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Abstract 
Due to the nature of the geological and mining activities, different input parameters in 
the grade estimation and mineral resource evaluation are always tainted with 
uncertainties. It is possible to investigate the uncertainties related to the measurements 
and parameters of the variogram model using the fuzzy kriging method instead of the 
kriging method. The fuzzy kriging theory has already been the subject of relatively 
various research studies but the main weak point in such studies is that the results of the 
fuzzy estimations are not used in decision-making and planning. A very common, but 
key, tool of decision-making for mining engineers is the tonnage-average grade models. 
Under conditions where measurements or/and variogram model parameters are tainted 
with uncertainties, the tonnage-average grade model will be uncertain as well. 
Therefore, it is necessary to use the fuzzy tonnage-grade model instead of the crisp ones, 
and the next analysis steps and decision-makings are done accordingly. In this paper, the 
computational principles of the fuzzy tonnage-average grade curve and a case study 
regarding its usage are presented. 

1. Introduction 
Nowadays, kriging is known to be the most 
common estimation method in the evaluation of 
mineral deposits, and the very important inputs of 
the kriging estimator are 1) assay data gathered 
from drillholes and 2) variogram model 
parameters, both assumed to be certain but in 
reality, something else because 1) preparation and 
analysis of the assay data are not certain due to the 
sampling errors [1], and 2) the fitted variogram 
model is tainted with epistemic uncertainty [2] 
due to insufficient data during the structural 
analysis [3-5]; therefore, the assumptions are 
invalid, and hence, the results obtained by kriging 
are uncertain as well [1, 3-6]. Geostatisticians 
have dealt with such uncertainties in 3 different 
ways: 1) ignoring them, 2) defining a unique prior 
distribution function for every parameter with 
uncertainty and using the Bayesian kriging tool  
[7-9], and 3) defining the uncertain parameters in 
the form of interval-valued or fuzzy-interval 
parameters and using the fuzzy kriging tool  

[1, 3-5]. In most geostatistical studies, use has 
been made of the first method because of the 
insufficient uncertainty of the variogram model 
parameters and variables. The epistemic 
uncertainty in the Bayesian kriging methods has 
been investigated through attaching prior 
subjective probabilities to each potential model 
[9]. Using a single subjective probability to 
describe epistemic uncertainty represents much 
more information than what is actually available, 
and therefore, application of Bayesian kriging 
could be debatable [2]. Also a Bayesian kriging 
approach requires extensive calculations [10].  
There are 2 general objections to this method: 1) a 
subjective probability presents much more 
information than what really exists, and 2) since 
the subjective and objective probabilities present 
information related to 2 very different natures, 
their product (like what happens in the Bayes' 
Law) is incompatible [11]. Fuzzy kriging can be 
done based on 2 different algorithms: 1) extending 
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the principles of the random functions to the 
triangular fuzzy random function [5, 12], and 2) 
applying the extension principle [13] on some 
selected specific operators [1, 3, 4, 14]. Different 
applications of both algorithms have been 
presented before [4, 15-19] but they have all 
sufficed only on the algorithm of fuzzy kriging; 
they have not used the results of fuzzy kriging in 
decision-making or planning. A very common, but 
key, tool of decision-making for mining engineers 
is the tonnage-average grade models. Under 
conditions where measurements or/and variogram 
model parameters are tainted with uncertainties, 
the tonnage-average grade model will be uncertain 
as well. Therefore, it is necessary to use the fuzzy 
tonnage-grade model instead of the crisp ones, 
and the next decision-making steps take place 
accordingly. Effort has been made in this work to 
calculate the tonnage-average grade model based 
on the fuzzy extension principle and make use of 
it in decision-making. To check the efficiency of 
the proposed algorithm, the results of a case study 
in Jajarm Zu2 bauxite deposit, North Khorasan 
Province, Iran, have also been presented.  

