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Keywords Abstract
Due to the nature of the geological and mining activities, different input parameters in
Geostatistics the grade estimation and mineral resource evaluation are always tainted with

uncertainties. It is possible to investigate the uncertainties related to the measurements
Fuzzy Variogram Model ~ and parameters of the variogram model using the fuzzy kriging method instead of the
kriging method. The fuzzy kriging theory has already been the subject of relatively
various research studies but the main weak point in such studies is that the results of the
fuzzy estimations are not used in decision-making and planning. A very common, but
key, tool of decision-making for mining engineers is the tonnage-average grade models.
Under conditions where measurements or/and variogram model parameters are tainted
with uncertainties, the tonnage-average grade model will be uncertain as well.
Therefore, it is necessary to use the fuzzy tonnage-grade model instead of the crisp ones,
and the next analysis steps and decision-makings are done accordingly. In this paper, the
computational principles of the fuzzy tonnage-average grade curve and a case study
regarding its usage are presented.

Decision-Making

Uncertainty

1. Introduction

Nowadays, kriging is known to be the most
common estimation method in the evaluation of
mineral deposits, and the very important inputs of
the kriging estimator are 1) assay data gathered
from drillholes and 2) variogram model
parameters, both assumed to be certain but in
reality, something else because 1) preparation and
analysis of the assay data are not certain due to the
sampling errors [1], and 2) the fitted variogram
model is tainted with epistemic uncertainty [2]
due to insufficient data during the structural
analysis [3-5]; therefore, the assumptions are
invalid, and hence, the results obtained by kriging
are uncertain as well [1, 3-6]. Geostatisticians
have dealt with such uncertainties in 3 different
ways: 1) ignoring them, 2) defining a unique prior
distribution function for every parameter with
uncertainty and using the Bayesian kriging tool
[7-9], and 3) defining the uncertain parameters in
the form of interval-valued or fuzzy-interval
parameters and using the fuzzy kriging tool
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[1, 3-5]. In most geostatistical studies, use has
been made of the first method because of the
insufficient uncertainty of the variogram model
parameters and variables. The epistemic
uncertainty in the Bayesian kriging methods has
been investigated through attaching prior
subjective probabilities to each potential model
[9]. Using a single subjective probability to
describe epistemic uncertainty represents much
more information than what is actually available,
and therefore, application of Bayesian kriging
could be debatable [2]. Also a Bayesian kriging
approach requires extensive calculations [10].
There are 2 general objections to this method: 1) a
subjective probability presents much more
information than what really exists, and 2) since
the subjective and objective probabilities present
information related to 2 very different natures,
their product (like what happens in the Bayes'
Law) is incompatible [11]. Fuzzy kriging can be
done based on 2 different algorithms: 1) extending
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the principles of the random functions to the
triangular fuzzy random function [5, 12], and 2)
applying the extension principle [13] on some
selected specific operators [1, 3, 4, 14]. Different
applications of both algorithms have been
presented before [4, 15-19] but they have all
sufficed only on the algorithm of fuzzy kriging;
they have not used the results of fuzzy kriging in
decision-making or planning. A very common, but
key, tool of decision-making for mining engineers
is the tonnage-average grade models. Under
conditions where measurements or/and variogram
model parameters are tainted with uncertainties,
the tonnage-average grade model will be uncertain
as well. Therefore, it is necessary to use the fuzzy
tonnage-grade model instead of the crisp ones,
and the next decision-making steps take place
accordingly. Effort has been made in this work to
calculate the tonnage-average grade model based
on the fuzzy extension principle and make use of
it in decision-making. To check the efficiency of
the proposed algorithm, the results of a case study
in Jajarm Zu2 bauxite deposit, North Khorasan
Province, Iran, have also been presented.

