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Abstract 

Static deformation modulus is recognized as one of the most important parameters governing the behavior of 

rock masses. Predictive models for the mechanical properties of rock masses have been used in rock 

engineering because direct measurement of the properties is difficult due to time and cost constraints. Using 

empirical methods, the deformation modulus is estimated indirectly from classification systems. This paper 

presents the results of the application of Artificial Neural Networks (ANN) technique and Regression models 

to estimate the deformation modulus of rock masses. A database, including 224 actual measured deformation 

modulus, Uniaxial Compressive Strengths of the rock (UCS), and Rock Mass Rating (RMR) was established. 

Data were collected from different projects. To predict Em by regression, a nonlinear regression method was 

used. This model showed the coefficient correlation of 0.751 and mean absolute percentage error (MAPE) of 

9.911%. Also a three-layer ANN was found to be optimum, with an architecture of two neurons in the input 

layer, four neurons in the hidden layer and one neuron in the output layer. The correlation coefficient 

determined for deformation modulus predicted by the ANN was 0.786 and the quantity of MAPE was 

6.324%. With respect to the results obtained from the two models, the ANN technique was shown to be 

better than the regression model because of its higher accuracy.  

Keywords: Rock mass modulus, Neural Networks, Regression method, discontinuity. 

1. Introduction 

The design process of geo-structures built in and 

on rock strata requires proper input parameter 

representing the in-situ rock mass characteristics, 

such as the joint frequency, weathering state, joint 

conditions and rock mass strength. The design 

parameter, however, is easily tested in laboratory 

experiments only on small intact rock specimens.  

Among the many design properties, the 

deformation modulus of in-situ rock mass is a 

crucial parameter and has a vital importance for 

the design and successful execution of rock 

engineering projects, because the deformation 

modulus is the best representative parameter of 

the pre-failure mechanical behavior of the rock 

material and of a rock mass. The modulus of 

deformation is also very important in the 

interpretation of monitored deformation around 

underground opening. 

There are several methods to determine the 

deformation modulus of rock mass directly, by 

field or in-situ tests; like pressure meter [1], 

dilatometer [2], plate jacking [3], plate loading 

[4], radial jacking, flat jack, cable jack, and 

geophysical methods [5-7]. Although in-situ 

techniques are the best methods to determine 

deformability modulus of rock masses, they are 

time-consuming, expensive and can only be 

performed when the exploration space are 

excavated. This constraint forced the investigators 

to develop an empirical equation for indirect 

estimation of the deformation modulus of rock 

masses based on other rock mass properties that 

can be easily determined at low cost such as 
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RMR, the tunneling quality index (Q), GSI, etc. 

Many researchers developed some empirical 

equations to estimate rock mass deformation 

modulus, but the suggested equations are based on 

a limited data set with a low correlation 

coefficient.   

This paper attempts to produce a reliable 

empirical equation to estimate the deformation 

modulus of different rock types with specific rock 

mass conditions using rock mass classification 

systems and intact rock properties. To do this, 

Artificial Neural Networks (ANN) and regression 

modeling are applied on 224 data each of which 

contains RMR, UCS and measured deformation 

modulus. 

2. Review of previous researches 

The first correlation between RMR and rock mass 

deformation modulus was proposed by 

Bieniawski, as [8]: 

50)RMR(for      1002)(  RMRGPaEm
 (1) 

Serafim-Pereira then proposed the following 

expression based on RMR system [9], 

50)RMR(for      10)( 40/)10(  RMR

m GPaE  (2)
 

Nicholson and Bieniawski presented the following 

relation considering RMR the elasticity modulus 

of the intact rock E [10]: 

)9.0.0028.0(01.0 82.222

RMR

m RMREE   
(3)

 

 

Mitri et al. also obtained a formula including 

elasticity modulus of intact rock materials and 

RMR [11]: 

  )100.cos(15.0)( RMREGPaEm   (4) 

 

where, E  is the elasticity modulus of intact rock 

material in GPa. 

Galera et al. derived an empirical formula based 

on Serafim-Pereira work considering elasticity 

modulus of intact rock materials [2]: 

36/)100(  RMR

m eEE  
(5) 

 

Grimstad and Barton presented a new empirical 

model based on Q system. This equation is valid 

for Q greater than 1 [12]: 

 

QGPaEm log25)(                                        (6) 

 

Hoek and Brown found the following relation for 

the Em based on the GSI which is valid for rock 

with c  less than 100 MPa [13]: 

 

40

10

10
100

)(





GSI

c
m GPaE

                                   (7) 

 

where, c  is the compressive strength of rock in 

MPa. 

