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Abstract 
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D 
seismic data. To this end, an actual carbonate oil field in the south-western part of Iran was selected. Taking 
real geological conditions into account, different models of reservoir were constructed for a range of viable 
pore size values.  Seismic surveying was performed next on these models. From seismic response of the 
models, a large number of seismic attributes were identified as candidates for pore size estimation. Classes of 
attributes such as energy, instantaneous, and frequency attributes were included amongst others. Applying 
sensitivity analysis, we determined Instantaneous Amplitude and asymmetry as the two most significant 
attributes. These were subsequently used in our machine learning algorithms.  In particular, we used feed-
forward artificial neural networks (FNN) and support vector regression machines (SVR) to develop 
relationships between the known attributes and pore size values in a given setting. The FNN consists of 
twenty one neurons in a single hidden layer and the SVR method uses a Gaussian radial basis function. 
Compared with real values from the well data, we observed that SVM performs better than FNN due to its 
better handling of noise and model complexity. 

Keywords: Seismic Inversion, Seismic Attributes, Synthetic Data, Feed Forward Neural Network. 

1. Introduction 
A challenging problem in quantitative reservoir 
modeling is the characterization of the carbonate 
reservoirs. These reservoirs, as one of the major 
hydrocarbon settings, include heterogeneous pore 
spaces with unknown and irregular distributions 
(from microscopic pore spaces of less than 1 mm 
in size to macroscopic pores of about 1 cm). 
Without proper determination of the distribution 
of pore spaces, it is difficult to perform reliable 
characterization of the carbonate reservoirs. Many 
researchers have worked on the problem of pore 
space detection and carbonate reservoir 
characterization in the past and the summary of 
their findings is briefly presented here (see for 
example [1], [2], [3], [4], [5]). Some of the 
developments have been an attempt in correlating 
the pores size with parameters such as water 
saturation, permeability, and porosity ([6], [7]). 

Others have studied the detection of faults in a 
carbonate reservoir using sharp contrasts between 
acoustic impedances [8]. Siripitayananon et al [9] 
developed a method for facies detection using 
back-propagating artificial neural networks. Other 
noteworthy contributions have been intelligent 
inversion of seismic attributes to determine 
carbonate facies ([10], [11]), using multivariable 
statistical procedures to determine lateral changes 
of porosity in a carbonate field [12], and 
development of relationships between porosity 
and seismic attributes of amplitude, phase, and 
frequency [13]. Zhou et al [14] utilized amplitude 
variation with offset (AVO) and prestacked 
seismic data to obtain information about liquids in 
a carbonate formation. Most of the works done 
illustrate that the results cannot be completely 
dependable due to the distribution of pore spaces 
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and their effects on the values of reservoir 
properties of interest. Ellis et al [15] believe that 
pores have an effect on cementation factor in 
reservoirs. Lucia [16] showed that fluid saturation 
is an important property of hydrocarbon reservoirs 
that depends significantly on the pores size [17] 
investigated the effects of pore structure in 
carbonate reservoir on velocity using a dual 
porosity DEM theory [18] studied the effects of 
pores system on electrical conductivity of 
carbonates and concluded that the change in pores 
size can change the values of electrical 
conductivity and hence the values of water 
saturation in the reservoirs. 
Although reservoir pores size can be derived 
reliably from core samples or well-log 
measurements, this property varies laterally from 
one well to another. Seismic data, particularly 3-D 
surveys, contain valuable information about the 
lateral variation of reservoir properties. When 
there are wells inside the seismic coverage, it is 
natural to infer the reservoir property between the 
wells by interpreting the seismic data and using 
the reservoir property at well locations as spatial 
control points. Assuming that there exists a 
functional or statistical relationship between the 
seismic data and the reservoir property, intelligent 
methods can probably be applied to establish a 
model of the relationship using the training 
sample set. This model can then be used to predict 
the reservoir properties away from the wells 
([19],[20]).  
This paper suggests an intelligent technique for 
reservoir characterization using artificial neural 
network and support vector machine to determine 
reservoir pores size from seismic attributes. We 
subsequently use a carbonate reservoir in southern 
Iran for which the values of pores size are readily 
availableas test bed for our proposed 
methodology. 

