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Keywords Abstract
In this work, the relationship between the P-wave velocity (V) and the Electrical

ée;z%en[ta;y Rock Mass Resistivity (ER) parameters with rock mass quality indices is investigated; parameters
Yy ndex such as rock mass quality classification (Q ) and modified system for sedimentary rocks
Asmari Limestone (O, )- For making predictive models, about 1200 data-sets were extracted
from sections drilled in Seymareh and Karun 2 Dam Sites (SDS and KDS) in Asmari

Geophysical Method Formation, SW Iran. The statistical and fuzzy methods were usedto study the
relationships between the geophysical parameters and the rock mass quality. Since in the

Karstification O, classification, the existence of cavities; and layering and rock texture are
considered in addition to the parameters considered in the Q classification; it provides a

Empirical Equations better description of rock mass and is closely related to parameters V » and ER. The
Fuzzy Inference System equations obtained for predicting O and Q,,, showed the determination coefficients

(R?) to be 0.48 and 0.67, respectively, and the coefficient of determination 0.86 for
O,,» was calculated by the fuzzy model. Finally, Mean Absolute Deviation (MAD),
Variance Accounted For (VAF), and Root Mean Square Error (RMSE) were used to
check the prediction performance of the statistical and fuzzy methods. The results of the
calculated errors also showed that the fuzzy models were interesting because they had a
good accuracy for predicting O, . In addition, by increasing the degree of karstifiction,
the efficiency of the geophysical method for estimation of O decreased rapidly, which
was due to ignoring the cavities in this category.

1. Introduction

A knowledge of rock mass quality indices; in but also include factors such as the intact rock
different aspects; is an important prerequisite in strength, joint spacing, joint condition, field
designing the civil engineering and mining stress, number of joint sets, and effects of
activities. Numerous researchers have developed groundwater. In addition to the traditional Q

rock mass classification systems. One of the first
systems to be developed is the Rock Quality
Designation (RQD) system [1]. This system only Compared with O, Q_  has four other factors
accounts for the frequency of jointing within a (Equation 1 [4]).

rock mass. Later systems; such as the Rock Mass
Rating (RMR) [2] and Q systems [3]; not only

use RQD as one of their measurable parameters;

system, this research work refers to Q.

_ROD J, J. _Rs
= X X X
smo J. J. SRF S

T
; (1)
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where, R; is the rating for the bedding, S is the
rating for dipping of the layers, T is the rating for
the texture of the rock mass, and V is the rating
for the presence of cavities.

Today, in the engineering projects such as mining
projects, engineering geology, and civil
engineering, seismic P-wave velocity (Vp) and
Electrical Resistivity (ER) are widely used for
rock mechanic applications [4-7]. Vp and ER are

both functions of rock mass properties [8]. In
particular, Vp and ER are now the standard

parameters that can give useful information [6-9].
The correlation between Vp and ER with the

characteristics of rocks is well known and has
been described in a number of textbooks and
studies. Sojren et al. [9] correlated P-wave
velocity with mechanical rock parameters such as
fracture frequencies and RQD. Boadu and Long
[10] proposed a fracture model called “Modified
Displacement Discontinuity” (MDD) for seismic
wave propagation in fractured media. The model
takes into account the fracture size, fraction of
surface areas in contact, viscosity of infill
material, and fracture aperture. Boadu [11]
studied empirical least squares regression
relationships between the seismic wave velocity
and the permeability and rock mass properties.
Barton [12] proposed an empirical correlation
between the Q factor and P-wave velocity based
on the data from hard rock tunneling projects in
several countries. In addition, others [13-17]
conducted many other studies for correlation
between the rock mass quality and geophysical
parameters. These studies also highlighted some
of the factors that may affect the relationships
such as rock type, mineral content, grain size,
cavities, and factors associated with increasing
depth. However, research to assess the rock mass
quality is still one of the hardest tasks of the
researchers, and the empirical models used to
predict rock mass quality are often mathematical
and cannot be generalized to all areas. This makes

choosing the equations difficult. In addition, O,
has rarely been calculated and investigated in
Iran's geological zones like other regions. The
purpose of this work was to check the geophysical
experiments and degree of karstification to
predict the Asmari limestone quality indices such

as rock mass quality (Q) [3] and modified
sedimentary rock mass quality (Q,, ) [4]; in SW
Iran.
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In this work, to obtain the geophysical and
geotechnical data, the 3D GIS information layers

from V,, ER, O and Q,  were created by

interpolation between the data extracted from the
location of galleries and drilling boreholes. All
data-point sets were obtained from galleries and
drilled boreholes at Karun 2 and Seymareh Dam
Sites (KDS and SDS) in SW Iran. Finally, using
the multivariate regression method and fuzzy
method (FIS), models for predicting ( and