Later, Hoek et al. empirically estimated Em based 

on GSI and D (Disturbance factor) in the 

following form [14]: 

 

40

10

10
100

)
2

1()(





GSI

c

m

D
GPaE


          

MPa  100c                                                    (8) 

40

10

10)
2

1()(





GSI

m

D
GPaE                                   

MPa  100c                                                    (9) 

Hoek and Diecrich also suggested the following 

formulas based on GSI [15]: 
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         (11) 

 

Palmstrom recommended that GSI is useful for 

weak rock mass with RMR<20 [16].  

Gardner derived the following expression based 

on RQD and elasticity modulus of intact rock 

[17]:  

 

0.15)( 32.10231.0/  RQDEEm
                  (12) 

 

Zhang and Einstein proposed the following 

relations based on RQD system [18]: 

 

bound)(Lower   102.0/ 91.1 0186.0  RQD

m EE               (13) 

bound)(Upper   108.1/ 91.1 0186.0  RQD

m EE               (14) 

(Mean)         10/ 91.1 0186.0  RQD

m EE                         (15) 

 

Palmstrom and Singh presented the following 

equations based on RMi classification system [2]: 

 

0.1)RMi(for      RMi 6.5 0.375 mE                   (16) 
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30)Mi1(for           RMi 7 0.4  REm
              (17) 

Gokceoglu et al. presented a useful formula for 

predicting Em based on weathering degree of rock 

(WD) [19]. Weathering is the gradual destruction 

of rock under surface conditions. Weathering may 

involve physical processes (mechanical 

weathering) or chemical activity (chemical 

weathering) or the actions of living things 

(organic weathering). In principle, it is very 

simple to quantify the influence of weathering on 

a geotechnical parameter. A simple comparison of 

a rock mass parameter (for example intact rock 

strength, spacing or conditions of discontinuities, 

etc.) in an exposure in which different degrees of 

weathering are present in the same unit should 

give the quantitative reduction values. Therefore 

the WD factor can be obtained as: 

 

parameter massrock fresh 

parameter massrock  weathered
WD 

             (18) 

 

and the deformation modulus of rock mass can be 

estimated by the following relation: 

 



















WD

RQD
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GPaEm

)
100

1()(

0308.0)(
            (19) 

where, E is the elasticity modulus of intact rock 

material in GPa and WD  is the weathering 

degree. 

Sonmez et al. presented other formulas to predict 

Em as [20]: 

 

9542.83166.0)(  RMRGPaEm                (20) 

 
176.300001.0)( RMRGPaEm                         (21) 

 

078.31)ln(038.10)(  GSIGPaEm                (22) 

  
GSI

m eGPaE 0654.01451.0)( 
                       (23) 

 

Mohammadi and Rahmannejad estimated Em by 

the following formula [21]: 

 

4064.33157.0

0193.00003.0)( 23





RMR

RMRRMRGPaEm
               (24) 

 

In order to present a new model, a complete 

database was derived from bibliography. Then 

two methods are used:the first one is curve fitting 

and regression analysis; and the other one is 

Artificial Neural Networks (ANN).  

3. Database information 

In the present study, 224 data sets were collected. 

Each data set contains the parameters such as the 

deformation modulus, RMR and UCS. All of 

these data have been collected from bibliography 

and library studies that measured in different spots 

in the world such as: 

 The collected data sets from road and 

railway construction sites in Korea [1]. 

 Data set measured by PMT (pressure 

meter tests) and performed at eight field 

sites which included six rock types such 

as Granite, Gneiss, Andesite, Tuff, 

Sandstone and shale. The studying areas 

were mainly located in Cheonla-do and 

some areas were in Chungcheong-do and 

Kyungsang-do, Korea [22]. 

 Data set provided from two dam sites; 

namely Deriner (Artvin) dam site and 

Ermenek (Karaman) dam site in Turkey. 

The Deriner (Artvin) dam site is mainly 

covered with grey and pinky Quartz-

Diorite and the other dam site, Ermenek 

(Karaman) is covered with light 

Limestone [4]. 