2. Methodology 
2.1. Site geology 
One of the Iranian carbonate oil field which is 
located in the south western part of Iran was 
selected. This field consists of all of the necessary 
data for this study including 3D seismic data and 
well data (cores and logs). There are also two 
wells drilled in this field. Both wells contain 
hydrocarbon in Sarvak level (one of the famous 
hydrocarbon zones in Iranian carbonate oil fields) 
at the depth of 2850 meters. The thickness of the 
reservoir is about 200 meters. Since the data of 
well 1 are so noisy and incomplete, we decided to 
implement well 2 in this study. Geological 
investigations illustrate that the reservoir through 
this well (well 2) consists of pure limestone. 

2.2. Seismic data acquisition 

Using a realistic example, the proposed 

methodology will be explained. 3D seismic 

survey has been performed over this field. Figure 

1 illustrates the seismic line which passes both 

wells. Since OpendTect is one of the most 

powerful packages in seismic data interpretation, 

the application of this software was considered for 

seismic attribute extraction. As previously 

mentioned, the data of well 1 are not suitable for 

analysis; therefore, it is inevitable to work on the 

data of well 2 only. According to limited 

resolution of seismic survey which leads to the 

limited number of data points in discrete well 

analysis, it is necessary to generate adequate 

synthetic data. 

Forward modeling was done to simulate a 

reservoir level in Sarvak zone for well 2 using 

modified velocity form of the Gassmann rock 

physics equation ([21]): 
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where, 

sat
 
 = density of the saturated rock, 

VPsat  =  P-wave saturated rock velocity,  

      =  rock shear modulus. 

KGdry = dry rock effective bulk modulus from 
Geertsma equation, 
K0     =  bulk modulus of the mineral material 
making up the rock, 
Kfl     =  effective bulk modulus of the pore fluid,  

      
=  porosity, and 

      = coefficient of pores sizes. 
Saturated rock P-wave velocity (VPsat) data were 
generated by changing the values of  and . 

Other parameters in Gassmann equation were 
considered to be constant (according to their real 
values in the reservoir). These parameters are: K0 

= 63 GPa, 26 GPA, 2479  kg/m
3
 and SW 

= 0.3279, respectively. 81 data were generated in 
this way (Table 1) each called from model 101 to 
model 909. The first value in each model name 
refers to the values of porosity (0.1 to 0.9) and the 
third one refers to values of  (0.1 to 0.9). For 
example, model 207 refers to the synthetic model 
which has the porosity of 0.2 and   of 0.7. 

Preparing suitable codes in Seismic Unix forward 

modeling package, it is possible to construct the 

synthetic geological model. Figure 2 shows the 
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geological model for synthetic data 101. In this 

figure, “Zone L” illustrates the reservoir level. To 

make the model similar to the real reservoir, all 

levels above reservoir level were exactly 

considered with regard to their thickness and 

velocity. The objective is to perform seismic 

survey on the model and determine the seismic 

response of the model. 

After constructing geological model for each 

synthetic data, a pre-defined seismic survey (by 

writing suitable codes in the Seismic Unix 

package) was performed over constructed models 

in order to extract the seismic response of each 

model. The output of this step were then 

processed using ray tracing technique and were 

stacked thoroughly to obtain the seismic section 

of the studied model. Therefore, 81 seismic 

sections that each one points to the specific pore 

size situation in the reservoir were extracted. 

Figure 3 illustrates the stacked seismic section of 

the model 101. These models can be used to 

extract attributes, make attribute analysis and 

study the effect of the changes in pore size on 

different attributes. Hence, it is possible to find 

related attributes with pore size parameter and 

model the relationship between those attributes 

and the values of pore size. 

 

2.3. Attribute extraction and analysis 

To investigate the effect of pore size changes on 

attribute values, the synthetic models were 

classified into specific groups. Different   values 

in each   state were considered as a group (Table 

2). Seismic attributes should be extracted in each 

group and attribute analysis should be performed 

over them. According to the proper capabilities of 

OpendTect software, in seismic attribute analysis 

and interpretation, this package was considered to 

extract attributes in our study. OpendTect is an 

open source system for seismic data interpretation 

that interprets huge volume of seismic data using 

attributes and new techniques of imaging. In this 

study, 43 different seismic attributes were 

extracted for all models in Table 2. Table 3 

illustrates the values of these attributes for model 

101.  

In the next step, attributes were analyzed to form a 

correlation matrix. This matrix for all groups 

indicated that two attributes of Instantaneous 

Amplitude and Asymmetry have the highest 

correlation values with the values of pore size. 

