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Keywords Abstract
The generalized effective-medium theory of induced polarization (GEMTIP) is a newly
Generalized Effective- developed relaxation model that incorporates the petro-physical and structural

Medium Theory of
Induced Polarization

characteristics of polarizable rocks in the grain/porous scale to model their complex
resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model
parameter from spectral-induced polarization data is a challenging issue because of the
highly non-linear dependency of the observed data on the model parameter and
non-uniqueness of the problem. To solve these problems as well as scape the local
minima of the highly complicated cost function, the genetic algorithm (GA) can be

Genetic Algorithm

Particle Swarm

Optimization applied but it has proven to be time-intensive computationally. However, this drawback

can be resolved by incorporating a faster algorithm, e.g. particle swarm optimization
Spectral-Induced (PSO). The aim of this work is to investigate whether recovering the model parameter of
Polarization the ellipsoidal GEMTIP model from SIP data using the combined GA and PSO

algorithms is possible. To achieve this aim, we set the best calculated individuals using
GA as the search space of PSO, and then the best location achieved by PSO in each
iteration is assigned as the updated model parameters. The results of our research work
reveal that the model parameters can effectively be recovered using the approach
proposed in this paper but the time constant of a noisy data that arises from the adverse
dependency of this parameter on the ellipticity of a polarizable grain. Moreover, the
execution time of the ellipsoidal GEMTIP modeling of complex resistivity data can be
significantly improved using the proposed algorithm.

1. Introduction

The Spectral-induced polarization (SIP) has been
the focus of interest because of its efficiency for
characterization and discrimination of the induced
polarization (IP) sources in the wide range of
geoscience fields comprising mineral [1, 2] and
oil [3] exploration, environmental and
groundwater studies [4], CO, storage monitoring
[5], and so on.

In the framework of this method, the effective
conductivities/resistivities of inhomogeneous rock
samples/formations associated with the IP sources
are usually frequency-dependent and
complex-valued [1, 2], and the quntitative
interpretation of the acquired SIP data is
performed using the relaxation models.

B4 Corresponding author: alirezaarabamiri@yahoo.com (A.R. Arab Amiri).

The most common relaxation models are the
generalized effective-medium theory of induced
polarization (GEMTIP) [1] and Cole-Cole [2]
models. The Cole-Cole model describes the bulk
resistivity of rocks and does not consider the rock
composition but the GEMTIP model is developed
based on the effective-medium theory to reveal
the relationship between the rock composition and
the complex resistivity/conductivity spectrum [1,
6, 7]. Therefore, in order to investigate the
petro-physical characteristics of rocks using the
complex resistivity/conductivity spectrum, the
inverse modeling of the GEMTIP relaxation
model has to be performed. In the last decade
some researchers have made efforts to recover
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either spherical or ellipsoidal GEMTIP model
parameter from SIP data using regularized
conjugate-gradient [6-9] and extensive line search
[7, 10] algorithms. Both of these algorithms are
local-search techniques and require a very good
initial solution close to the true model for a
successful convergence [11]. Therefore, Lin et al.
[12] have developed a hybrid method based on the
genetic algorithm (GA) and simulated annealing
(SA) in conjunction with the regularized
conjugate gradient method (hybrid SAAGA-RCGQG)
for GEMTIP modeling of complex resistivity
data. However, it has been demonstrated that the
convergence rate of both GA and SA are
significantly slow [12, 13]. On the other hand, a
comparison between SA and particle swarm
optimization (PSO) has indicated that PSO may
achieve a Dbetter success with substantially
improvement of the execution time because of the
smaller number of function evaluations required
for convergence [14-16]. Therefore, in this
research work, in order to speed-up the
convergence of the global search, we incorporated
PSO into GA (CGAPSO) to recover the model
parameters of highly complicated ellipsoidal
GEMTIP relaxation model from SIP data in the
MATLAB environment. To implement this hybrid
method, we set up the best individuals provided
by GA as a search space of PSO technique.
Thereby, we applied the CGAPSO algorithm to
invert both the free noise and noisy synthetic SIP
data. The results of our approach indicated that
the model parameters of ellipsoidal GEMTIP
could be well-recovered from the synthetic data
but the time constant or ellipticity. It may be
related to the mutual adverse correlation between
these parameters as both of them can shift the
frequency of occurrence the maximum point of
imaginary part of complex
resistivity/conductivity.