2. Problem formulation  
Consider grade as a realization of a second order 
stationary random function )(xZ , dRDx  , 

3d , where x  is a location in mineral deposit 
D. Divide the deposit into iv  blocks ,1i …, N 
having an equal size and a similar shape. The 
average grade of each block Dv  can be 
estimated by the ordinary kriging using the 
surrounding information )( ixZ ,1i … n, as 
follows:  

(ݒ)∗ݖ = ,(ଵݔ)ݖ)݂ … , ,(௡ݔ)ݖ ܽ, (ݒ =
∑ ,ଵݔ)௜ߣ … ௡(௜ݔ)ܼ(ݒ،ܽ،௡ݔ،
௜ୀଵ , 
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where )(* vz  is the kriged block value; )(2 vK  is 
the block kriging variance; ),( ji xx  is the 

variogram between locations ix  and jx ; ),( ixv  
is the average variogram value between block v 
and location ix ;   is the Lagrange multiplier; 
ܽ = ൛ ௝ܽ،݆ = 1،…  ൟ are the variogram model݌،
parameters (i.e. nugget effect, sill, and range); p is 
the number of variogram model parameters 

(commonly p = 3);  and ,i  ,1i …, n, are 
weights that can be obtained by solving the 
kriging system [20]. According to the above 
equations, the results obtained from kriging 
depend, in addition to the variables at the 
sampling points, on the variogram model 
parameters and the arrangement of the samples 
with respect to the block [21]. Since it is generally 
impossible, due to insufficient data or behavior of 
the experimental semi-variogram (modeling 
difficulties), to exactly fit a variogram model with 
no uncertainties, then it is necessaryto show the 
effects of uncertainties  in the results using the 
fuzzy kriging method. Bardossy et al. modeled the 
uncertain parameters of variogram with fuzzy 
numbers ොܽ = ൛ ොܽ௝،݆ = 1،…  ൟ and calculated the݌،
membership functions ߪ௄ଶ(ݒ) and (ݒ)∗ݖ as follow: 

ఙෝబߤ ቀߪ௄ଶ(ݒ)ቁ = sup
௫,௩:ఙమୀ௚బ(௫,௔,௩)

ቀߤ௔ො೔(ܽ௜)ቁ (3) 

൯(ݒ)∗ݖ௭̂బ൫ߤ = sup
௭،௩:௭∗(௫బ)ୀ௙బ(௭,௔,௩)

ቀߤ௔ො೔(ܽ௜)ቁ (4) 

Now, if for a specified cut-off grade, g, the 
average grade Cg and tonnage Tg (of those parts of 
the deposit with grades greater than g) are defined 
as follow: 

௚ܶ =෍ܸߩ(ݒ௜)ݖ∗(ݒ௜)
௜∈௦

, ݏ

= {1,… , (௦ݒ)∗ݖ|݊ > ݃} 

(5) 

௚ܥ =
∑ ௜∈௦(௜ݒ)∗ݖ	(௜ݒ)ܸ	

∑ ௜∈௦(௜ݒ)ܸ	
, ݏ

= {1,… , (௦ݒ)∗ݖ|݊ > ݃} 
(6) 

where ߩ is the deposit average density and ܸ(ݒ௜) 
is the volume of the ith block, and then, according 
to the extension principle (Appendix A), the 
membership functions of the fuzzy average grade 
and tonnage of those parts of the deposit that have 
grades greater than g, are defined as follow: 

ߤ
೒்෢
బ൫ ௚ܶ൯ = sup

೒்ୀ୏(௭)
ቀߤ௭̂೔(ݖ௜)ቁ (7) 

௚൯ܥ஼೒෢బ൫ߤ = sup
஼೒ୀ௅(௭)

ቀߤ௭̂೔(ݖ௜)ቁ (8) 

Therefore, based on the fuzzy grade value 
estimated for each block, it is possible to extract 
the tonnage and average grade according to the 
cut-off grades at different degrees of membership, 
and finally, draw the tonnage-average grade fuzzy 
curve. A useful property of such curves is that it is 
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possible to extract from them, at any desirable 
cut-off grade, triangular fuzzy numbers for both 
the tonnage and the average grade, and use them 
in risk evaluations. 