 Data set derived partially from 

bibliography [2], [3], [5], [6] and [7].  

The results of statistical analysis of these data are 

illustrated in Table 1and Figure 1. 

4. Multiple Nonlinear Regressions 

4.1. Theory of Regression Analysis 

Regression analysis is usually used to analyze the 

problems where several parameters may affect 

their results and some multivariable function may 

arise and the relations may be linear or nonlinear 

[23]. In this study various nonlinear models like 

polynomial, exponential and power polynomial 

have been used to analyze the output parameter 

(y). In these models the function y is related to the 

variable x with some constant a, b, c, d and etc. 

The variable x is chosen to be the input 

parameters where affecting the y results.  

Table 2 shows the nonlinear regression model and 

related formula usually used for the analysis of y 

prediction. 

Table 1. Statistical parameters of 

database 

 Em (GPa) RMR UCS (MPa) 

Min 0.0003 15.73 9.99 

Max 45.62 94.28 259.28 

http://geology.about.com/od/glossaryofgeology/g/defmechweathering.htm
http://geology.about.com/od/glossaryofgeology/g/defmechweathering.htm
http://geology.about.com/od/glossaryofgeology/g/defchemweathering.htm
http://geology.about.com/od/glossaryofgeology/g/defchemweathering.htm
http://geology.about.com/od/glossaryofgeology/g/deforgweathering.htm
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(c) 

Figure 1. The histograms and statistical evaluations of the data used in this research 

 

Table 2. Nonlinear regression models and their 

related formula [26] 

Regression model Equation 

Polynomial of order two 
Polynomial of order three 
Exponential 
Power 

Y= ax
2
+bx+c 

Y=ax
3
+bx

2
+cx+d 

Y=ab
x
 

Y=ax
b
 

In order to check the result of regression analysis, 

coefficient correlation (R), Mean Absolute 

Percentage Error (MAPE), Mean Square Error 

(MSE) etc can be used. In this research, R and  

 

MAPE are applied to check the results of 

regression and ANN modeling. 

The quantity R, called the correlation coefficient, 

measures the strength and the direction of a 

relationship between two or more variables. The 

mathematical formula for computing R is [23]: 

 

  

       2222










iiii

iiii

yynxxn

yxyxn
R         (25) 
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where, xi is the input parameter, yi is the output 

parameter and n is the number of data. 

MAPE is the measure of accuracy in statistics. It 

usually expresses accuracy as a percentage, and is 

defined by the following formula [23]: 

 







n

i t

tt

A

FA

n
MAPE

1

1                                        (26) 

where, At is the actual value and Ft is the forecast 

value of the output variable. 

4.2. New correlation between RMR and Em  

In this model the geotechnical parameters of UCS 

and RMR are used to predict the value of Em. At 

first, a sensitivity analysis is performed to 

determine the critical parameter that has more 

effect on Em. Sensitivity analysis is a technique 

used to determine how different values of an 

independent variable (like UCS and RMR) will 

impact a particular dependent variable (like Em) 

under a given set of assumptions. Therefore, the 

Em-RMR and Em-UCS graphs are drawn that can 

be seen in Figure 2 As is clear from this figure, Em 

is more sensitive to the RMR than UCS. 

 

 
Figure 2. Sensitivity analysis in data sets: relation 

between Em and UCS and RMR 

With these data, several correlations have been 

investigated to estimate Em and the following 

equation has been derived:  

 
492.0616.1310473.1 UCSRMREm  

    
(27) 

where, mE  is in GPa and UCS  is in MPa. UCS is 

considered twice in the suggested equation, one 

time in RMR and one time as a variable; this is 

because of the importance of intact rock 

properties on the deformation modulus of rock 

mass.  

Figure 3 shows a three dimensional model 

obtained based on the equation (26) with a 

coefficient correlation of 0.751 and MAPE of 

9.911%. 

In order to investigate the effect of data 

classification on the obtained coefficient 

correlation, the range of input parameters (UCS 

and RMR) is broken into two and three intervals 

in such a way that the number of data in each 

group is equal. Then the correlation was 

investigated within each interval. Table 3 and 4 

show the results of input data grouping. 

As shown in Tables 3 and 4, data classification 

does not improve the correlation coefficient. 