We found that the ellipsoidal GEMTIP modeling
using CGAPSO could be performed at least 4.9
times faster compared to the hybrid
SAAGA-RCG.

2. Spectral inductive polarization method

The SIP method is based on the frequency
dependency of resistivities/conductivities of rocks
associated with IP mechanisms (e.g. membrane
polarization, electrode polarization) [17].

SIP measurement is conducted by injecting the
harmonic alternative current in a wide range of
frequencies from 0.01 to 10* Hz and measuring
the potential, which in the presence of the IP
effect is a complex value. Therefore, the apparent
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resistivity is a complex value and is considered as
an induced polarization effect [5, 17]. It is given
by:

p(@)=p(@)+ip (@ ()
where p and p denote, respectively, the real and
imaginary parts of the apparent resistivity and o is
the angular frequency.

The amplitude and phase-shift of the apparent
resistivity obtained from the SIP measurement are
related by Equation (2). The amplitude and
phase-shift of the apparent resistivity can also be
calculated using Equation (3).

* _ * l(ﬂ
Pl(@)=lpe @
‘p*‘ N ()
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tan(p) = - ©
P

2.1. SIP data uncertainties

There are significant challenges to obtain reliable
laboratory SIP data. To reduce the error of SIP
measurements, a considerable attention should be
paid to the sample preparation, size of sample
holder, temperature of SIP cell, sample saturation,
time duration of saturation, and calibration of the
instrument [4].

The SIP measurements are usually conducted
using the frequency-domain instruments, which
suffer from the capacitive coupling above the
frequency of 1 KHz depending on the
conductivity of rock sample, cable arrangement,
and operational frequency. However, several
efforts have been made in order to reduce the
effect of this undesired signal, e.g. fitting a
relaxation model to the EM coupling data [2],
taking both the electromagnetic coupling and IP
effect modeling into account wusing the
dipole-dipole electrode array and connecting each
electrode using the individual shielded cable [4].
However, in this research work we assumed that
the SIP data was acquired with high-quality
instruments and that they were decoupled.

3. GEMTIP relaxation model

The GEMTIP relaxation model has been
developed by Zhdanov [1]. In the context of this
relaxation model, the heterogencous rock
formation is assumed to be equivalent to a
composite model formed by a homogeneous host
material filled with grains of arbitrary shape and
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resistivity/conductivity [1, 9]. The effective
resistivity of the composite model s
mathematically expressed by:

-1
Sig v

Vie 1+ (it ) Yie
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@

where py is a DC resistivity, f; is a volume fraction
of grains, v, and A, are the volume and surface
depolarization parameters of the ellipsoidal grain,
a, is an average value for the equatorial () and
polar (@) radii, 7; is a time constant, ¢; is a
frequency-dependent of /™ grain, and @ = 2xf'is an
angular frequency.

The volume depolarization is calculated for
prolate spheroid (¢>b) and oblate spheroid (a<b)
using Equations (5) and (6), respectively [18].
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In Equations (5) and (6), ¢ is an eccentricity and e,
is an ellipticity of the grains.

To determine the volume depolarization
components, the following condition must be
satisfied [18]:

1
Y=V, =5(1—7,) (7
y:=Y ®)
The surface depolarization components are
calculated as follows [18]:
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4. Modeling

For recovering the petro-physical and electrical
parameters of the polarizable rock from SIP data,
we used the ellipsoidal GEMTIP relaxation model
as a forward operator, and then inverted the model
parameters using the CGAPSO algorithm.