3. Case study 
3.1. Jajarm Zu2 deposit 
The Jajarm bauxite deposit complex is located at 
56.25° to 56.45° east longitude and 37.2 to 37.3 
north latitude, 19 km NE part of the city of 
Jajarm, North Khorasan Province, Iran (Figure 1). 
Aluminum anomalies in the Jajarm bauxite 
deposit are divided into the 4 separate zones of 
lower Kaolin, shale bauxite (SB), hard bauxite 
(HB), and upper Kaolin (KB) with HB being 

economically the most important zone (9). The 
complex has been divided, due to different faults, 
to 4 blocks, one of which is called “Zu”; this too, 
has been divided, due to the same reason, to 4 
different parts named Zu1, Zu2, Zu3, and Zu4. In 
Zu2, by boring 72 drillholes, a total of 4439 m of 
exploratory drilling has been carried out for part 
of which (approximately 574 m) the geological 
and assay data is available. The exploratory 
drilling pattern is presented in Figure 2. Statistical 
studies done on the regional variable of AL2O3 
and SiO2 in HB zone of Zu2 deposit show that 
these variables are normal, and there is no trend in 
the data. 

 

 
Figure 1. Geographic location of the Zu2 deposit in the Jarajm Bauxite Complex. 

 

 
Figure 2. The exploratory drilling pattern in Zu2 deposit. 
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To structurally analyze the AL2O3 and SiO2 
variables, the experimental semi-variograms were 
drawn directionally and directionless. The latter 
not only studies and identifies the structural 
properties of the regional variable and show its 
trend of variations but also summarizes the data. 
Before using the experimental semi-variograms in 
estimation processes, it is necessary that the most 
appropriate theoretical model be fitted to them. In 
the present work, fitting model to directional 
experimental semi-variograms was not possible 
due to insufficient data; therefore, the deposit was 
assumed to be isotropic and the model was fitted 
only to the directionless ones. The spherical 
models fitted to the non-directional experimental 

semi-variograms of AL2O3 and SiO2 are shown in 
Figure 3. 
As shown, the superposition of the variogram 
model is facing many uncertainties, especially 
regarding the parameters of the variogram model; 
therefore, a fuzzy variogram model can be quite 
helpful. Then it is necessary to use three models 
for fitting the lower, middle, and upper bound 
models of an experimental variogram instead of 
just using one crisp model (Figure 4). Then for 
each variable, three models with parameters such 
as the nugget effect, sill, and range would be 
defined (Table 1). To avoid more complexities, 
the upper and lower bound models have also been 
fitted spherically. 

 

 
(a) 

 
(b) 

Figure 3. Model fitted to the experimental semi-variograms in zone HB a) Al2O3 b) SiO2. 
 

 
(a) 

 
(b) 

Figure 4. Fuzzy variogram model a) Al2O3 b) SiO2. 
 

3.2. Fuzzy kriging estimation 
To implement the fuzzy kriging, use was made of 
the "FuzzyKrig" program (prepared in the 
University of Kashan, Iran) [18] in MATLAB 
R2012a. The inputs to the program included the 
data gathered from drillholes, block model, fuzzy 
variogram model, and search ellipsoid parameters. 
Since this program is capable of including 
uncertainties related to data and variogram model 
parameters separately or combined, it is necessary 

to specify the fuzzy kriging method before 
performing the program. In this case study, only 
the variogram model parameters were tainted with 
uncertainties, and then we used the Bardossy 
method [3] (presented for crisp data and 
variogram model). Figure 5 shows the SiO2 fuzzy 
grade model in membership degrees of the lower 
zero and upper zero and the width of fuzzy kriged 
values at the 1300 m level. 
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Table 1. Parameters of the fuzzy variogram model. 
Al2O3 SiO2  

Nugget effect Range Sill Nugget effect Range Sill  
2.281 186.995 11.287 1.945 113.54 6.197 Lower limit 
5.494 244.709 20.882 3.712 175.189 10.003 Crisp value 
8.489 378.5 36.12 5.947 242.086 14.053 Upper limit 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Fuzzy estimated block model for SiO2 at 1300 m level a) Lower zero membership grade b) upper one 
membership grade c) upper zero membership grade d) width of the fuzzy number. 