Q,,, in Asmari limestone were presented. In
total, about 1200 data-point sets were used for
modeling, and Vp and ER were considered as the

independent parameters. Figure 1 shows the
general principles of this research work. The
results of FIS and multivariate regression show

that combinations of ER and Vp; in cases

where geotechnical studies are not possible, can
give a good estimation of the Asmari limestone
stability parameters that have a great effect on the

Q,,, index. In addition, due to consideration of

the cavities in the O~ index, with an increase in

the karstification degree, the efficiency of the
geophysical  methods for  prediction of

Q,,, increases, as compared to O .

The results obtained can be used for the same
geological formation for each region, but similar
patterns can be obtained for other areas as well.

2. Geological background of studied areas

The main studied areas are KDS and SDS. KDS is
on the Karun River, which is originated from
the Zard-Kuh Mountains in the Zagros area, Iran.
SDS is on the Seymareh River and its site belongs
to the Zagros Mountains in the SW Iran (Figure
2). Geologically, the Sequence stratigraphic rocks
of the studied areas; include limestone and marl-
limestone; belonging to the Asmari formation
(Oligocene-Miocene), Gypsume belongings to the
Gachsaran formation (Mio-plocene),
and Conglomerate  belonging to  Bakhtiari
formation (Pleo-pleistocene, conglomerate) [18,
19].

Among the different formations in
the Zagros region, the ~ Asmari limestone  with
unique characteristics such as hardness and
morphology is suitable for the dam projects in
the Zagros area. However, this formation also has
some degrees of expansion of karstic cavities that
are very effective on the rock mass quality. The
formation in its parts includes lime, dolomite-
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limestone, and limestone. It deposited during the
late Oligocene -early Miocene [20].

The Asmari formation can be divided into three
different units based on the formation conditions
and the forming rocks as follow:

Upper Asmari (A.3) as 150 m in thickness,
moderate to thin bedding, crystal, biologic, and
marl limestone; Middle Asmari (As.2) as 150 m in

massive and dolomitic and marl-limestone; and
finally, lower Asmari (As.1) as 188 m in
thickness, medium and thick bedding, marl and
microcrystalline limestone [21-23]. The limestone
rocks studied in this work cover almost all units of
the Asmari formation, and consist of high-quality
limestone to low calcareous rocks with karstic
cavities.

thickness, thick bedding and karstified rocks,
Site Visit and Data
Geophysical, Collection from
Geotechnical, Structural Boreholes and Galleries Data Analyses of V ,
and Stratigraphic Survey =5 for Q and Qg =2 ER, Q and Qg *
of KDS and SDS Classification of Asmari
Limestone
P ]
lnlerpolalion Between Create Raster Layers of Extract Random
Datapoint Sets by V,. ER, Q and Q, Multivalues (V ,, ER, Q
ArcGIS = and Q) to Point from
= Raster Layers
Vp+ER=Q
VprtER =Q Vp +ER = Qqp, Testing of FISand
Regression Approach > ArcGIS Fuzzy Method - Statistical Models
Between Extracted Point

Figure 1. Flowchart of the methods, used in this research; work to evaluate the rock mass quality.
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Figure 2. Geological map of SDS and KDS [16, 17].
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3. Materials and methods
Recent geophysical works in civil engineering

have mostly focused on the parameters Vp and
ER[8]. In SDS and KDS, geophysical
investigations have beencarried out by
performing the tomography method of Vp and
ER. The main purpose of the geophysical
investigations was to assess the quality of rock

mass at the valley of dam sites and to investigate
the presence of the probable weak zones,

A)

B)
ER Profiles
."‘ e ™
704500 704600 704700
Top
D)
C)

identifying anomalies such as crushed zone and
cavity. Tomography was performed by
cross-gallery (or boreholes) arrangement in
sites with a source/receiver spacing of 2 m[18,
19]. Figure 3 shows the location of the ER
profiles, galleries, and the studied boreholes
between them in SDS and KDS, 3D geometry of
seismic geophysical data acquisition in galleries,
and boreholes and location of source and receivers
in gallery boreholes (E).