4.1. Forward operator

In order to evaluate the effect of varying the
model parameters of the ellipsoidal GEMTIP
model (e.g. DC resistivity, volume fraction,
ellipticity, time constant, and frequency
dependence of grains) on a complex
resistivity/conductivity spectrum, we considered
the two-phase synthetic models, and then modeled
the SIP data in response to changing the GEMTIP
model parameters (Table 1). The modeling results
are shown in Figures 1 to 5.

Table 1. Two-phase ellipsoidal GEMTIP parameters of synthetic models [7].

Model DC resistivity Volume fraction (%) Ellipticity Time constant Frequency dependent
Model 1 50-500 10 4 0.5 0.5
Model 2 50 1-10 4 0.5 0.5
Model 3 50 10 0.125-8 0.5 0.5
Model 4 50 10 4 0.001-10 0.5
Model 5 50 10 4 0.5 0.01-0.9

4.1.1. DC resistivity

The recovered DC resistivity from the GEMTIP
relaxation model corresponds to the matrix
resistivity of the polarizable rock. The effect of
varying the DC resistivity on the GEMTIP
response, while the other model parameters are
kept constant (model 1), is depicted in Figure 1.
As it can be seen in this figure, the DC resistivity
affects both the real and imaginary parts of the
complex conductivity spectra  significantly.
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Increasing the DC resistivity (decreasing its
reciprocal, 1ie. conductivity) reduces the
amplitude of both the real and imaginary parts of
the complex conductivity spectra.

4.1.2. Volume fraction

The ellipsoidal GEMTIP response of model 2 (see
Table 1) is presented in Figure 2, which shows
that how varying the volume fraction of
polarizable grains can affect the complex
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conductivity spectrum. As the figure indicates,
increasing the volume fraction enhances the
amplitude of both the real and imaginary parts of
the complex conductivity.

4.1.3. Ellipticity

Recovering the ellipticity of polarizable
grain/pore spaces of a rock provides information
about their shape and structure, which could be
very useful in a petro-physical study. The
response of the elliptical GEMTIP with regard to
varying the ellipticity of polarizable grain is
simulated using the parameters of model 3 given
in Table 1.

Increasing the ellipticity of polarizable grains, as
shown in Figure 3, intensifies the amplitude of the
real part of complex conductivity for both the
prolate (e < 1) and oblate (¢ > 1) elliptical shape
grains. However, the intensity of the imaginary
part gets higher as the ellipticity of prolate grains
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decrease, and it gets stronger as the ellipticity of
oblate grains increases. Moreover, varying the
ellipticity shifts the maximum imaginary point.

4.1.4. Time constant

The time constant parameter of the GEMTIP
relaxation model is directly dependent on the size
of a polarizable grain/pore. In other words, a large
time constant value corresponds to the large grain
size, and vice versa.

The effect of varying the time constant on the
complex conductivity response is modeled by
applying the ellipsoidal GEMTIP to the synthetic
model 4 (see Table 1). The complex conductivity
spectra obtained are shown in Figure 4.

This Figure indicates that as the time constant
increases, the amplitude of the real part is
intensified and the maximum point of the
imaginary part shifts toward lower frequencies.
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Figure 1. The effect of varying DC resistivity on the real (a) and imaginary (b) parts of the complex conductivity
obtained from a two-phase ellipsoidal GEMTIP modeling.
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Figure 2. The effect of varying volume fraction of polarizable grains on the real (a) and imaginary (b) parts of
the complex conductivity obtained from a two-phase ellipsoidal GEMTIP modeling.
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Figure 3. The effect of varying ellipticity of polarizable grains on the real (a) and imaginary (b) parts of the
complex conductivity obtained from a two-phase ellipsoidal GEMTIP modeling.