Table 4 shows the values of correlation coefficient 

for these two attribute in the first three groups of 

pore size. 

 

 
 

Figure 1. Seismic line over wells 1 and 2. 
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Table 1. 81 synthetic models generated using modified Gassmann equation. 
 

  KGdry   KdryNew VP Model   KGdry   KdryNew VP Model 

0.1 10.5 

0.1 1.05 4573 101 

0.2 5.73 

0.1 0.573 4243 201 
0.2 2.1 4598 102 0.2 1.146 4263 202 
0.3 3.15 4624 103 0.3 1.719 4283 203 
0.4 4.2 4649 104 0.4 2.292 4302 204 
0.5 5.25 4675 105 0.5 2.865 4322 205 
0.6 6.3 4700 106 0.6 3.438 4341 206 
0.7 7.35 4726 107 0.7 4.011 4361 207 
0.8 8.4 4752 108 0.8 4.584 4380 208 
0.9 9.45 4778 109 0.9 5.157 4399 209 

0.3 3.94 

0.1 0.394 4101 301 

0.4 3 

0.1 0.3 4021 401 
0.2 0.788 4116 302 0.2 0.6 4034 402 
0.3 1.182 4132 303 0.3 0.9 4047 403 
0.4 1.576 4147 304 0.4 1.2 4059 404 
0.5 1.970 4163 305 0.5 1.5 4072 405 
0.6 2.364 4178 306 0.6 1.8 4084 406 
0.7 2.758 4193 307 0.7 2.1 4097 407 
0.8 3.152 4208 308 0.8 2.4 4109 408 
0.9 3.546 4224 309 0.9 2.7 4122 409 

0.5 2.42 

0.1 0.242 3971 501 

0.6 2.03 

0.1 0.203 3935 601 
0.2 0.484 3981 502 0.2 0.406 3945 602 
0.3 0.726 3992 503 0.3 0.609 3954 603 
0.4 0.968 4003 504 0.4 0.812 3963 604 
0.5 1.210 4013 505 0.5 1.015 3972 605 
0.6 1.452 4024 506 0.6 1.218 3981 606 
0.7 1.694 4034 507 0.7 1.421 3991 607 
0.8 1.936 4045 508 0.8 1.624 4000 608 
0.9 2.178 4056 509 0.9 1.827 4009 609 

0.7 1.75 

0.1 0.175 3909 701 

0.8 1.54 

0.1 0.154 3890 801 
0.2 0.350 3918 702 0.2 0.308 3897 802 
0.3 0.525 3926 703 0.3 0.462 3904 803 
0.4 0.700 3934 704 0.4 0.616 3911 804 
0.5 0.875 3942 705 0.5 0.770 3919 805 
0.6 1.050 3950 706 0.6 0.924 3926 806 
0.7 1.225 3958 707 0.7 1.078 3933 807 
0.8 1.400 3966 708 0.8 1.232 3940 808 
0.9 1.575 3974 709 0.9 1.386 3948 809 

0.9 1.37 

0.1 0.137 3874 901 
0.2 0.274 3880 902 
0.3 0.411 3887 903 
0.4 0.548 3894 904 
0.5 0.685 3900 905 
0.6 0.822 3907 906 
0.7 0.959 3913 907 
0.8 1.096 3920 908 
0.9 1.233 3926 909 

 

 

 
Figure 2. Geological model of the reservoir constructed by Seismic Unix. 

 

Zone L 
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Table 2. Different groups of pore size according to constant values of 


. 

Pore size Groups 

= 0.9 = 0.8 = 0.7 = 0.6 = 0.5 = 0.4 = 0.3 = 0.2 = 0.1 

901 801 701 601 501 401 301 201 101 

902 802 702 602 502 402 302 202 102 

903 803 703 603 503 403 303 203 103 

904 804 704 604 504 404 304 204 104 

905 805 705 605 505 405 305 205 105 

906 806 706 606 506 406 306 206 106 

907 807 707 607 507 407 307 207 107 

908 808 708 608 508 408 308 208 108 

909 809 709 609 509 409 309 209 109 

Table 3. Values of 43 seismic attributes for model 101. 

