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Keywords Abstract
In this research work, the effects of flotation parameters on coking coal flotation
Coking Coal combustible material recovery (CMR) were studied by the artificial neural networks
(ANNs) method. The input parameters of the network were the pulp solid weight
Flotation content, pH, collector dosage, frother dosage, conditioning time, flotation retention time,
feed ash content, and rotor rotation speed. In order to select the most efficient model for
Artificial Neural this work, the outputs of different models were compared with each other. A five-layer
Networks ANN was found to be optimum with the architecture of 8, 15, 10, and 5 neurons in the
input layer, and the first hidden, second hidden, and third hidden layers, respectively, as
Back-Propagation well one neurons in the output layer. In this work, the training, testing, validating, and
Neural Network data square correlation coefficients (R2) were achieved to be 0.995, 0.999, 0.999, and
0.998, respectively. The sensitivity analysis showed that the rotor speed and the solid
Combustible Material weight content had the highest and lowest effects on CMR, respectively. It was verified
Recovery that the predicted ANN values coincided very well with the experimental results.

1. Introduction

Coals can be classified into three primary coal
ranks including low-rank coal, bituminous coal,
and anthracite coal. Bituminous coal is also
known as coking coal and is primarily used to
produce coke. Eventually, the mentioned coke is
applied in mineral metallurgy [1, 2]. In some
cases, run of mine coking coal has a high ash
content and it cannot be used to produce coke
without an upgrading process [3]. The gravity
separation technology is usually applied to coarse
coals (> 0.5 mm), while flotation is applied to fine
coals (< 0.5 mm) [4-7].

Froth flotation is an effective separation method
for fine coal cleaning utilizing the differences in
the surface hydrophobicity between the organic
and mineral matters and has been widely used to
treat fine coking coal [3, 5, 8-12].

The artificial neural network (ANN) technique is
a relatively new branch of the ‘artificial
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intelligence’ (Al), developed since 1980s. At the
present time, the ANN technique is considered to
be one of the most intelligent tools for modeling
complex problems. This technique has the ability
of generalizing a solution from the pattern
presented during training. Once the network is
trained with a sufficient number of sample
datasets, for a new input of relatively similar
pattern, predictions can be done on the basis of
previous learning [12]. The use of neural networks
in flotation industry has been studied by many
researchers [13-16].

In the present research work, we intend to study
the effects of various parameters of coking coal
flotation on combustible material recovery (CMR)
percent and their limitations using the ANN
modeling. The main purpose is to find the
important factors that have the most dominant
impacts on the CMR percent along with
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optimizing the process by 33 groups of data
obtained from coking coal flotation datasets in
batch experiments. An ANN model is used for
simulation and recovery estimation of CMR
percent.

2. ANN modeling

2.1. Theoretical background

The ANN models have been studied for about two
decades, with the objective of achieving
human-like performance in many fields of
knowledge engineering. Neural networks are
powerful tools that have the ability to identify the
underlying highly complex relationships from the
input-output data only [17, 18].

The fundamental part of a neural net is the
neurons. They are arranged in layers, and are
categorized as the input (I), hidden (H), and
output (O) neurons depending on the layer in
which they are located. Malinov and et al. (2001)

Hidden Layer I
h=1..4q

Input Layer
i=1..n

and Lee and et al. (1999) have described the
procedure of ANN modeling [19, 20].

Various algorithms are available for training
neural networks but the back-propagation
algorithm is the most versatile and powerful
technique, which provides the most efficient
learning procedure for multi-layer perception
(MLP) neural networks [21].

For this investigation, a five-layer ANN was
found to be optimum with architecture of fifteen,
ten, and five neurons in the first, second, and third
hidden layers, respectively, and one neuron in the
output layer. To differentiate between various
processing units, bias values are introduced in the
transfer functions. In BPNN, with the exception of
input layer neurons, all other neurons are
associated with a bias vector and a transfer
function [22]. Figure 1 illustrates a flowchart of a
typical two-hidden-layer BPNN model [23].
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Figure 1. A flowchart of a typical two-hidden-layer BPNN [23].

Figure 1 shows the operation of feed forward in a
BPNN. During this operation, each input neuron
Yi receives an input signal and broadcasts this
signal to the connected neurons Z1, ..., Zn in the
first hidden layer. The total input parameters to
the Zj neuron from the input layer is [23]:

n
e, =z(in); = ZOI-WU +0,

i=1

(1)

The equations for the input and output relations
for the first and second hidden layers are the same
as Equation (1) [24].