4.1.5. Frequency dependent

The frequency-dependent parameter reflects the
inhomogeneity (grain-size distribution) of the
polarizable grains included in the rock formations.
As the inhomogeneity increases, the frequency
dependence decreases, and vice versa.

The effect of varying the frequency dependence
on the response obtained from the two-phase
ellipsoidal GEMTIP modeling is demonstrated in
Figure 5. As it can be seen in the real part of the
complex conductivity spectrum, in the left side of
the cross point (CP), the amplitudes of the spectra
decrease, while in the right side of the CP point, it
represents an opposite behavior. However, the
amplitude of the imaginary part increases as the
frequency-dependence value increases.
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4.2. Inverse modeling
The relationship between the model parameters
and the measured SIP data is given as follows:

d=G(m) (11)

where m = [py, e, 1, ¢, fi, aj is the unknown
model parameter vector of size Ny, d = [p.(w),
Pe(W3), ..., pe(®,)] is the observed data vector, and
G is the ellipsoidal GEMTIP forward operator.

In order to find the model parameters of GEMTIP,
one has to invert Equation (11). To achieve this
aim, we implemented a CGAPSO algorithm to
recover a three-phase ellipsoidal GEMTIP model
proposed by Fu [7] and Lin et al. [12].
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106 i .
104 102 10° 102 104
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Figure 4. The effect of varying time constant of polarizable grains on the real (a) and imaginary (b) parts of the
complex conductivity obtained from a two-phase ellipsoidal GEMTIP modeling.
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Figure 5. The effect of varying frequency-dependence of polarizable grains on the real (a) and imaginary (b)
parts of the complex conductivity obtained from a two-phase ellipsoidal GEMTIP modeling.

4.2.1. CGAPSO algorithm

GA is a common method in the academic and
industrial ~sectors mainly because of its
intuitiveness, ease of implementation, and ability
to effectively solve the highly non-linear, mixed
integer optimization problems [13]. However, it
suffers from an expensive computational
drawback. Therefore, in order to speed-up the
convergence to the global minimum, a reliable
algorithm can be combined with GA. PSO has
been proven to be computationally more efficient
than GA to obtain the high quality solution, and
the computational effort required by PSO to
achieve a solution is less than the effort required
to achieve the same quality of solution by GA [13,
19]. Therefore, we incorporated PSO into GA in
order to take the advantages of both algorithms.
The CGAPSO algorithm in each iteration uses
both the GA and PSO algorithms (Figure 6) to
find the best solution, which represents the lowest
value of a cost function (the highest value of
fitness). The cost function is calculated using the
following equation:

o(m)=(d*" =G (m))/d*" /Nn-1 (12)
where ¢ is the cost function, & is the observed
data, and # is the number of measured data.

4.2.1.1. GA

GA is a global optimization technique inspired by
the processes of biological evolution [13]. The
main steps of GA are initialization, evaluation,
reproduction (selection), cross-over, and mutation.

498

The algorithm is implemented for the three-phase
ellipsoidal GEMTIP model as follows [13]:

1- Initialization: In this step, a random population
of size Ny, with the chromosome (parameter)
values between the lower bound m; and upper
bound m;” generated. Each row of the population
calls an individual, which represents a possible
vector of m for the GEMTIP model.

The population size (Np,,) has a significant
influence on the GA performance. A larger initial
diversity of the population allows the larger parts
of the search space to be covered. Although
increasing N, increases the computation time in
each iteration, it may lead to less iterations to
achieve an optimal solution compared to a small
Npop- However, it has been found that it could not
be greater than 2™ (in the current case, Ny, = 9) to
avoid a duplicated chromosome. Therefore, a
maximum size of population in our case could not
be greater than 2°, which means that the search
space of each parameter of the ellipsoidal
GEMTIP model, maximally, can be divided into
2° parts, varying between their upper bound and
lower bound [13].