0.000213274 Velocity Fan Filter 0.001516 Energy/Energy 

13.989712 Frequency/Dominent 

Frequency 

0.038938 Energy/Sqrt 

45.645275 Frequency/Average 

Frequency 

-6.491552 Energy/Ln 

38.888885 Frequency/Median 

Frequency 

0.001748 Instantaneous/Amplitude 

3006.6557 Frequency/Average 

Frequency Squared 

0.250555 Instantaneous/Phase 

0.03902 Frequency/Maximum 

Spectral Amplitude 

101.56539 Instantaneous/Frequency 

0.258528 Frequency/Spectral Area 

Beyond Dominent 

Frequency 

0.000433462 Instantaneous/Hilbert 

0.202982 Frequency/Frequency 

Slope Fall 

0.205685 Instantaneous/Amplitude/1st 

Derivative 

14.671811 Frequency/Absorption 

Quality Factor 

59.849281 Instantaneous/Amplitude/2nd 

Derivative 

3.73E-09 Spectral Decomp 0.968775 Instantaneous/Cosine Phase 

0.000132157 Event/Peakedness 0.224808 Instantaneous/Envelope 

Weighted Phase 

0.004993 Event/Steepness 109.31568 Instantaneous/Envelope 

Weighted Frequency 

0.597961 Event/Assymetry -3067.375 Instantaneous/Phase acceleration 

-0.013966 Volume 

Statistics/Average 

-7.75029 Instantaneous/Thin bed indicator 

0.001047 Volume 

Statistics/Median 

18.724953 Instantaneous/Bandwidth 

0.001308 Volume 

Statistics/Variance 

-2.712033 Instantaneous/Q factor 

-0.119581 Volume Statistics/Min 0.001834 Convolve/Lowpass 

0.004804 Volume Statistics/Max -0.000703483 Convolve/Laplacian 

-0.628459 Volume Statistics/Sum 0.002109 Convolve/Prewitt 

4.014766 Volume Statistics/Norm 

Variance 

0.003497 Frequency Filter/ LowPass 

0.038396 Volume Statistics/RMS -0.009834 Frequency Filter/HighPass 

 -0.007492 Frequency Filter/BandPass 

Table 4.Values of correlation coefficient for Instantaneous Amplitude and Asymmetry. 

Group R (Instantaneous Amplitude) R (Asymmetry) 

1 (Models 101 – 109) 0.925 -0.956 

2 (Models 201 – 209) 0.884 -0.911 

3 (Models 301 – 309) 0.875 -0.882 
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Figure 3. The stacked seismic section of the model 101. 

2.4. Back-propagating Artificial Neural 

Networks (BANN) 

Artificial neural networks (ANNs) are 

computational models based on human’s 

understanding of cortical structure of the brain 

and cognition. Algorithmically, ANNs are parallel 

adaptive systems and therefore require training.  

Back-propagation is a powerful method of 

supervised learning that is developed after the 

seminal work by Werbos and Rumelhart in 

seventies and eighties [22].  Details of various 

methods of ANN design and training are beyond 

the scope of this paper and as such they are 

explained elsewhere (see [23] for example); 

nevertheless, a brief description of the 

terminology is provided here. 

The structure of a neural network, in general, 

consists of an interconnected group of artificial 

neurons (simple processors that are connected to 

many other neurons). These processing units 

receive the information, apply some simple 

processing on them and pass them to other 

neurons. The flow of information creates a 

computational model for information processing. 

Each neuron is assigned a weight that is changed 

adaptively to improve the performance of the 

network based on pairs of external and internal 

signals (training information, input-output 

mapping). Practically, neural networks may be 

used in nonlinear statistical data modeling, system 

identification, extraction of complex relationships 

between inputs and outputs of a system, and for 

pattern recognition. 

In addition to weight, each node (neuron) in the 

network is equipped with an activation function  

 

(or transfer function) that is part of the 

information processing unit of the neuron.  The 

flow of information could be imagined from left 

to right, such that each neuron performs the 

processing on the data in parallel with other 

neurons in the layer.  The response of the network 

is compared at the terminating layer with a set of 

desired outputs and the weights of the neurons are 

thus corrected following a training algorithm to 

minimize the output error.  Issues with regards to 

the number of nodes per layer, number of layers, 

and the type of activation function that could be 

used are dealt with in the design of the 

architecture of the network. This is explained later 

on in this paper. 

There are numerous methods of training of a 

neural network. Categorically, these methods are 

grouped into three main classes: supervised 

learning, unsupervised learning, and 

reinforcement learning.  In a supervised learning 

scheme, the network is provided with a set of 

examples in the input-output space: 

 YyXxyx  ,,, and the goal of the training 

process is to find function f  in a set of valid 

functions that could match the input/output pairs 

reliably. By doing so, the network becomes 

capable of making inferences in mapping that is 

implied by the training data.  This procedure 

involves minimizing a cost function. The cost 

function is often defined as the mismatch between 

the network’s mapping and the actual data. 