 
3.3. Fuzzy tonnage–average grade model 
preparation 
The fuzzy tonnage and average grade for Zu2 
deposit at different cut-off grades were calculated 
according to relations 7 and 8. A necessary 
parameter for calculation of the fuzzy tonnage is 
the specific gravity, which has been taken equal to 
3 for the HB zone of Zu2 deposit. Table 2 shows 
the fuzzy tonnage and average grade for the zero 
membership grades at different cut-off grades, and 
Figure 6 shows the Al2O3 tonnage–average grade 
curve. 

As mentioned earlier, a useful property of the 
fuzzy tonnage–average grade curve is that it 
makes it possible to extract a triangular fuzzy 
number both for the tonnage and average grade at 
the desirable cut-off grades, e.g. at 40% cut-off 
grade for Al2O3, the fuzzy tonnage and average 
grade will be, respectively, in the ranges of 
[4263274, 4654240] and [42, 27, 42, 92]; and, at 
15% cut-off grade for SiO2, the ranges will be, 
respectively, [675897, 949674] and [16, 17, 16, 
56]. As an example, Figure 7 shows the triangular 
fuzzy number related to Al2O3 tonnage and 
average grade at 40% cut-off grade. 
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Table 2. Lower and upper tonnage and fuzzy average grade at different cut-off grades for zero membership 
grade. 

Tonnage (ton)  Average grade (%)  
Cut-off grade (%) 

 
Membership value  Membership value  

Lower zero  Upper zero  Lowe zero  Upper zero  
4831433  4959040  41.82  42.64  35  

A
l 2O

3
  

4263274  4654240  42.27  42.92  40  
292854  654170  45.79  46.03  45  
1554703  1756741  14.68  15.29  12  

Si
O

2
  

675897  949674  16.17  16.56  15  
34117  152686  18.37  19.28  18  

322353  350658  2.77  3.02  1.67  

M
od

ul
e

  

249033  324371  2.91  3.07  2.67  
3810  46370  3.67  3.92  3.67  

 

 
Figure 6. Fuzzy tonnage–average grade curve for Al2O3. 

 

  
(a)    

(b)  
Figure 7. Triangular fuzzy numbers extracted from fuzzy Al2O3 tonnage–average grade curve at 40% cut-off 

grade a) average grade b) tonnage. 
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4. Conclusions 
Due to the nature of the geological and mining 
activities, different steps in the process of grade 
estimation and mineral deposit evaluation are 
always tainted with uncertainties. It is possible to 
consider and evaluate some of the uncertainties 
using new methods such as the fuzzy logic. For 
example, we may investigate uncertainties related 
to the measurements and variogram model 
parameters through using the fuzzy kriging 
instead of the kriging method. There have already 
been various research studies regarding the fuzzy 
kriging theory but their main drawback is that 
they have not used the results in decision-makings 
and planning. A very common, but key,  
decision-making tool for mining engineers is 
using the tonnage–average grade models. Under 
conditions where measurements lack 
uncertainties, and the model fitted to the 
experimental variogram is assumed to be crisp, 
the tonnage–average grade model will be crisp as 
well. However, in reality, the data is tainted with 
uncertainties and the fitted model is not crisp; 
therefore, it is necessary that the tonnage–average 
grade curves be used instead of the crisp ones, and 
the analyses and decision-makings be done 
accordingly. In this paper, the principles of 
calculating the fuzzy tonnage–average grade 
curves, and the results of a case study wherein 
they have been used, are presented. The proposed 
fuzzy kriging algorithm was implemented on the 
Jajarm Zu2 deposit data, the fuzzy grade of every 
block was estimated, and, based on the fuzzy 
results obtained, the tonnage–average grade curve 
was drawn so that the fuzzy tonnages and average 
grades could be attributed to different cut-off 
grades. For example, for a 40% cut-off grade for 
Al2O3, 15% for SiO2 and 2.67 for the module, the 
tonnages will be, respectively, in the ranges of 
[4263274, 4654240], [675897, 949674], and 
[249033, 324371] tons.  
In order to determine the optimum mining 
method, the tonnage, metal content, and average 
grade must be estimated accurately. When the 
estimation parameters are tainted with 
uncertainty, estimated block models and average 
grade-tonnage models will be tainted with 
uncertainty, and therefore, it is necessary to 
determine the magnitude of this uncertainty. 
Compared to the classical average grade-tonnage 
models, the proposed approach provides the 
uncertainty-based format of modeling the 
relationships between cut-off grade with average 
grade and tonnage parameters. The uncertainty of 
variogram parameters in kriging could also be 