3537400

3537300

402300 402500

3537400

Base Base
E)
Site Area Location of receiver Location of source No of No of Type of
Min & max depth, m Min & max depth, m file seismograph source
SDS TTH2 «152-44 TTHI1 «<172-40 71 852 sparker
TTH3 «160-44 TTH2 <172-40 46 768 Sparker
TTH3 <142-44 TTH4 <142-40 50 600 Sparker
TTHS5 <148-44 TTH4 <152-40 56 672 Sparker
TTH6 «459-46 TTH10 <162-40 67 804 Sparker
TTH6 <160-46 TTHS <162-40 68 816 Sparker
TTHI0 <172-46 TTHS <172-40 68 816 Sparker
TTHY <162-46 TTH8 <162-40 67 804 Sparker
GR1 GR3 80 1600 Explosion
KDS BHI BH7 85 1800 Explosion
GL1 GL2 90 2010 Explosion
GRI1 GR2 80 1600 Explosion

Figure 3. Location of ER profiles, galleries, and studied boreholes between them in SDS (a) and KDS (b), 3D
geometry of seismic geophysical data acquisition in galleries and boreholes (C and D), and location of source and
receivers in gallery boreholes (E).
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For applying the O and Q,, classification
systems on the rock mass classes in SDS

and KDS, a site visit was arranged, and the Q
and Q.
for classifying the drill-cores and rock sections of
the selected boreholes and galleries, drilled in
different rock units from AS-1 (oldest) to AS-3
(youngest). The @ and Q,, indices were

calculated in the TH1 to TH9 boreholes, GR1 and
GR3 galleries in SDS and in BH1, BH7 boreholes

classification systems were calculated

and GRI1, GR2, GLI1,and GL2 galleries
in KDS, and in boreholes drilled between them.
The results of the preliminary ¢  and

Q. classifications are presented in Figure 4.
Looking at this figure, the O values confirm the

very poor to good quality, and the O values

confirm the very poor to fair quality of the studied
rock masses.

In addition, using the GIS method, for acquiring
the geophysical and geotechnical data, we made it

possible to carry out 3D raster layers of the Vp ,

ER, O, and O,

methods. All the created GIS raster layers of rock
mass quality and geophysical parameters are
shown in Figures 5 and 6. In Figure 5, four
sections of the information layers obtained in SDS
are shown. At the GRI1-GR3 section, the
information layers are derived from the
interpolation of data taken in galleries and several
boreholes drilled between them. In this section,
the map of a small anomaly has an 80-degree
slope and is related to a faulted zone.
Furthermore, atthe THI-TH2 section, some
anomalies were observed, beginning with a depth
of 100 m up to the depths and levels of 543, 518,
and 590 m in the TH3-TH4 section. The anomaly

sections by the interpolation

the TH4 boreholes were located near the water
level and extended to the TH3 borehole. The
small anomalies in TH4 and THS5 at levels of 589,
526, and 510 m are related to small set joints. A
big anomaly was clearly seen at levels of 570 to
597 m ofthe THS8-THY section. In the
TH6-TH10 and TH6-THS sections, the quality of
rock was good and proved that with increasing
depth, velocity decreased. The information layers
of Figure 6 are also derived from the data
interpolation between the GR1-GR2 and GLI1-
GL2 galleries and BH1-BH7 boreholes in KDS.
Anomalies in the GR1-GR2 galleries were related
to set joints, and in GL1-GL2, the galleries were
related to faults and joints. In addition, in the
BH1-BH7 section, anomaly was clearly seen at
levels of 560 to 575 m.

with ER and

srm

3.1. Correlation between Q, Q

VP

A detailed comparison of the V' , and ER sections
with the corresponding rock mass quality maps (at
the same scale) was performed. By extracting
about 1200 sets of data from raster layers using
multi-values of point technique in ArcGIS, the
samples and multivariate regression analyses were

developed for the O and Q, recorded values
with 7, and ER

(independent variables). Figure 7 shows a matrix
plot of the sample regression analyses and the

important relationships V', vs. Q. ( R?=0.52),
V,vs. O (R*=042),ERvs. O, (R?=034),

and ER vs. O (R? = 0.29) are presented. It is
clear that the geophysical parameters show the
best relationships with the O

(dependent  variables)

index.

observed in the level of 590 m in
900
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Figure 4. The range of Q and Q. quantities of the studied calcareous rock masses and relative parameters.
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Figure 5. Geophysical, Q and Q,,,, raster layers in SDS.
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Figure 6. Geophysical, Q and Qg raster layers in KDS.
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Figure 7. Regression analyses of relation between Vp , ER, Qand Q. .
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Figure 8. Contour plots of relation between