5. Artificial Neural Network (ANN) 

5.1. Theory of ANN 

ANNs are simplified mathematical models 

inspired by the biological structure and 

functioning of the brain. In other words, to be able 

to decide and act under uncertainty or even deal 

with situations having limited previous experience 

[24]. 

ANNs are mathematic models consisting of 

interconnected processing nodes (neurons) under 

a pre-specified topology (layers). Usually the 

neurons operate in parallel layers. A typical 

network topology consists of the input layer, one 

or more hidden layers and the output layer as 

shown in Figure 4. 

In the topology shown in Figure 4, each neuron of 

the input layer (X1, X2 and X3), sends out its 

weighted signal to the Y neuron found in the 

hidden layer [25]. The combined input signal in 

the Y neuron has the following form: 





n

i

iiin xwY
1

.                                           (28) 

where, ix  is the signal of the i th input neuron, 

iw the weighting factor of the i th neuron. 

The input signal ( inY ) is introduced to the 

activation function of the Y neuron and signaled 

to the neurons of the output layer, Z1 and Z2 

following the general form: 
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)( inYfy   (Transfer function) taking into 

account the weighting of the connection links, 

namely 1  and 2 . The transfer functions are 

designed to map a neuron, or layer, net output to 

its actual output. They are simple linear or 

nonlinear step functions. The type of these 

transfer functions depends on the purpose of the 

neural network [26-27]. 

 

Table 3. Obtained models to predict Em based on RMR classification 

No. of 

interval 
RMR range Obtained equation R MAPE (%) 

2 
0<RMR<50 

Em=-8.979+0.175RMR+0.266UCS-1.176UCS2- 

2.508UCS3+2.369UCS4-5.265UCS5  0.517 95.72  

50<RMR<100 
Em=50453.751-3338.159RMR+87.907RMR2-

1.152RMR3+0.008RMR4-0.0002RMR5+0.07UCS 
 0.623 39.16  

3  

0<RMR<40 
Em=-8.571+0.171RMR+0.275UCS-0.002UCS2-

0.0002UCS3+2.069×10-3UCS4-4.756×10-10UCS5 
 0.616  44.36 

40<RMR<70 
Em=-115.806+3.079RMR-0.02RMR2+1.165UCS-

0.02UCS2+0.0001UCS3-2.57×10-7UCS4 
 0.532  67.25 

70<RMR<100 
Em=418572.901-26415.844RMR+664.866RMR2-

8.343RMR3+0.052RMR4-0.0001RMR5+0.062UCS 
 0.621 24.18 

 

Table 4. Obtained models to predict Em based on UCS classification 

No. of interval UCS range Obtained equation R 
MAPE 

(%) 

2 

0<UCS<120 

Em=1.916+3.377×10-3RMR+4.787×10-3UCS-

5.071×10-4RMR2-1.237UCS2×10-3+ 

3.763RMR×UCS 
 0.592 59.45  

 120<UCS<170 

Em=724.845+0.241RMR+0.001RMR2-

16.407UCS+0.134UCS2-0.0005UCS3+6.111×10-

7 UCS4 
 0.723 75.54  

3  

0<UCS<100  
 Em=-2.889+0.164RMR+0.06UCS-0.003RMR2-

0.002UCS2+0.005RMR.UCS 
 0.581  64.14 

 100<UCS<140 

Em=-2461.141-199.785RMR+6.365RMR2-

9.935RMR3-0.0008RMR4-

0.000002RMR5+0.07UCS 
 0.635  42.25 

 140<UCS<170 

 Em=-240.728+1.799RMR-

0.03RMR2+0.002RMR3+3UCS-

0.014UCS2+0.00002UCS3 
 0.708 93.33  

 

 
Figure 3. Three dimensional model to predict Em based on the equation (26) 
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Figure 4. Schematic diagram of Neural Network 

 

First, ANN processes the large input data to 

training itself. After the training stage, network 

predicted new result of new data. This results in a 

predicted output pattern. Any particular network 

can be defined using three fundamental 

components: a transfer function, network 

architecture and a learning law. 

5.2. Input data set 

The first and most important stage for predicting 

Em in ANN technique is data collection. The data 

was chosen in neural network must have a good 

correlation with Em. In this research, these data 

was randomized by ANN and placed into training, 

validation and test subsets. 

In the present study, 224 data sets were collected. 