A commonly used cost function is the mean-

squared error between the average of network's 

output, f(x), and the target value y over all 
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example pairs presented to the network. 

Minimizing this cost function in a gradient 

descent algorithm for a class of neural networks 

called Multi-Layer Perceptrons constitutes the 

basis of back-propagation algorithm [22] .In this 

study, we successfully developed and 

implemented a network with one hidden layers of 

6 nodes. 

Dataset of 81 data points to train and test the 

neural network was used (Table 5). From this, 60 

points (80% of the total data) were selected 

randomly for the network training and the 

remaining 20% of the data was used for testing 

the network. Each data point is a vector of three 

input values, namely, Porosity, Instantaneous 

Amplitude and Asymmetry as described earlier. 

The desired network output is pore size value. The 

input layer of the network receives input data at 

three nodes and the network generates an output at 

the final layer. We used the Scaled Conjugate 

Gradient (SCG) method for training because it 

generally results in faster and more reliable 

convergence for our application.  

The best and the worst results of 20 iterations for 

training of the network are presented in Table 6. 

In Table 6, RMStrainis the root-mean-square of the 

training error, and RMStestis the root-mean-square 

of error during testing of the network. Considering 

the limited amount of data available for network 

training, the results shown in Table 6 appear to be 

reasonable for practical applications. Other 

training algorithms such as Levenberg-Marquardt, 

One-Step Secant, and Fletcher-Powell Conjugate 

Gradient were also used but were discarded due to 

higher tolerance for the test errors and lower 

reliability in our application [22]. The results of 

the training are presented in Figure 4. 

In Figure 4, R is the correlation coefficient 

between the real and the predicted pore size 

values; AandT are the predicted and real values 

respectively. The correlation coefficient is close to 

1.0, implying a good network performance. The 

gap between values is caused by simulating data 

in special pore sizes (0.1, 0.2, … , 0.5). 

We used the abovementioned neural network to 

classify the test data. The results are shown in 

Figure 5. 

During testing, a correlation coefficient of greater 

than 0.85 was generally obtained (as exhibited in 

Figure 5). This shows that the pore size values in 

the test data were practically well-correlated with 

the network predictions; but the other parameter 

that should be mentioned is the error value. Table 

6 shows that the root mean square error value is 

about 0.17 which means the high value of error.  

Table 5. Dataset used for ANN. 
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This is evident in Figure 6 with the medium 

performance of the trained network remarkably 

demonstrated for a set of synthetic test data. The real 

values of pore size, shown by small circles in Figure 6 

could not be easily predicted by the back-propagating 

neural network, shown by small inverted triangles. 

Table 6. Error values for the best and the worst 

results. 

RMStrain RMStest 

0.08 0.11 

0.09 0.28 

 

 
Figure 4. Correlation coefficient for train data. 

 

 
Figure 5. Correlation coefficient for the test data 

 

As shown in Table 6, the reduction in the network 

error will increase the reliability of network’s 

predictions. To do this, either additional training 

data should be available or another method should 

be used. In some cases, ANNs detect the relative 

optimum point instead of global optimum point as 

a solution for the problem which is the main weak 

point for ANNs [24]. Recognizing the 

computational power of support vector machines 

in rule generation and function approximation and 

their robustness particularly in the area of data 

classification, we embarked on developing and 

training of a support vector regression machine 

(SVR) for the purpose of classification of pores 

size in this study. 

 

 
Figure 6. Predicted results for a set of test data. 

 

2.5. Support vector machines (SVM) and their 

application for this Study 

In pattern recognition, the SVM algorithm 

constructs nonlinear decision functions by training 

a classifier to perform a linear separation in some 

high dimensional space which is nonlinearly 

related to input space. To generalize the SVM 

algorithm for regression analysis, an analogue of 

the margin is constructed in the space of the target 

values (y) using Vapnik’s ε-insensitive loss 

function (Figure 7) [25].  