accounted by Bayesian kriging. The problems 
with a Bayesian approach are that 1) a prior 
distribution has to be selected and 2) its procedure 
is time-consuming. The effect of variogram model 
uncertainty on the average grade-tonnage model 
could be accounted by results of the Bayesian 
kriging in the future studies.  
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Appendix A: Extension Principle 
The "Extension Principle" is one of the main 
concepts of the theory of fuzzy sets that can be 
used to extend the crisp mathematical concepts to 
fuzzy sets. Let us consider a function ݂: ܺ → ܻ 
and let F(X) and F(Y) be, respectively, the fuzzy 
power sets X and Y. Then for every set ܣ ∈ F(ܺ), 
 

݂: (ܺ)ܨ →  (ܻ)ܨ
ܣ → (ܣ)݂ = :ݕ} ݕ = ݔ⋀(ݔ)݂ ∈  ,{ܣ

and the degree of belonging of each value ݕ ∈ ܻ 
to ݂(ܣ) is given by: 

(ݕ)௙(஺)ߤ = ൝
݌ݑݏ

௫,௬ୀ௙(௫)
:ݔ∃						݂݅				[(ݔ)஺ߤ] ݕ = (ݔ)݂

:ݔ∄						݂݅																													݋ ݕ = (ݔ)݂
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 یبررس مورد نگیگیکر يجا به نگیگیکري فاز روش از استفاده با را یافتهي برازش تغییرنما نیمه مدل يپارامترها و عیارسنجی توأم با تیقطع عدم توان یم نمونه
 عـدم  بـه  تـوان  یم ـ را نیش ـیپ مطالعات در موجود ضعف عمده یول گرفته، صورت نگیگیکر يفاز يتئور نهیزم در یمتنوع نسبتاً مطالعات ،نیا از شیپ. داد قرار

 يبـرا  يری ـگ میتصـم  يابزارهـا  نیتـر  يدیکل و نیتر معمول از یکی. داد نسبت هاي متعاقب تخمینیطراح و يریگ میتصم در نیتخم يفاز جینتا از ها آن استفاده
 یتجرب وگرامیوار به افتهی برازش مدل و باشند تیقطع عدم فاقد ها يریگ اندازه که یطیشرا در. باشد یم متوسط اریع -تناژ يها یمنحن از استفاده معدن، نیمهندس

 یقطع ـ افتـه ی بـرازش  مدل هم و هستند تیقطع عدم با توأم دادها، هم تیواقع در که یحال در. بود خواهد یقطع زین متوسط اریع -تناژ مدل شوند، فرض یقطع
 اساس بر ها يریگ میتصم و ها لیتحل و شود استفاده يفاز متوسط اریع -تناژ يها یمنحن از یقطع متوسط اریع -تناژ یمنحن يجا به تا است لازم جهیدرنت ست،ین

 .است شده ارائه آن از استفاده خصوص در زین يمورد مطالعه کی ،يفاز متوسط اریع -تناژ یمنحن محاسبات یمبان ارائه ضمن پژوهش نیا در. ردیگ صورت آن

  ، عدم قطعیت.يریگ میتصم ،يفاز وگرامیوارمدل  آمار،نیزم کلمات کلیدي:

 

 

 

 