From these, 65% of the data were chosen for 

training, 15% for validation and 20% for the final 

test. 

5.3. ANN topology 

An appropriate architecture was obtained from 

feed-forward back propagation. A three-layer 

network with logarithmic sigmoid transfer 

function neurons in the hidden layer, and 

Levenberg-Marquardt (LM) algorithm 

corresponding to Em in the output layer, was 

chosen. 

As there is no direct method to identify the 

number of hidden layers and number of neurons in 

each hidden layer, several network topologies 

were examined for this work. Also the LM 

algorithm was chosen to train the ANNs because 

it is known to be the fastest method for training 

moderate-sized feed-forward neural networks. LM 

algorithm is a modification of Newton’s method 

for nonlinear optimization. This algorithm does 

not utilize second derivatives unlike Newton’s 

method (in the Hessian computation, the second 

derivative component is ignored assuming it is 

small). This method is based on the concept of 

quadratic approximation of error function in a 

local region. Note that if the error function is truly 

quadratic in nature, Newton’s method finds the 

minimum solution in a single iteration. Therefore, 

the success of this technique depends upon how 

the error function resembles a quadratic function. 

If the quadratic approximation is not appropriate, 

the algorithm may diverge. Searching of an 

optimal solution using this method requires 

calculation of the inverse of the Hessian matrix, 

which should be positive definite. Newton’s 

method does not always guarantee the positive 

definiteness of Hessian matrix. LM introduces a 

regularization term into the Hessian matrix so that 

the positive definiteness of the Hessian matrix is 

guaranteed.  

5.4. Testing and validating the model 

After training the network, testing and validation 

of the ANN model was done with new data sets 

that were not used during the training process. 

The MAPE and R between the predicted and 

measured Em were taken as the performance 

measures. 

The prediction was based on the input data sets. 

Several models were built, and the quality of the 

results obtained for some of them is shown in 

Table 5. The correlation coefficients and mean 

squared errors for the different models are 

presented in this table. As can be seen, the best 

model has the MAPE equal to 6.324% and the 

correlation coefficient equal to 0.786 for test data 

sets. This model is optimum model with a 2-4-1 

architecture that shown in Figure 5. 

Table 5. Comparison between some of suggested 

models in ANN method 

No. Model R MAPE (%) 

1 2-13-1 0.413 25.048 

2 2-9-1 0.573 17.794 

3 2-6-1 0.639 9.834 

4 2-4-1 0.786 6.324 

5 2-13-9-1 0.514 21.434 

6 2-10-9-1 0.239 57.943 

7 2-13-6-1 0.394 34.754 

8 2-4-4-1 0.439 27.646 
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Figure 5. Suggested ANN model for predicting Em 

 

Figure 6 illustrates the comparison of the real 

value of Em using insitu tests and measured value 

of Em by two models, regression and ANN.  

This graph shows a good agreement between 

measured values of Em using regression and ANN 

methods and real ones. Therefore these two 

indirect methods can be reliably used to predict 

rock mass modulus. 

 

 
Figure 6. Comparison of real and measured values obtained by two models 

 
6. Conclusions 

The analysis for indirect estimation of 

deformation modulus of rock masses was 

investigated using regression and ANN methods 

and the following conclusions can be drawn: 

1) RMR and UCS are both incorporated in 

order to estimate Em. RMR reflects the 

discontinuities situation within rock 

masses and UCS reflects the intact rock 

properties and also rock type. 

Incorporation of UCS in to the regression 

and ANN modeling leads to improving 

the correlation coefficient. 

2) RMR has more effect on Em rather than 

UCS. 

3) The proposed non linear regression model 

has an acceptable correlation coefficient, 

so that it can be used to estimate the rock 

mass deformation modulus. This relation 

is based on data from different parts of the 

world with different lithology.   

4) Data classification does not improve the 

correlation coefficient in the regression 

analysis method. 

5) The results obtained from this research 

show that an ANN is a useful tool to 

predict deformation modulus of rock 

masses. However, the relationship among 

the inputs and outputs is very complex. 

The optimum ANN architecture was 

found to be two neurons in the input 

layer: one hidden layer with 4 neurons; 

and one neuron in the output layer. 

6) As can be seen, the value of correlation 

coefficient in ANN is a little greater than 

that of the regression models. 
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