2. Problem formulation
Consider grade as a realization of a second order

stationary random function Z(x),x € D < R?,
d =3, where x is a location in mineral deposit
D. Divide the deposit into v, blocks i=1,..., N

having an equal size and a similar shape. The
average grade of each block ve D can be
estimated by the ordinary kriging using the

surrounding informationZ(x,)i=1,... n, as
follows:
z(v) = f(z(x1), ..., 2(xp), a,v) = )

S A (X e X as)Z (),

012( V)=g(x,x,a,v) =

L - - )
DA (X @) (V) + =y ,x,)
j-l

where z*(v) is the kriged block value; o (V) is
the block kriging variance; y(x,,x,) is the

variogram between locations X; and x ; }_/(V, X,;)
is the average variogram value between block v
and location x;; p is the Lagrange multiplier;
a= {a]-‘j =1¢.. ‘p} are the variogram model

parameters (i.e. nugget effect, sill, and range); p is
the number of variogram model parameters
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(commonly p = 3); andd,, i=1,..., n, are

weights that can be obtained by solving the
kriging system [20]. According to the above
equations, the results obtained from kriging
depend, in addition to the wvariables at the
sampling points, on the variogram model
parameters and the arrangement of the samples
with respect to the block [21]. Since it is generally
impossible, due to insufficient data or behavior of
the experimental semi-variogram (modeling
difficulties), to exactly fit a variogram model with
no uncertainties, then it is necessaryto show the
effects of uncertainties in the results using the
fuzzy kriging method. Bardossy ef al. modeled the
uncertain parameters of variogram with fuzzy
numbers 4 = {d]-‘j =1¢.. ‘p} and calculated the
membership functions ¢ (v) and z*(v) as follow:

Hae (O-I% (17)) B x,v:azilglf(x.a,V) (‘uai (ai)) ©)
ppo(z* () = sup (uai(ai)) (4)

zw:z*(xg)=fo(z,a,v)

Now, if for a specified cut-off grade, g, the
average grade C, and tonnage T, (of those parts of
the deposit with grades greater than g) are defined
as follow:

Ty= ) o@Dz @),s

i€s (5)
={1,..,nlz*(vs) > g}
C = Yies V() z*(v;)
g Yies V) (6)

={1,..,nlz*(vs) > g}

where p is the deposit average density and V (v;)
is the volume of the /™ block, and then, according
to the extension principle (Appendix A), the
membership functions of the fuzzy average grade
and tonnage of those parts of the deposit that have
grades greater than g, are defined as follow:

S

Heo(Cy) = S (z,(z)) ®)
Therefore, based on the fuzzy grade value
estimated for each block, it is possible to extract
the tonnage and average grade according to the
cut-off grades at different degrees of membership,
and finally, draw the tonnage-average grade fuzzy
curve. A useful property of such curves is that it is
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possible to extract from them, at any desirable
cut-off grade, triangular fuzzy numbers for both
the tonnage and the average grade, and use them
in risk evaluations.

3. Case study

3.1. Jajarm Zu2 deposit

The Jajarm bauxite deposit complex is located at
56.25° to 56.45° east longitude and 37.2 to 37.3
north latitude, 19 km NE part of the city of
Jajarm, North Khorasan Province, Iran (Figure 1).
Aluminum anomalies in the Jajarm bauxite
deposit are divided into the 4 separate zones of
lower Kaolin, shale bauxite (SB), hard bauxite
(HB), and upper Kaolin (KB) with HB being
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economically the most important zone (9). The
complex has been divided, due to different faults,
to 4 blocks, one of which is called “Zu”; this too,
has been divided, due to the same reason, to 4
different parts named Zul, Zu2, Zu3, and Zu4. In
Zu2, by boring 72 drillholes, a total of 4439 m of
exploratory drilling has been carried out for part
of which (approximately 574 m) the geological
and assay data is available. The exploratory
drilling pattern is presented in Figure 2. Statistical
studies done on the regional variable of AL,O;
and SiO, in HB zone of Zu2 deposit show that
these variables are normal, and there is no trend in
the data.
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Figure 1. Geographic location of the Zu2 ciép(.)sit in the Jarajm Bauxite Complex.