2- Evaluation: In this phase, calculation of the
fitness function is carried out. The fitness of the
k™ individual of the population can be obtained
using the following equation [12]:

N

pop

f(k)zl/;exp(go(k)—(o(l)) (13)
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Figure 6. A flowchart of the CGAPSO algorithm.
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3- Reproduction: In this step, selection of the
individuals to be assigned as parents for the
cross-over step using the roulette wheel selection
operator is made using the following expressions
[13]:

/ (k)
p=—27
LX) .
Co=2P (15)

where Cy is a cumulative sum of the probabilities
of the k™ individual. To find the index of the
individual to be contributed in the cross-over, we
look for the index of a randomly generated
number, 0 <r <1, where r <C,.

4- Cross-over and mutation: Both the cross-over
and mutation operators are used to produce a new
population by making a change into the selected
individuals. Cross-over causes the exchange of
some information between the paired individuals,
and thereby, generating new pairs of model
parameters [13].

Mutation is the random alteration of a model
parameter. It can be conducted through changing
the randomly selected model parameter with a
pre-determined mutation probability [13].

We set the probability of cross-over and mutation
to 0.7 and 0.2, respectively.

The mutated model parameter is updated using the
following equation:
m™ =m? + B.N (0,1) (16)
where N is the standard normal distribution, and g
is the step length, which is calculated using the
following mathematical expression:

(17)

where o is a coefficient, which is considered to be
0.1 in this research work.

ﬂ :a(mmax _mmin)

4.2.1.2. PSO

PSO is inspired from the social behavior of real
swarms (e.g. bird flocking or fish schooling) when
they are looking for food sources [20].

It has been shown in a number of empirical
studies that PSO has the ability to find an optimal
solution with small swarm sizes of 10 to 30
particles [21]. However, the optimal size of the
swarm is problem-dependent. Furthermore,
thumb’s rule suggests 3 to 4 times the number of
model parameters (particles) for the swarm size.
However, in conjunction with GA to perform the
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CGAPSO algorithm, we have found that N,,, of
size 50 is suitable for our case from the viewpoint
of both the GA performance and relatively fast
convergence to the global optimum point.

In the framework of CGAPSO, the updated
population using GA is assigned as the search
space of PSO in each iteration.

For implementing PSO, the particles iteratively
change their positions and generate a sequence of
sub-iterations that stop when an appropriate
termination criterion is met including either the
problem that has been solved within a desired
accuracy or that no further progress can be made
[13, 14].

The distance that each particle travels toward its
next position is found via the equation x = v.4¢,
where v is the velocity calculated for particle m at
sub-iteration t, as follows [13, 19]:

vi=k" 4w rand (Nm)(m,.l —m,.")+w2.rar R
8)

The model parameter is updated according to the
following expression:

1
m" =m; +v;

(19)
where m; is the current model parameter, V; is
the current velocity, mll the best model parameter,

m, is the best model parameter that is found by

the swarm before the current implementation, and
w, and w, are the constriction coefficients [22].

k is the constriction factor, which is calculated as
follows:

2
k =
‘2—¢—\/¢2—4¢

where ¢ =w; + ws, ¢ > 4

The condition ¢ > 4 ensures the stability of the
algorithm. Therefore, when the constriction factor
is used, ¢ is set to 4.1 (i.e. w; = 2.05 and ¢, =
2.05), and k is thus 0.729 [22].

In order to control the convergence of the
algorithm, the velocity bounds have to be pre-
defined as follow:

(20)

pF :(ml.+ —m[)/lO

21
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where v and v, are the upper and lower bounds
of velocity, respectively.

