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Keywords Abstract
Nowadays, Barton’s Joint Roughness Coefficients (JRC) are widely used as the index
Asperity for roughness and as a challenging fracture property. When JRC ranking is the goal,
deriving JRC from different fractal/wavelet procedures can be conflicting. Complexity
Dimension increases when various rankings outcome from different calculation methods. Therefore,

using Barton’s JRC, we cannot make a decision based on the proven mathematical
theories because each method has a different rank. Ideally, these rankings must be equal
but, in practice, they are different for each method. To solve this problem and to achieve
a robust and valid ranking for JRC, Condorcetand Borda count methods have been used.
These methods have been proposed as fusion approaches. Re-ranking of JRC using
different methods integrated with Condorcet showed confusion in ranking of the JRC4,
JRCS, and JRC6 profiles. This ambiguity is equal to equalizing decision conditions
about all the three at the examination of the winners, losers, and draws in pairwise
matrices. Therefore, Borda Count was applied and resulted in robust rankings. In fact, a
new approach for a roughness measurement is presented. A new JRC ranking called
JRCN is introduced. This new ranking shows a lower sum of squared errors (0.00390) in
comparison with the original JRC ranking method (0.00410) and ranked JRCN; to
JRCNjg. Thus it is proposed to consider JRCN as a new and improved version of JRC
rankings.
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1. Introduction

Roughness (asperity) is a challenging fracture
property. Generally, roughness is defined as any
deviation of the examined surface compared to the
situation where the surface is completely flat [1].
Roughness of a fracture differs in various
directions because of the tectonic and tension
regimes. This level of dependence increases
uncertainty. Also the expressed values stay away
from the non-uniqueness amounts. Inasmuch as
for measuring roughness in the 2D space,
sufficient high-quality data with suitable rate is
required, and it is not easy to do calculations on
such a space; a criterion such as the well-known
Joint Roughness Coefficient (JRC) exemplar
profiles is required. Considering this approach,
the results can be considered as the most widely
used observational method for investigating the
effect of roughness of fracture surface. Since the
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introduction of this concept [2, 3], the procedure
was considered and modified by scientific
communities. The researchers presented their
reports on how roughness might be measured
[4-9].

The wavelet, variogram analysis,
roughness-length method (root mean square), as
well as the fractal- based methods containing
power spectral density (PSD), height-length,
compass-walking, and divider method have been
nominated as the common methods used for
roughness measuring. Because of the difficulty in
measuring fractal dimension, numbers of
empirical relations between JRC values and
roughness parameters with different definitions
have been applied [9]. Similarity-based methods
[10-16] and Hausdorff-based method [17-19]
were also utilized for measuring the roughness.
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In wavelet-based methods [20], rough profiles
were considered as a signal, and were analyzed by
the signal processing methods. Accordingly, Lee
et al. (1998) determined the roughness and
morphological characteristics of the surface with
principles based on the wavelet transform
equations [21]. In a similar study, Josso et al.
(2000) used the frequency normalized wavelet
transform (FNWT) strategy for surface roughness
analysis and characterization [22- 24]. With such
an approach, Asadi et al. (2009) analyzed the JRC
exemplar profiles [25]. In the same year, Grzesik
and Brol (2009) characterized the surface
roughness of different workpiece materials using
the fractal-based methods and wavelet transform
[26]. Morala-Argiiello et al. (2012) used the Haar
mother wavelet to analyze the synthetic rough
surfaces in four different classes [27]. Also Zou et
al. (2015) impacted surface roughness on the flow
of fluid using the finite volume method (FVM)
and resolving Navier-Stokes equations relative to
non-linear fluid flow in a single fracture [28].