Figure 2. The exploratory drillingupattern in Zu2 deposit.
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To structurally analyze the AL,O; and SiO,
variables, the experimental semi-variograms were
drawn directionally and directionless. The latter
not only studies and identifies the structural
properties of the regional variable and show its
trend of variations but also summarizes the data.
Before using the experimental semi-variograms in
estimation processes, it is necessary that the most
appropriate theoretical model be fitted to them. In
the present work, fitting model to directional
experimental semi-variograms was not possible
due to insufficient data; therefore, the deposit was
assumed to be isotropic and the model was fitted
only to the directionless ones. The spherical
models fitted to the non-directional experimental

semi-variograms of AL,0O; and SiO, are shown in
Figure 3.

As shown, the superposition of the variogram
model is facing many uncertainties, especially
regarding the parameters of the variogram model;
therefore, a fuzzy variogram model can be quite
helpful. Then it is necessary to use three models
for fitting the lower, middle, and upper bound
models of an experimental variogram instead of
just using one crisp model (Figure 4). Then for
each variable, three models with parameters such
as the nugget effect, sill, and range would be
defined (Table 1). To avoid more complexities,
the upper and lower bound models have also been
fitted spherically.
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Figure 3. Model fitted to the experimental semi-variograms in zone HB a) Al,O; b) SiO,.
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Figure 4. Fuzzy variogram model a) AL,O; b) SiO,.

3.2. Fuzzy kriging estimation

To implement the fuzzy kriging, use was made of
the "FuzzyKrig" program (prepared in the
University of Kashan, Iran) [18] in MATLAB
R2012a. The inputs to the program included the
data gathered from drillholes, block model, fuzzy
variogram model, and search ellipsoid parameters.
Since this program is capable of including
uncertainties related to data and variogram model
parameters separately or combined, it is necessary
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to specify the fuzzy kriging method before
performing the program. In this case study, only
the variogram model parameters were tainted with
uncertainties, and then we used the Bardossy
method [3] (presented for crisp data and
variogram model). Figure 5 shows the SiO, fuzzy
grade model in membership degrees of the lower
zero and upper zero and the width of fuzzy kriged
values at the 1300 m level.
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Table 1. Parameters of the fuzzy variogram model.

SiO, Al 04
Sill Range Nugget effect  Sill Range  Nugget effect
Lower limit 6.197 113.54 1.945 11.287 186.995 2.281
Crisp value 10.003 175.189 3.712 20.882 244.709 5.494
Upper limit  14.053  242.086 5.947 36.12  378.5 8.489
" ' : — " ; ; Projecton

X ¥
Exaggeration: | Exaggerstion:
1.00 300

LEGEND

X v
. ai

1.00 300

H
¥ LEGEND

m m
- o = et P -
ot - - e e o - o — s s
N Plan Profection
Plan Projection .
i ) H A H [ v———
! T e f T !
Essggerution: |* FrORREvarion: Section Level 130000
100
X Y
100 30
LEGEND
H i H i
¥ i $H02 Fuzzy Width i ™ [ H LEGEND
— e |
ons
0413]
5 o 1205 H H
H ¥ - 1 ! l H
¥ 7 i 1824] : H
f 2431
E 3361
L ETRE )
4245 i
: .
3 i}
¥ ] H
: H e
T
= ot P P et "
P o P wine -t e

Figure 5. Fuzzy estimated block model for SiO, at 1300 m level a) Lower zero membership grade b) upper one
membership grade c¢) upper zero membership grade d) width of the fuzzy number.

3.3. Fuzzy tonnage—average grade model
preparation

The fuzzy tonnage and average grade for Zu2
deposit at different cut-off grades were calculated
according to relations 7 and 8. A necessary
parameter for calculation of the fuzzy tonnage is
the specific gravity, which has been taken equal to
3 for the HB zone of Zu2 deposit. Table 2 shows
the fuzzy tonnage and average grade for the zero
membership grades at different cut-off grades, and
Figure 6 shows the Al,O; tonnage—average grade
curve.
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As mentioned earlier, a useful property of the
fuzzy tonnage—average grade curve is that it
makes it possible to extract a triangular fuzzy
number both for the tonnage and average grade at
the desirable cut-off grades, e.g. at 40% cut-off
grade for ALOs, the fuzzy tonnage and average
grade will be, respectively, in the ranges of
[4263274, 4654240] and [42, 27, 42, 92]; and, at
15% cut-off grade for SiO,, the ranges will be,
respectively, [675897, 949674] and [16, 17, 16,
56]. As an example, Figure 7 shows the triangular
fuzzy number related to Al,O; tonnage and
average grade at 40% cut-off grade.
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Table 2. Lower and upper tonnage and fuzzy average grade at different cut-off grades for zero membership
grade.
Average grade (%) Tonnage (ton)
Membership value Membership value
Upper zero Lowe zero Upper zero Lower zero