Finally, the output neuron yields the network
output according to the activation function
(o=flo(in)o]). The activation function is the same
for all neurons in any particular layer of a neural
network.
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The second step of learning process is backward
pass, which is concerned with error computation
and connection weight updates. The network
computes its own output pattern using its (mostly
incorrect) weights and thresholds. Then the actual
output is compared with the desired output to
determine the error. An objective function is
defined as E = 0.5(t-0)2, and the connection
weights are updated using the generalized delta
rules [12, 23].
The usual procedure for an ANN modeling is as
follows:

1. Choosing the ANN parameters

2. Collecting the data

3. Pre-processing the database

4. Training ANN

5. Simulation and prediction using the
trained ANN
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In this research work, the above-mentioned stages
were used in developing the model.

2.2. Datasets

One of the most important stages in the ANN
technique is data collection. The data was divided
into the training, testing, and validating parts to
maintain the statistical consistency. The same
datasets were used for all networks to make a
comparable analysis of different architectures. In
this work, a total number of 33 datasets were
collected. One third of these (10 datasets) were
used for testing and validating. The data was

obtained from the laboratory experiments, as
explained below.

The coking coal flotation was carried out in the
bench scale experiments by the following
composition: pH (4-10), gasoline (collector)
dosage (200-500 g/ton), flotation retention time
(0.5-5 min), solid weight content (8-15%), MIBC
(frother) dosage (0-81 g/ton), conditioning time
(1-4 min), feed ash (41.5-44.07%), and rotor
speed (800-1300 RPM). The particle size range of
flotation feed was 0-300 microns. The ranges of
the main parameters are shown in Table 1.

Table 1. The ranges of variables in coking coal flotation (as determined).

Raw Operating Parameter Min Max Mean _ St. Dev.
1 Conditioning Time (min) 1.00 4.00 2.94 0.44
2 Collector Dosage (g/ton) 200.00 500.00 343.75 104.53
3 Flotation Retention Time (min)  0.50 5.00 3.06 0.78
4 Frother Dosage (g/ton) 0.00 81.00 58.41 23.87
5 Solids Weight Content (%) 8.00 15.00 13.06 2.15
6 Rotor speed (RPM) 800.00 1300.00 1187.50  75.13
7 Feed Ash 41.50  44.07 43.25 0.80
8 pH 4.00 10.00 7.88 0.87

2.3. Input Parameters

In this investigation, the parameters used as the
inputs to NN included the pH, solid weight
content (%), conditioning time (min), collector
dosage (g/ton), flotation retention time (min),
rotor speed (RPM), frother dosage (g/ton), and
feed ash to predict CMR (%).

2.4. Training and testing model

As mentioned above, the input layer has six
neurons and the output layer has one neuron,
which denote the amount of CMR. A schematic
presentation of the whole process is shown in
Figure 2.

The non-linear (LOGSIG, TANSIG) and linear
(PURELIN) functions can be used as the transfer
functions (Figures 3 and 4). The logarithmic
sigmoid function (LOGSIG) can be defined as
[22, 24]:

1

) @

whereas the tangent sigmoid function (TANSIG)
can be defined as follows:
e —e ™
S = 0
e +e "
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where e, is the weighted sum of the inputs for a
processing unit.
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Figure 2. An ANN process flowchart.
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Figure 4. Liner transfer function [24].

2.5. Results and discussion

To select the most appropriate network
architecture, the MLP networks with one and two
hidden layers were examined, which showed
unacceptable results. In the next try, a
three-hidden layer network was used (Table 2). To
determine the optimum network, SSE was
calculated for various models using the following
formula:

2

T,

-0,
N )

WhereT;, O;, and N represent the measured output,
predicted output, and number of input-output data
pairs, respectively [24].

The network with the architecture 8-15-10-5-1,
which gives the minimum SSE, is considered as
the optimum model. This network is shown in
Figure 5. The results of the performance of the
mentioned networks are shown in Figure 6.

SSE =Y ( )

For evaluation of the model, comparisons were
fulfilled between the predicted and measured
values of CMR. For this purpose, the mean square
error (MAE), Ea, and mean relative error (Er)
were used. Ea and Er were computed as follow
[25]:

)

(6)

Where T; and O; represent the measured and
predicted outputs, respectively.

For the selected model, Ea and Er were equal to
15.28 and 0.008, respectively. A comparison
between the measured and predicted CMR for the
data is shown in Figure 7. A correlations between
the measured and predicted CMR from training,
testing, and validating, and all the data indicate
that the network has a high ability to predict CMR
(Figures 7-9).

Table 2. Results of a comparison between some models.