The fractal-based methods used for studying,
characterization, and quantifying the roughness of
surfaces have been used extensively [29-44]. The
value of power spectral density (PSD) can be
calculated by fast Fourier transform (FFT) in one
dimension and complex function in two
dimensions [45- 47]. Additionally, the fractal
dimension can be obtained by plotting the log-log
diagram of energy versus the wave number [48,
49]. Jacobs et al. (2017) determined the
quantitative characteristics of the topographic
surface using the PSD method [50]. In the same
year, Jain and Pitchumani (2017) analyzed the
fractal model of rough surface to check the
surface wettability [51]. In this regard, Mitra et al.
(2017) studied the roughness for characteristic
underwater micro-patterned surfaces based on the
fractal model (Weierstrass—Mandelbrot function)
[52]. Jain (2017) determined the fractal
parameters using the power spectrum of the
surface [53]. The variogram analysis method is a
specific technique in spatial analysis [54, 55]. In
this method, the fractal distribution is obtained
through a variogram model and the calculation of
the graph gradient for the relative distance of the
pair of samples versus the variogram value in a
log-log scale [56]. Perfect (2005) defined the
drainage probability as the ratio of the volume of
pore spaces to the total space using the fractal
model [57]. Rasouli and Tokhmechi (2010)
simulated reservoirs and provided an estimate of
porosity using the geostatistical models based on
fractal geometry [58]. Ojha et al. (2017) presented

an estimation of the remaining saturation and
relative permeability for organic-rich shale
samples with a dual approach to the previous
studies using the fractal-based method. They also
intercepted the diameter of the pore size in their
calculations [59]. Suleimanov et al. (2017)
studied the effect of fractal dimension on flooding
operation based on the analysis of the profile of
oil well production [60]. In the roughness-length
method, introduced by Malinverno (1990), the
length of the rough profile was calculated based
on the residual value of the root mean square
(RMS) of a linear model. The fractal dimension
was also obtained by plotting RMS versus
window length in a log-log scale and calculating
the gradient of the graph [61]. Rahman et al.
(2004) derived roughness characteristics of rock
mass discontinuities from the laser scanning data
[62]. Also Arizabalo et al. (2004) utilized the
roughness-length method, variogram analysis, and
wavelet to analyze the wire-line logs in a naturally
fractured limestone reservoir in the Gulf of
Mexico [63]. In the height-length method, the
fractal dimension to the desirable profile is
achieved by considering a base line on the
roughness profile and calculating the average
height and average base length relative to baseline
[64]. The relationship provided by Xie and
Pariseau (1994) was later corrected by Askari and
Ahmadi (2007), while it confirmed that the
estimations were partly biased [65]. In the
compass-walking method, roughness profile
length is surveyed by considering a variable size
of the divider. This process is performed by
changing the length of the divider after
completing each survey and repeating from the
initial point similarly. Finally, fractal dimension
will be obtained from the division of the changes
of product of length of divider in repeated times
relative to the lengths of divider in a log-log scale
minus one [66]. Bae er al. (2011) added the
remaining amount to this relation as an upgrade
and calculated the fractal dimension of profiles
[67]. Afterward, Li and Huang (2015) suggested a
similar approach to measure the change of
iterative calculation number relative to the length
of divider in the log-log scale. These results were
equivalent with fractal dimension (with a negative
sign). Also they analyzed JRC using the
height-length method [64], and the compass-
walking (divider) method [66-68].

In this work, roughness of profiles was calculated
using the fractal and wavelet methods. The results
obtained were fused using Condorcet and Borda
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Count. As the result of this procedure, a new
robust ranking for JRC profiles was introduced.

2. Methodology

In the first step and before performing any
analysis, the roughness profiles were digitized
(Figure 1). The flowchart of the approach
presented in this work is shown in Figure 2. Two
utilized procedures for roughness calculation will
be introduced, and also Condorcet and Borda
Count, which are data fusion methods, will be
explained.

5592 data — JRC2

y A

5432 data — JRC1

T

5488 data — JRC3

2.1. Digitizing JRC profiles

The JRC profiles were digitized with a lag
distance of 0.02 mm. Practically, each profile was
considered as a signal, and the amount of “Y” axis
for any “X” was measured (Figure 1). More than
5200 points were achieved for each profile, and
the number of data was found to be 54710. This
data was considered as the digitized JRC profile

(Figure 1).

5477 data — JRC4

5430 data — JRC5

JRC Exemplar Profile
(Signal)

0.02 mm

5521 data — JRC10

5482 data — JRC9

5553 data — JR(C8

X

5425 data — JRC6

5268 data — JRC7

Figure 1. The process of digitizing JRC profiles. (In order to reveal the roughness changes, the profiles were
rescaled in two axes (squeezed in the x-axis and stretched in the y-axis) but the calculations were done in the
original scale.)