Cut-off grade (%)

S 35 42.64 41.82 4959040 4831433
= 40 42.92 42.27 4654240 4263274
< 45 46.03 45.79 654170 292854
- 12 15.29 14.68 1756741 1554703
% 15 16.56 16.17 949674 675897
18 19.28 18.37 152686 34117
% 1.67 3.02 2.77 350658 322353
S 2.67 3.07 2.91 324371 249033
> 3.67 3.92 3.67 46370 3810
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Figure 6. Fuzzy tonnage—average grade curve for ALOj;.
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Figure 7. Triangular fuzzy numbers extracted from fuzzy Al,O; tonnage—average grade curve at 40% cut-off
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4. Conclusions

Due to the nature of the geological and mining
activities, different steps in the process of grade
estimation and mineral deposit evaluation are
always tainted with uncertainties. It is possible to
consider and evaluate some of the uncertainties
using new methods such as the fuzzy logic. For
example, we may investigate uncertainties related
to the measurements and variogram model
parameters through using the fuzzy kriging
instead of the kriging method. There have already
been various research studies regarding the fuzzy
kriging theory but their main drawback is that
they have not used the results in decision-makings
and planning. A very common, but key,
decision-making tool for mining engineers is
using the tonnage—average grade models. Under
conditions where measurements lack
uncertainties, and the model fitted to the
experimental variogram is assumed to be crisp,
the tonnage—average grade model will be crisp as
well. However, in reality, the data is tainted with
uncertainties and the fitted model is not crisp;
therefore, it is necessary that the tonnage—average
grade curves be used instead of the crisp ones, and
the analyses and decision-makings be done
accordingly. In this paper, the principles of
calculating the fuzzy tonnage—average grade
curves, and the results of a case study wherein
they have been used, are presented. The proposed
fuzzy kriging algorithm was implemented on the
Jajarm Zu2 deposit data, the fuzzy grade of every
block was estimated, and, based on the fuzzy
results obtained, the tonnage—average grade curve
was drawn so that the fuzzy tonnages and average
grades could be attributed to different cut-off
grades. For example, for a 40% cut-off grade for
ALOs, 15% for SiO, and 2.67 for the module, the
tonnages will be, respectively, in the ranges of
[4263274, 4654240], [675897, 949674], and
[249033, 324371] tons.

In order to determine the optimum mining
method, the tonnage, metal content, and average
grade must be estimated accurately. When the
estimation  parameters are tainted  with
uncertainty, estimated block models and average
grade-tonnage models will be tainted with
uncertainty, and therefore, it is necessary to
determine the magnitude of this uncertainty.
Compared to the classical average grade-tonnage
models, the proposed approach provides the
uncertainty-based format of modeling the
relationships between cut-off grade with average
grade and tonnage parameters. The uncertainty of
variogram parameters in kriging could also be
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accounted by Bayesian kriging. The problems
with a Bayesian approach are that 1) a prior
distribution has to be selected and 2) its procedure
is time-consuming. The effect of variogram model
uncertainty on the average grade-tonnage model
could be accounted by results of the Bayesian
kriging in the future studies.
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Appendix A: Extension Principle

The "Extension Principle" is one of the main
concepts of the theory of fuzzy sets that can be
used to extend the crisp mathematical concepts to
fuzzy sets. Let us consider a function f: X - Y
and let F(X) and F(Y) be, respectively, the fuzzy
power sets X and Y. Then for every set A € F(X),

f:F(X) - F(Y)
A- f(A) ={y:y = f()Ax € 4},
and the degree of belonging of each value y € Y
to f(A) is given by:
sup [pa()] if
llf(A)(Y) = xy=fx
0

Iy = f(x)
if Ax:y=f(x)
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