Number Transfer Function Model SSE
1 LOGSIG-PURELIN 8-8-1 6.8
2 LOGSIG-TANSIG-PURELIN 8-10-5-1 7.99
3 LOGSIG-LOGSIG-PURELIN 8-10-5-1 2.64
4 LOGSIG-LOGSIG-PURELIN-PURELIN-PURELIN  8-15-10-5-1 17.3
5 LOGSIG-PURELIN-TANSIG-LOGSIG-PURELIN  8-15-10-5-1 11.1
6 TANSIG-TANSIG-TANSIG-TANSIG-PURELIN 8-15-10-5-1 6.88
7 LOGSIG-LOGSIG-LOGSIG-PURELIN-PURELIN  8-15-10-5-1 0.15
8 LOGSIG-LOGSIG-LOGSIG-LOGSIG-PURELIN 8-15-10-5-1 0.006
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Figure 5. Architecture of the ANN model for coal flotation.
Algorithms
Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainim)

Performance: Sum Squared Error (sse)
Calculations: MEX

Progress
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Performance: 1o [ w0069 | 000
Gradient 1.29¢+03 1.00e-07
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Figure 6. Results of network performance after the training process.
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Figure 7. Comparison between the measured and predicted CMR for different samples for all data.
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Figure 8. Correlation between the measured and predicted CM for training, testing, validation, and all data.
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Figure 9. Correlation between the measured and predicted CMR for all data.
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2.6. Sensitivity analysis

A useful concept has been proposed to identify the
significance of each input factor in the output
using a trained network. This was performed by
incorporating values of ‘relative strength of effect’
(RSEs) [24, 26].

RSEs are used to show the process to find the
significant input factors for CMR in optimum
ANN network input, weight, and output factors.
The larger the absolute value for RSE, the greater
the effect the corresponding input unit is on the
output unit. RSE is a dynamic parameter that
changes with variance of input factors. Here, RSE
will be used for a sensitivity analysis of the

influence of factors on the back-break
phenomenon predicted by a trained neural
network. The RSE range is 0-1.

Figure 10 shows the average RSE values for the
factors calculated for all the 33 field data used in
the previous sections. It is assumed that the input
parameters including the conditioning time, solid
weight percentage, collector dosage, frother
dosage, flotation retention time, rotor speed, feed
ash, and pH are the most effective factors
involved in the coking coal flotation recovery. It
can be seen in Figure 10 that the solid weight
content and rotor speed are the most and least
sensitive parameters, respectively.
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3. Performance of ANN

In order to verify the veracity of the ANN model,
33 experiment data were chosen. The verified
results reveal that the predicted values coincide
well with the experimental results, as shown in
Figures 7-9. It indicates that the ANN model has
exactly reflected the correlation between the input
and output layers. The functions of the coking
coal flotation parameters influencing CMR have
been found. In Figures 11-18, the measured and
experimental values for (CMR) (%) are compared.

3.1. Effect of every factor on CMR

Figures 7-9 show that the ANN model has a good
result as a whole, and can reflect the general effect
of all factors involved in coking coal CMR.
However, it is not known if the model can explain
the specific effect of every factor on CMR. Eight
group data has been chosen for every factor in

0886 | 0703 | 0882 | 0907 | 0949 | 0434 | 0779 | 0.867
Figure 10. Sensitivity analysis between the CMR and coking coal flotation parameters.
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order to verify the model. The results obtained are
shown in Figures 11-18.

As seen in Figure 11, the predicted effect of pH
on CMR using the ANN model is the same as the
experimental results. By increasing the pH, the
amount of CMR is improved. It is obvious that pH
> 8 has a negative effect on CMR.

Figure 12 shows the influence of conditioning
time on CMR. By increasing the conditioning
time, the coal flotation recovery has been
enhanced.

The effect of flotation retention time on CMR is
shown in Figure 13. It can be verified that the
predicted values for ANN coincide well with the
experimental results. CMR increases obviously
with increasing the flotation retention time from 0
to 4 min.

Figure 14 shows the effect of frother dosage on
CMR. The results of the measured and predicted
data are similar. By increasing the frother dosage,
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the amount of CMR will be improved. The RSE
results of the network show that the rotor speed
has the lowest influence on CMR. A rotor speed
between 800 and 1200 RPM will have a direct
effect on CMR. It is clear that over 1200 RPM,
increasing the rotor speed has a reverse effect on
CMR. Figure 15 shows the effect of this factor on
CMR.

The effect of collector dosage on CMR, as seen in
Figure 16, shows that CMR changes directly by
alteration in the collector dosage.

The solid weight content has a great influence on
CMR. Figure 17 shows that the amount of CMR
increases significantly by decreasing the solid

content. By decreasing the solid weight content
below 10%, CMR of the process has been
decreased. The optimum condition for the solid
weight content is 10%. The predicted value gives
the same results. Figure 18 shows the effect of
feed ash on flotation CMR. The results shown in
this figure shows that feed ash has a reverse effect
on CMR. It is the reason why feed ash decreases
because of decrease in the amount of combustible
materials.