2.2. Fractal-based roughness calculation
In order to perform the fractal-based method, the
fractal dimensions of the digitized JRC profiles
(Figure 3) were calculated. Supposing the number
of repeating of the survey is N (Figure 3), the
fractal dimension of the desired profile can be
obtained by plotting Nr versus r in a log-log
scale; r is the length of divider (Equation 1-first
method) [66].
Alog(Nr
) 0
g(r)
In the second method [67], the calculations and
measurements were done by adding the remaining
value to the other parameters mentioned in the
first method. In fact, the fractal dimension

D =1

depends on the parameters N, r, and f; N is the
number of steps for any survey (Figure 4) and r is
the length of divider, which is constant for any
step. The size of r increases by going to higher
steps.
Nr is a part of the desired profile with length of
divider (r). Considering f as the remaining length
of profile (Figure 5), the length of profile is
equivalent to Nr + f. Knowing these parameters,
the fractal dimension of rough profile is as
follows [67]:
Alog[N +f}
r 2

Alogr
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Figure 3. Schematic representation of survey by applying method 1 (N = 4).
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Figure 4. Surveying JRC, exemplar profile by applying method 2 (N = 4).
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Figure 5. Calculation of fractal dimension using method 2.

In the third method, the fractal dimension is
obtained by calculating the gradient of graph of N
(step number) versus r (length of divider) [56]:

_p _AlogN

Alogr ®)

2.3. Wavelet-based roughness calculation

In this method (Figure 6), continuous wavelet
transform (CWT) was applied for analyzing the
roughness of profiles (Equation 4). It was
supposed that similarity occurred between the
rough profile and signal x(0). Fourier transform
(P(f) of the wavelet function (W(f)) could be
calculated using Equations 5 and 6 [20]. Semi-
roughness could be calculated using Equation 7.

oL

CWT,(At)=(x,p,,)=

fw () ) @

0

sz(t)dt<oo (5)

—00

2

v(r)

C, = TTdf (0<C, <) (©)
0
x (t)=é I { I Y W (f)du]i—? Y

where A is the scale parameter (positive), t is the
transmission in a limited range, f is the frequency
parameter, and u is the time.

Roughness Profile (Signal)

Accommodation of Roughness Profile (Signal) and Local Wavelet

Figure 6. Schematic representation of accommodation between roughness profile (signal) and local wavelet in the
wavelet-based process.

2.4. Condorcet data fusion

The Condorcet data fusion method is a decision-
making method, where only one winner will be
introduced. The winner is an option in which the
Condorcet criterion is observed [69, 70]. In this
method, the results obtained might be compared
together. For this purpose, a pairwise matrix

should be created. Afterwards, the winner, loser,
and equal results should be counted; this is the
criterion for decision-making [71, 72]. For
example, consider PWM as a pairwise matrix
between three features using five methods (M;
to Ms):
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M, ={F,F,,F}={F, >F, >F,}

M, ={F.,F,Fy} ={F >F > F|

M, ={F,,FandF,} ={F, >F, =F,}

M, ={F.F}={FK>F}

M ={F,,F}={F,>F}

E F2 F3 E F2

PWM:E f12 f13 =F] - 43150
Fz f21 - f23 Fz 1,4,0 - 2,2,1
F'3 f3] f32 F‘3 13430 23231

Based on the example, f;, is equal to “4,1,0” in a
double confrontation between feature i1 and feature
j (here, feature 1 vs. feature 2). In the stated
amount, “4”, “1”, and “0” are the numbers of
wining, losing, and equality of F; (feature 1)
compared with F, (feature 2), respectively.
Therefore, all numbers for wining, losing, and
equality might be counted.

2.5. Borda count data fusion
In this method, the data must be rated based on
the position in the first step. Thus the first feature
takes the highest score. The scores of the next
features are reduced by one unit, respectively [72,
73]. For example, the scores of features in
M, = {F,,F,, F3} are 3, 2 and 1, respectively.
Thus it can be written as “F{” “Fz”, and “F3”
Fgcore ). This scoring should be done for all
methods. To calculate each score, the score points
are counted in each position cumulatively. Since
the Borda scoring method can cover the problem

)

©)

of equilibrium of Condorcet, this method can be
used for ambiguity and uncertainty.

3. Results

In this part, fractal analysis of JRC, wavelet
analysis of JRC, and decision-making based on
data fusion including Condorcet method and
Borda Count are explained.