Figure 8 shows a schematic image of the contour
plot of relation between Vp and ER with Q and

Q... - As shown in Figures 8(a) and 8(b), the one

obtained based on (@ has the highest

determination. In fact, increasing the Vp and ER

parameters simultaneously, the O~ index with a

regular trend increases but the trend of change in
the Q index is accompanied by some anomaly.
The best fit obtained multivariate equations to

estimate O and Q  are written as Equations 2
and 3, respectively (Figure 9). The results
obtained show that the best equation between Vp

and ER with O (R’ = 0.67) is more reliable
than the best between V', and O (R 2 =0.48).

Oym =26.6545-16.1988 %V, +

R’=0.67 (2)

231xV,% +0.005289 x ER

535

V, and ER with Q (2) and Q, (b).

0 =-19.957-0.01985x ER +

2
0.0000105xER2+10.112pr —0.288pr R*=0.48

€)

Figure 10 shows comparison between the

measured and predicted O and Q_  upon the

base of Equations 2 and 3. In the karstic samples,
the difference in error and the predicted values by
equations 2 and 3 showed more differences with
each other. Figure 11 shows the contour map of
the values of Q__, difference of error percentage,

and degree of Kkarstification. As shown in this
figure, an increase in the difference between the
values predicted by Equations 2 and 3 and the

drop in theQ the degree of

karstification of the rock. The geological reason
for this is to consider cavities as parameter V in

the O, classification. V indicates the presence

srm

indicates

srm

of cavities in the rock mass, their density, and the
filling of the cavities with clay or other materials.
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Certainly, the presence of cavities and their
properties have a great influence on the
geophysical parameters but it not considered in

the QO classification. Therefore, the efficiency of

1500

1000
Vp (knv/sec)

ER(Ohm-m)

Qsrm

the O, index increases significantly compared

to O by increasing the degree of karstification.

50 ER(Ohm-m)

Figure 9. Multivariate relation between Vp and ER with Q (a) and Q,,,, (b).

Q (predicted) = 3.828 Q(measured)*

Predicted Q

Measurred Q

(b) 30

25 R*=0.66

- ~
« S

Predicted Q,,,,
s

Q,(predicted)=2.3451*measuredQ,,,,+0.691

Measurred Q,,,

Figure 10. The best-fit line determined between predicted Q (a) and Q. (b) from multivariate regression
analyses and measured values.

Contour Plot of Karstification vs Qsrm, Error%o Difference

Qsrm

50

100

Error% Difference
Figure 11. Contour map for the values of Q

200

3.2. Data analysis by fuzzy methods

The use of indirect methods in predicting rock
mass properties, especially in lime rock, is always
associated with ambiguities and uncertainty. So
far, extensive studies have been done on the

srm

250
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Karstification

= ]_L\/ Rock masses without voids and karstification
N
— |j,\ Percentage of voids and karstification 0 -10%
~
m —1> Percentage of voids and karstification 10 - 40%

= _1;7 Percentage of voids and karstification > 40%

difference of error percentage and karstification.

effectiveness of fuzzy methods to resolve many
ambiguities and solve the problem in rock
engineering. One of the first attempts to use the
fuzzy logic theory of rock mechanics and the use

of QO classification system was the research work
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done by Nguyen and Ashworth [24]. Juang and
Lee [25] used fuzzy methods for prediction of
rock mass classifications such as RMR. Fuzzy
models also improved by Yao et al. [26], Wu et al.
[27], and Clouse [28] have also predicted the rock
mass and seismic data.

Many comprehensive researches have also
conducted the use of fuzzy principles in
engineering geology [29-35]. The Fuzzy Logic
Principles introduced by Zade [36] are the best
means of controlling uncertainty in data. The first
two phases of the fuzzy logic principle included
fuzzy input data and then the use of fuzzy
functions for analyzing fuzzy data. To convert
non-fuzzy sets to fuzzy, several functions were
used as membership functions (MFs). In the after-
phase of fuzzyfying of the data, in order to
establish a logical relationship between inputs and
outputs, several conditional rules and algorithms
are required [37].

In this study, Sugeno's fuzzy algorithm [38] was

chosen to predict the Q= system with fuzzy sets.