From such an analysis, it is believed that the ANN
model not only exactly predicts CMR but also
predicts the effect of every factor on CMR in the
coking coal flotation process.

0O Measured CMR (%)

B Predicted CMR (%)

100
90
80
70
60
50

CMR (%)

40
30
20
10

4 6

pH

8 10

Figure 11. The predicted and experimental effects of pH on CMR: conditioning time, 3min; gasoline dosage, 500
g/ton; flotation retention time, 3 min; MIBC dosage, 50 g/ton; solid weight content, 12%; rotor speed, 1200
RPM; and feed ash, 43.5%.
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Figure 12. The predicted and experimental effects of conditioning time on CMR: pH, 8; gasoline dosage, 500
g/ton; flotation retention time, 4 min; MIBC dosage, 50 g/ton; solid weight content, 10%; rotor speed, 1200
RPM; and feed ash, 43.9%.
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Flotation Retention Time (min)
Figure 13. The predicted and experimental effects of flotation retention time on CMR: conditioning time, 3 min;
gasoline dosage, 300 g/ton; pH, 8; MIBC dosage, 81 g/ton; solid weight content, 15%; rotor speed, 1200 RPM;
and feed ash, 43.5%.

OMeasured CMR (%) B Predicted CMR (%)

0 25 35 50 81
Frother Dosage (gr/ton)

Figure 14. The predicted and experimental effects of MIBC (frother) dosage on CMR: conditioning time, 3 min;
gasoline dosage, 300 g/ton; pH, 8; flotation retention time, 3 min; solid weight content, 15%; rotor speed, 1200
RPM; and feed ash, 43.6%.

OMeasured CMR (%) ® Predicted CMR (%)
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800 1100 1200 1300
Rotor Speed (RPM)
Figure 15. The predicted and experimental effects of rotor speed on CMR: conditioning time, 3 min; gasoline
dosage, 300 g/ton; pH, 8; flotation retention time, 3 min; solid weight content, 15%; frother dosage, 25 g/ton; and
feed ash, 43.9%.
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92 O Measured CMR(%) B Predicted CMR (%)
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Figure 16. The predicted and experimental effects of gasoline (collector) dosage on CMR: conditioning time,
3min; rotor speed, 1200 RPM; pH, 8; flotation retention time, 3 min; solid weight content, 12%; frother dosage,
81 g/ton; and feed ash, 43.87%.
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Figure 17. The predicted and experimental effects of solid weight content on CMR: conditioning time, 3 min;
rotor speed, 1200 RPM; pH, 8; flotation retention time, 3 min; collector dosage, 250 g/ton; frother dosage,
50g/ton; and feed ash, 41.9%.
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Figure 18. The predicted and experimental effects of feed ash on CMR: conditioning time, 3 min; rotor speed,
1200 RPM; pH, 8; flotation retention time, 3 min; collector dosage, 500 g/ton; frother dosage, 81g/ton; and solid
weight content, 15%.
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3.2. Application of model

From the simulation and predictions (see Figures
7-18) made using the ANN model, it is evident
that the model could be a useful tool in assessing
the correlations of CMR in the coking coal
flotation process parameters. Thus the best
combination of parameters for a high amount of
CMR in the coking coal flotation can be obtained
using this model.

4. Conclusions

The results of this work demonstrate that the
optimum ANN architecture is found to be 8
neurons in the input layer, three hidden layers
with 15, 10, and 5 neurons, respectively, and one
neuron in the output layer. The results taken from
ANN shows that square correlation coefficients of
the training, testing, validating, and all data (R?)
achieve 0.9955, 0.9995, 0.9993, and 0.998,
respectively. By applying the ANN method, it can
be concluded that the most important factors
involved in the coal flotation recovery are the
solid weight content, frother dosage, flotation
retention time, conditioning time, pH, and feed
ash. The RSEs achieved from the results of the
network showed that the solid weight content
(0.949), frother dosage (0907), conditioning time
(0.886), flotation retention time (0.882), pH
(0.867), feed ash (0.779), collector dosage
(0.703), and rotor speed (0.434) were the effective
parameters on CMR. The RSE value for solid
weight content was 0.949, and it had the highest
effect on CMR. The results of the predicted data
from neural network and experimented data
showed that the conditioning time, frother dosage,
flotation retention time, and collector dosage had
positive effects on CMR. By increasing these
parameters, CMR of coking coal flotation will be
enhanced. The negative effects of the operating
parameters were related to the feed ash and solid
weight content. These parameters had reverse
effects on CMR. The results of this work
indicated that the optimum pH, solid weight
content, and rotor speed for CMR in coking coal
flotation were 8, 10%, and 1200 RPM,
respectively.
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