5. Results and discussion

SIP is the most promising geophysical method
that is used for IP source discrimination based on
the frequency-dependent complex
conductivity/resistivity. However, the quantitative
interpretation of the SIP data is performed using
the relaxation models. The parameters of the
relaxation model are used for discrimination of
the different types of rock formation, which is an
important goal in the mineral and petroleum
exploration, environmental and ground water
study, and so on. One of the most common
relaxation models is a well-known Cole-Cole
model. However, this model describes the bulk
resistivity and does not account for rock structure
or composition directly. Furthermore, it has been
proved that this relaxation model is a simplified
expression of a newly developed GEMTIP
relaxation model. The GEMTIP model allows the
grain size and shape, conductivity/resistivity,
porosity,  anisotropy,  polarizability,  and
mineral/fluid volume fraction to be incorporated
in a physical-mathematical model of rocks.
Regarding the ellipticity of IP sources, two
versions of GEMTIP can be applied, spherical
GEMTIP (e = 1) and ellipsoidal GEMTIP (e # 1).
Ellipsoidal GEMTI is a more complicated model
that provides information about the shape of a
polarizable grain. The importance of the model
parameters of ellipsoidal GEMTIP is investigated
in Figures 1 to 5. The results of our simulation
using the ellipsoidal GEMTIP model show that
higher values of conductivity of the matrix of rock
sample (Figure 1) as well as a higher percentage
of volume fraction of polarizable grain (Figure 2)
cause a stronger SIP signal compared to the lower
values for these parameters. Also varying the
ellipticity of polarizable grain affects the complex
conductivity obtained in a way that the greater
amplitude of the real part of complex conductivity
is correlated with higher values of ellipticity,
although the amplitude of the imaginary part
represents a different behavior in response to
varying the ellipticity of both the prolate (e < 1)
and oblate (e > 1) grains. For the prolate grains, it
gets decreased with increase in the ellipticity but
for the oblate grains, it shows an opposite
behavior. Moreover, varying the ellipticity shifts
the frequency of occurring maximum point of the
imaginary part (Figure 3).
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Time constant, in direct correlation, reflects the
effect of varying the grain size on the complex
conductivity data obtained. Therefore, based on
Figure 4, the effect of polarizable coarse grain
size is reflected in the lower frequency and the

response of fine grains appears in higher
frequencies.

The effect of grain size distribution
(inhomogeneity) is modeled by  the

frequency-dependent parameter. The effect of
increasing the inhomogeneity causes the
frequency-dependence to decrease, and vice versa.
In response to increasing the frequency
dependence and homogeneity of grain size of
polarizable grain, the amplitude of the real part in
the right side of the cross point (CP) as well as the
amplitude of the imaginary part of complex
conductivity is increased, whereas the real part
represents the opposite behavior in the left side of
CP (Figure 5).

These features are used as a promising signature
in geophysical SIP investigations. Therefore, it
would be most persuasive to develop a reliable
technique for recovering the model parameters of
ellipsoidal GEMTIP. This relaxation model is
highly non-linear and the corresponding cost
function may be associated with multiple local
minima. These challenges can be resolved by
applying GA but it has been found to be highly
time-consuming. In the other side, the PSO
algorithm has been found to be able to speed-up
the convergence to the global point as it requires a
relatively small population size compared to GA.
Therefore, we incorporated PSO into GA in order
to take advantage of both algorithms for the
ellipsoidal GEMTIP modeling of complex
resistivity data.

In order to evaluate the performance of the
CGAPSO algorithm for recovering the ellipsoidal
GEMTIP model parameters from complex
resistivity data, we have considered a three-phase
ellipsoidal GEMTIP model, and then generated
the synthetic complex resistivity data using
Equation (4). Thereby, three sets of data including
free noise data and noisy data with 0.5% and 3%
of normal noise are obtained using the model
parameters given in Table 2.

As outlined in Figure 7, including two polarizable
grains with different ellipsoidal GEMTIP model
parameters affected the real and imaginary parts
and phase shift of complex resistivity. It inflected
the real part spectrum in a frequency of 1 Hz.
Also the imaginary part and phase shift of
GEMTIP response 1is characterized by the
occurrence of double peak spectra. Considering
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the time constant and ellipticity values of the
grains (see Table 2), the SIP effect of grain 1 (P1)
appears at higher frequencies, whereas the
corresponding peak of grain 2 (P2) takes place at
lower frequencies.

