure 10. CCWSIM reproduces well 
the fractured architecture compared to 
FILTERSIM. 
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Circles A random distribution of circles is 
selected, which mimics a porous media. The TI 
and realizations provided by FILTERSIM and 
CCWSIM are shown in Figure 11. The CCWSIM 
realization is in good agreement with TI compared 
with FILTERSIM. Furthermore, the simulation 
time is 10 times faster for CCWSIM. 
Four categorized facies In the next test, in order 
to evaluate the performance of two comparative 
algorithms in the case of multi-facies categorical 
setting, a TI consisting of four facies is chosen. 
The TI and simulation results using FILTERSIM 
and CCWSIM are shown in Figure12. Similar to 
the previous exercises, CCWSIM reproduces the 
TI structures more accurately than FILTERSIM. 
Quasi-stationary meandering channels In the last 
test, a more complicated TI with meandering 
channels is selected. These meandering channels 

are shaped by obstacles along the river path, and 
impose a quasi-stationary behavior on the channel 
structure. Due to the complexity of the structures, 
one promotion was considered to improve the 
results of FILTERSIM. We increased the number 
of clusters 10 times. The meandering channels and 
a single realization using both algorithms are 
shown in Figure 13. Despite increasing the 
clusters, FILTERSIM failed to reproduce the TI 
patterns. 
The results obtained reveal a more  
visually-appealing outputs of our algorithm 
compared to FILTERSIM. Additionally, 
reconstruction of the facies sidelong connectivity 
is reproduced well by CCWSIM. From the 
computational achievement, we remark that 
simulation of the patterns through CCWSIM is at 
least 10 times less than FILTERSIM. 

   

   
(a) Training image (b) FILTERSIM (c) CCWSIM 

Figure 10. TI contains fractures (a), one single FILTERSIM and CCWSIM realization (b, c). 
 

   
(a) Training image (b) FILTERSIM (c) CCWSIM 

Figure 11. TI with randomly distributed circles (a), one single FILTERSIM and CCWSIM realization (b, c). 
 

   
(a) Training image (b) FILTERSIM (c) CCWSIM 

Figure 12. Four categorized facies TI (a), one single FILTERSIM, and CCWSIM realization (b, c). 
 

   
(a) Training image (b) FILTERSIM (c) CCWSIM 

Figure 13. Meandering channels TI (a), one single FILTERSIM and CCWSIM realization (b, c). 
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5. Conclusions 
In this work, an exhaustive benchmarking 
between our MPS algorithm, CCWSIM, and a 
well-known filter-based algorithm, FILTERSIM, 
was conducted. Our algorithm exploits two 
effective image-processing techniques, DWT and 
CCF. A novel hybrid of late tools led to a 
significant improvement in the accuracy and 
efficiency of MPS simulation. Both algorithms are 
MPS pattern-based algorithms that utilize  
image-processing filters to feature extraction and 
dimension reduction in pattern. Two main 
characteristics of our algorithm are as what 
follow. (1) The similarity distance between the 
patterns is computed in wavelet space. (2) 
CCWSIM directly samples pattern from TI and 
does not need to build the pattern catalog. 
Therefore, in contrast to FILTERSIM, our 
algorithm is much less memory-demanding. In 
order to reach generalizable results, several 
conditional realizations are done using a variety 
range of TIs with completely different structures. 
Comparative results confirm an excellent 
reconstruction of the TI essential patterns with 
CCWSIM rather than FILTERSIM. In addition, 
CCWSIM is much more efficient than 
FILTERSIM, so that, on average, the average 
runtimes for each realization of CCWSIM are at 
least 10 times faster than FILTERSIM. 
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 چکیده:

ــک ــاره    گرافی ــد آم ــود بازتولی ــراي بهب ــوعی ب ــاي متن ــامپیوتري ابزاره ــاي ک ــین  ه ــه زم ــالاتري ک ــه ب ــاي مرتب ــه ه ــار دونقط ــادر   آم ــی ق ــور دقیق ــه ط اي ب
) تـــا حـــدودي از ایـــن MPSاي (آمـــار چنـــد نقطـــههـــاي جدیـــد زمـــینکننـــد. تقریبـــاً تمـــامی الگـــوریتمبـــه تولیـــد آن نیســـت، پیشـــنهاد مـــی

ــک ــزایش  تکنی ــراي اف ــا ب ــبیه ه ــدمان ش ــت و ران ــی دق ــتفاده م ــازي اس ــعه      س ــراً توس ــوریتم اخی ــین الگ ــق ب ــه دقی ــک مقایس ــژوهش، ی ــن پ ــد. در ای کنن
  ، انجـــام شـــده اســــت.   FILTERSIMاي، ســـازي چنـــد نقطـــه   و یـــک الگـــوریتم شـــناخته شـــده دیگـــر شـــبیه       CCWSIMداده شـــده،  

ــم ــره  مه ــوریتم، به ــن دو الگ ــه ای ــل مقایس ــرین دلی ــوریتم  ت ــر دو الگ ــري ه ــق    گی ــور دقی ــه ط ــت. ب ــی اس ــتخراج ویژگ ــراي اس ــر ب ــري فیلت ــک س ــر، از ی ت
ســـازي را در فضــاي ویژگـــی  اي در تصـــویر آموزشــی و شـــبکه شــبیه  هــاي داده ر دو الگـــوریتم فاصــله شـــباهت (عــدم شـــباهت) بــین پیشـــامد   هـ ـ

ــی  ــبه م ــاره     محاس ــی آم ــوریتم، برخ ــباتی دو الگ ــت محاس ــه دق ــور مقایس ــه منظ ــد. ب ــار  کنن ــبت رخس ــد نس ــا مانن ــتگی   هه ــابع پیوس ــوگرام و ت ــا، واری ه
و تصـــویر آموزشـــی در  CCWSIMهـــاي الگـــوریتم ســـازي ســـازگاري عـــالی بـــین نتـــایج تحقـــقمحاســـبه شـــده اســـت. نتـــایج حاصـــل از شـــبیه

ــا   ــه ب ــی  FILTERSIMمقایس ــان م ــلاوه  را نش ــد. ع ــرده ــا ب ــبیه    نی ــراي ش ــان اج ــانگین زم ــور می ــه ط ــق    ، ب ــر تحق ــراي ه ــازي ب  CCWSIMس
 است. FILTERSIMسازي بار کمتر از زمان شبیه 10حداقل 

آمــاري، الگـــوریتم فیلترســیم، الگـــوریتم   ســازي زمـــین مبنــا، شـــبیه -هـــاي فیلتــر اي، الگــوریتم ســـازي چنــد نقطـــه شــبیه  کلمــات کلیـــدي: 
CCWSIM. 

 

 

 

 