This algorithm is the most practical fuzzy
algorithm in rock engineering. The general
principles of the Sugeno fuzzy model in this
research work are as follow:

If Input 1 = x AND (OR) Input 2 =y, then Output

7. =ax. by +k,
where a, b, and k are the parameters presented by
matrices derived from FIS. It means that x; is V' »

and y; is ER for each section. The final output of a
fuzzy model, in fact, the average of all outputs
obtained using the rules, was calculated by
Equation (4).

Wti

Final —Output = ZZ (z
Wt

4)

The Z; output is weighed from each law with a
value of W. Most law-based systems include more
than one rule. Finally, the result should be the
aggregation of the results obtained from the
various fuzzy functions. There are two simple
methods for aggregation of results. In general, the
common and differentiated systems of rules can
be combined using the AND and OR functions
[39].

MFs designed here are, in fact, simple and linear
functions, whose coefficient of functions were
derived from a matrix m X n in the model
calculations. Each column of this matrix is the
physical parameters of the MF output, and each
row is equivalent to an MF. In this research work,
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for the Q= evaluation, 32 rules were made and a

specific FIS model was presented for the O
evaluation (Figure 12). The model designed to
estimate O~ after 35 training steps resulted in at

least an error.

4. Evaluation of models

To test the FIS model, the predicted values in the
TH6-TH10-TH8 and THS-TH8-TH9 sections
were converted into 3D layers in ArcGIS using
the spatial data interpolation methods. Figure 13

shows the QO
predicted by the FIS model and measured values.

As shown in this figure, the information layers
obtained from the FIS models have a good

prediction of Q

indicator information layers

m» and the measured and
predicted values are close to each other.

In addition, to check the accuracy and compare
the results between the FIS and statistical
methods, thep?, Mean Absolute Deviation
(MAD) [40], Variance Accounted For (VAF), and
Root Mean Square Errors (RMSE) were
calculated [41, 42] (see Equations 5-7).

VAF =(1—M)xloo (5)
var(y )
MAD = 2. (6)
n
ruse = [L3 0y o

where y and y' correspond, respectively, to the
actual values measured relative to the rock mass
quality data and the values obtained from the

models. Here, R? is used to evaluate the
relationship between the predicted and measured
values (real), while VAF, MAD, and RMSE are
used to compare the FIS results with different
methods. As shown in Figures 10 and 14, the
coefficients of determination were 0.67 and 0.86,
respectively, for the regression analyses and FIS
models.

Table 1 shows the results of VAF, MAPE, and
RMSE for the regression analyses and FIS
models. As shown, geophysical parameters in

estimating Q =~ using the fuzzy method show a

better performance than the other models used in
this research work.
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Figure 13. Raster layers of measured and predicted Q.. by FIS model (data used for testing of models).
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Scatterplot of Predicted Qsrm vs Measured Qsrm
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Figure 14. Relation between the predicted values with FIS and measured in-situ Q. values (R?=0.86).

Table 1. Results of R>, MAD, MAPE and RMSE for regression analysis and fuzzy model.

Model Predicted parameter R2? RMSE (%) MAD VAF (%)
Best regression Q 0.48 37.856 3.8 25.36
Best regression Oim 0.67 12.354 2.9 89.23
Fuzzy Method Ogm 0.86 6.63 2.1 95.35

5. Conclusions

The present work focused on the seismic and
electrical parameters used to predict the quality of
the Asmari limestone mass. The following
conclusions can be extracted from the current
work:

The mean values for O with ER and V, are

related to a multivariable equation with a
coefficient of 0.48 and the mean values of QO
with the equation with the best coefficient of 0.67.
Since O, considers a wide range of rock mass
cavities and

properties including layering,

generally, the prediction of O by combining

the geophysical parameters has a higher
coefficient of determination and less error than
prediction of Q.

In this work, fuzzy methods were used to develop
predictive models for predicting Q. R 2 VAF,
MAD, and RMSE were 0.86, 95.35, 2.1, and 6.63,
respectively, for the FIS model. Therefore, the
results of the FIS model were closer to the actual
erm

of qualitative boundaries in the fuzzy model,
which is closer to the nature of the problem. In

values. In fact, the reason for this is the use

addition, comparing the values for R?*, VAF,
MAD, and RMSE of the equations obtained from
the regression analysis and FIS techniques show

that the approaches using FIS for predicting O,
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are much more reliable than multiple regressions.
In addition, by increasing the degree of
karstification of rock mass, the effectiveness of

the geophysical parameters in estimating the O

m index increases with respect to other
classifications studied due to the role of cavities in
this classification. The results obtained in this
work can be used for each region with similar
geological conditions but a similar method can be
used in other areas.
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