To implement CGAPSO, we set the algorithm to
reiterate GA and PSO two and three times,
respectively, in each iteration of CGAPSO with
Npop 0f size 50.

To compare the performance of our approach with
the recently developed hybrid SAAGA-RCG, we
set the stop criterion of CGAPSO to the rms error
of less than 0.5, which had been set in hybrid
SAAGA-RCG. We executed the code for both the
free noise data and noisy data with 0.5% normal
noise. In the case of free noise data modelling, the
algorithm stopped after 53 iteration of executing
with the elapsed time of 33.17 s. However, in the
case of modeling the noisy data with 0.5% noise,
it terminated at the iteration number of 71 with the
elapsed time of 44.92 s, whereas the number of
iteration and elapsed time of execution of hybrid
SAAGA-RCG for recovering the same model
have been stated to be 228 and 220 s, respectively.

Afterward, we set the termination criterion to the
number of iteration of 1000 for inversion of the
free noise data and noisy data with 3% of normal
noise. Thereby, the predicted ellipsoidal GEMTIP
of free noise data is successfully fitted to the
double-peak synthetic complex resistivity data
(Figure 7a-c) with the rms error of 0.001%
(Figure 8a), although in the case of inversion of
noisy data, as it can be seen in Figure 7d-e, the
predicted data is well-fitted to the double-peak
synthetic complex resistivity data with the rms
error of 2.8% (Figure 8b).

The recovered model parameters using the
CGAPSO algorithm were tabulated in Table 3. As
it can be found in this table, the model parameters
are well-recovered but the time constant from
noisy data. It may be related to the mutual adverse
interaction between the time constant and
ellipticity. As it can be seen in Figures 3 and 4,
both the time constant and ellipticity shift the
frequency of occurrence of the maximum IP.
Therefore, the exchange between these parameters
affects the recovered values of their counterparts.

Table 2. Three-phase ellipsoidal GEMTIP model parameters of synthetic models [7, 12].

Grain 1 Grain 2
fi 15% 1> 10%
T/ 0.01 (% 0.9
(54 1 e 4
Cy 0.9 Co 0.9
po (ohm.m) 200

Table 3. The recovered model parameters of the three-phase ellipsoidal GEMTIP model.

GEMTIP parameters Free noise data Noisy data (3% noise)
Po 200.00 199.96
fi 14.98% 12.07%
T 0.00997 1.1410
e; 1.12 1.5711
¢y 0.900 0.7854
1 10.00% 12.43%
(7] 0.8999 0.0053
e; 4.00 4.4818
() 0.8999 0.9835
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Figure 8. Convergence rate of the three-phase ellipsoidal GEMTIP inversion of free noise (a) and noisy (b) data
using the CGAPSO algorithm.

6. Conclusions

In this work, we have implemented the ellipsoidal
GEMTIP modeling of complex resistivity data.
We applied a combined GA and PSO (CGAPSO)
algorithm to recover the model parameters of
three-phase ellipsoidal GEMTIP relaxation model
from synthetic complex resistivity data. The
promising results of this research work are
outlined as follow:

-In the case of inverting the free noise data, the
model parameters are well-recovered using the
CGAPSO algorithm.

-In the case of GEMTIP modeling of the noisy
data, the optimal recovering of the model
parameters, except time constant, is achieved.
This failure may arise from either the mutual
interaction between the time constant and
ellipticity or the noise pollution of the SIP data as
it prevents the algorithm to converge to a smaller
rms error.

-A significant degree of improvement in the time
of execution for ellipsoidal GEMTIP modeling of
SIP data is successfully achieved using the
CGAPSO algorithm.
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