 


 )(,0max:)( xfyxfy  (2) 

To estimate a linear regression 

  bxwxf  .)(  (3) 

where, w is the weighted matrix, x is the input 

vector and b is the bias term. With precision, one 

minimizes 


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m

i

xfyCw
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2
)(

2

1
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(4) 

where, C is a trade-off parameter to ensure that 

the margin ε is maximized and error of the 

classification   is minimized. Considering a set 

of constraints, one may write the following 

equations as a constrained optimization problem: 
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According to Equations (6) and (7), any error 

smaller than ε does not require a nonzero ξi or i  , 

and does not enter the objective function 2 [27]. 

By introducing Lagrange multipliers (α and α') 

and allowing for C > 0, ε > 0 chosen a priori, the 

equation of an optimum hyper plane is achieved 

by maximizing of the following equations:  
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where, xi appears only inside an inner product. To 

get a potentially better representation of the data 

in non-linear case, the data points can be mapped 

into an alternative space, generally called feature 

space (a pre-Hilbert or inner product space) 

through a replacement: 

(11) )().(. jiji xxxx  

The functional form of the mapping φ(xi) does not 

need to be known since it is implicitly defined by 

the choice of kernel: k(xi, xj) = φ(xi).φ(xj) or inner 

product in Hilbert space. With a suitable choice of 

kernel the data can become separable in feature 

space while the original input space is still non-

linear. Thus, whereas data for n-parity or the two 

spirals problem is non-separable by a hyper plane 

in input space, it can be separated in the feature 

space by the proper kernels. Table 7 gives some of 

the common kernels. 

Then, the nonlinear regression estimate takes the 

following form: 
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where, b is computed using the fact that Equation 

(6) becomes an equality with ξi = 0 if 0<αi<C, and 

Equation (7) becomes an equality with i = 0 if 0 

< i  < C [28]. 

 

 
 

Figure 7. Concept of ε-insensitivity. Only the samples out of the  ε margin will have a non-zero slack variable, 

so they will be the only ones that will be part of the solution [26] 
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Table 7.Polynomial, normalized polynomial and Radial Basis Function (Gaussian) Kernels [29]. 

Kernel Function 
Type of Classifier 

( , ) ( 1)i j i jK x x x x    Complete polynomial of degree   

( 1)
( , )

( ) ( )

i j

i j
T T

i j i j

x x
K x x

x x y y

 




 Normalized polynomial kernel of degree   






  22
2/exp),( jiji xxxxK  Gaussian (RBF) with parameters   which 

control the half-width of the curve fitting peak 

 
Similar to other multivariate statistical models, the 

performances of SVM for regression depend on 

the combination of several parameters. They are 

capacity parameter C,  of  -insensitive loss 

function, the kernel type K and its corresponding 

parameters. C is a regularization parameter that 

controls the trade-off between maximizing the 

margin and minimizing the training error. In order 

to make the learning process stable, a large value 

should be set up for C (e.g., C = 100). The optimal 

value for depends on the type of noise present in 

the data, which is usually unknown. Even if 

enough knowledge of the noise is available to 

select an optimal value for , there is the practical 

consideration of the number of resulting support 

vectors.  -insensitivity prevents the entire 

training set meeting boundary conditions, and so 

allows for the possibility of sparsity in the dual 

formulations solution. Therefore, choosing the 

appropriate value of   is critical in theory. 

Since in this study the nonlinear SVM is applied, 

it would be necessary to select a suitable kernel 

function. The obtained results of previously 

published researches indicate the Gaussian radial 

basis function has superior efficiency than other 

kernel functions [30]. As shown in Table 7, the 

form of the Gaussian kernel is as follow: 
22

2/
),(

ji xx

ji exxK


  
(13) 

In addition, as  is a constant parameter of the 

kernel and can either control the amplitude of the 

Gaussian function and the generalization ability of 

SVM, we have to optimize   and find the optimal 

one. In order to find the optimum values of two 

parameters ( and ) and prohibit the over-fitting 

of the model, the data set was separated into a 

training set (80% of available data for each 

borehole), a test set of 20% and the leave-one-out 

cross-validation of the whole training set was 

performed. The leave-one-out (LOO) procedure 

consists of removing one example from the 

training set, constructing the decision function on 

the basis only of the remaining training data and 

then testing on the removed example [31]. In this 

fashion, one tests all examples of the training data 

and measures the fraction of errors over the total 

number of training examples. The root mean 

square error (RMS) was used as an error function 

to evaluate the quality of model. 

To obtain the optimal value of  , the SVM with 

different   were trained, the   varying from 0.01 

to 0.9, every 0.01. According to the generalization 

ability of the model based on the LOO cross-

validation for the training set, we calculated the 

RMS on different , in order to determine the 

optimal one. The optimal   was found as 0.6. In 

order to find an optimal , the RMS on different 

  was calculated. The optimal   was found as 

0.11. From the above discussion, the ,   and C 

were fixed to 0.6, 0.11 and 100, respectively. 

Figure 8 is a schematic diagram showing the 

construction of the SVM. 

The best and the worst results of 6 iterations for 

training of the network are presented in Table 8. 

Table 8. Error values for the best and the worst 

results. 

RMStest RMStrain Rtest Rtrain 

0.07 0.05 0.89 0.95 

0.16 0.08 0.96 0.98 

The results of the training are presented in Figure 

9.As shown in Figure 9, the correlation coefficient 

of training data is 0.96, implying the proper 

performance of SVM. The abovementioned 

support vector machine was used to classify the 

test data. The results are shown in Figure 10. 

During testing, a correlation coefficient of greater 

than 0.95 was generally obtained. This implies 

that the pore size values in the test data were 

practically well predicted using SVM. This is 

evident in Figure 11 with the superior 

performance of the trained SVM remarkably 

demonstrated for a set of synthetic test data. 
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Figure 8. schematic diagram of construction of the SVM. 

3. Application of the proposed SVM method 

for data of Well 2 

The results of previous chapters indicate that SVR 

method could predict the values of pores size 

reliably for synthetic data. One of the major 

preferences of SVMs to ANNs is their superior 

performance facing little amounts of training data 

[32]. Because of the little number of synthetic 

data in training process (60 data) and the 

differences between synthetic and real data 

(complicacy and existence of noise in real data), 

the authors decided to use trained SVR for real 

porosity values prediction in this well. 

To test the capability of the proposed 

methodology, data acquired from logs and 3D 

seismic measurements in well 2 were used.  The 

measurements were Porosity, Instantaneous 

Amplitude andAsymmetry (see Table 9).  

Figure 12 shows the pore size values from the 

well log measurements (4
th
 column in Table 9) as 

real values and those obtained from support vector 

regression machine.  For this test, the already 

trained SVR of synthetic data was used to make 

the prediction. The values of correlation 

coefficient and root mean square error of the 

prediction are 0.97 and 0.04 respectively. Figure 

12 exhibits a considerable coincidence between 

the results of support vector machine approach 

and that of well measurements. 

5. Conclusions 

Measurement noise and nonlinear relationship 

between seismic data and pore size quantities 

cause difficulties in performing seismic data 

interpretation reliably.  Consequently, other viable 

methods of prediction, such as the one proposed 

in this paper, may be deemed necessary in 

realistic cases. We successfully implemented and 

tested an artificially intelligent computational  

 

agent (a back-propagating neural network) and 

support vector regression machine (SVR) to 

consider the unknown nonlinear relationships 

between system variables in our prediction 

problem (foreseeing the pore size values) for 

synthetic data. Our approach uses instantaneous 

amplitude and asymmetry as input system 

variables. The ANN and SVR seek the 

relationship between these input variables 

adaptively and strive to a desirable output which 

is, in our case, the values of pore size. 

Synthetic data showed that only SVR could train 

itself very well with practically complete 

correlation between real pore size values and the 

predicted ones (correlation coefficient R of almost 

one). This method also exhibited a remarkable 

capability in estimating the unknown zones (test 

data). 

Since the number of synthetic data in training 

process is limited and due to the differences 

between synthetic and real data (complicacy and 

existence of noise in real data), it seems that SVR 

can be used in predicting values of pore size for 

real data of well 2. Applying the machine to well 

2 case, while showing acceptable precision in 

prediction pore size, proved the performance of 

the machine.  The SVR did predict the pore size 

values in well 2 reliably. 

In this study, there was an access only to the data 

of well 2. To generalize the results of the 

abovementioned procedure, it is suggested to 

obtain sufficient reliable data samples from more 

wells in specific oil field and augmenting the 

training of the support vector machine with the 

new data. We speculate this would enhance the 

capability of the machine to be used for the 

similar reservoirs. 
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Figure 9. Correlation coefficient for train data. Figure 10. Correlation coefficient for test data. 

 

 
Figure 11. Predicted results for a set of test data. 

 

Table 9. Data of well 2 used in trained SVR 
 

 
 

 
Figure 12. Predicted results for a set of data in well 2. 
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