3.1. Fractal analysis of JRC

Regardless of the method for calculation and
measurement of rough profiles (JRC exemplar
profiles), it is expected that with increase in the
number of profiles, the corresponding dimension
for any profile increases. This is shown in Figure
7 for each method.

The results obtained for all methods (Figure 7)
show that there is no straightforward relation
between the JRC ranking and the calculated
roughness. To overcome this problem, the results
obtained might be fused. Table 1 shows the fractal
dimension before and after ranking of JRC and re-
ranking of the profiles.

1.098
£
1.096 = 098
+ - - e - + — ‘-l-- _‘l'— d"" --I- — + =
: 1.094 1 t ! - 1.078
g )
2 1.092 Y
a 1.088 =—5¢ Se% - 1.038
2 1.086 ¢
g Y2 - 1.018
= 1.084 -1 X : t ——— |
2 1.082 ———k— == = = 0.998
I~ 1 2 3 5 6 7 8 9 10
3 Method 1/1.0876(1.0838| 1.084 |1.0862| 1.085 |1.0856|1.0918|1.0871(1.0872|1.0968
—a— Method 2| 1.00011.0008[1.0014|1.0045|1.0029|1.0043| 1.005 | 1.008 |1.00711.0116
= 4= Method 3|1.0876(1.0838| 1.084 |1.0862| 1.085 |1.0856(1.0918/1.0871|1.0872(1.0968

Profile No.

Figure 7. Results Obtained from calculation and measurement based on fractal geometry for each method.
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Table 1. Rankings obtained using fractal-based methods.

Method Profile No. before F ractz‘ll F ractz‘ll Profile No. after
. dimension dimension .
number ranking before ranking after ranking ranking
1 1.0876 1.0838 2
2 1.0838 1.0840 3
3 1.0840 1.0850 5
4 1.0862 1.0856 6
1 5 1.0850 1.0862 4
6 1.0856 1.0871 8
7 1.0918 1.0872 9
8 1.0871 1.0876 1
9 1.0872 1.0918 7
10 1.0968 1.0968 10
1 1.0001 1.0001 1
2 1.0008 1.0008 2
3 1.0014 1.0014 3
4 1.0045 1.0029 6
5 5 1.0029 1.0043 4
6 1.0043 1.0045 5
7 1.0050 1.0050 7
8 1.0080 1.0071 9
9 1.0071 1.0080 8
10 1.0116 1.0116 10
1 1.0876 1.0838 2
2 1.0838 1.0840 3
3 1.0840 1.0850 5
4 1.0862 1.0856 6
3 5 1.0850 1.0862 4
6 1.0856 1.0871 8
7 1.0918 1.0872 9
8 1.0871 1.0876 1
9 1.0872 1.0918 7
10 1.0968 1.0968 10
3.2. Wavelet analysis of JRC wavelet and Optimum Mother Wavelet (OMW) is
Re-ranking of JRC profiles based on Effective presented in Tables 2 and 3.

Signal Energy of Frequency Band (ESEFB) of

Table 2. Re-ranking of JRC obtained using wavelet-based method (Effective Signal Energy of Frequency Band

(ESEFB) approach).
Profile No. Effective signal . Obtfuned Obtained ranking Profile No. after
before ranking energy of frequency dimension from dimension from ESEFB ranking
band (ESEFB) (%) ESEFB
1 99.84 1.0900 1.0900 1
2 99.52 1.0897 1.0897 2
3 96.59 1.0870 1.0896 7
4 97.58 1.0879 1.0880 (9 or 10)
5 90.16 1.0810 1.0880 (10 or 9)
6 89.12 1.0800 1.0879 4
7 99.46 1.0896 1.0870 3
8 95.79 1.0862 1.0862 8
9 97.71 1.0880 1.0810 5
10 97.71 1.0880 1.0800 6
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Table 3. Re-ranking of JRC obtained using the wavelet-based method. Optimum Mother Wavelet (OMW)

approach.
Profile No. Optimum Optimum mother Obtained Obtained p
. . . rofile No.

before mother wavelet energy dimension from ranking after ranking
ranking wavelet (OMWE) (%) OMWE dimension

1 rbio 3.3 99.84 1.0900 1.0900 1

2 rbio 3.3 99.78 1.0898 1.0899 7

3 rbio 3.1 96.60 1.0807 1.0898 2

4 rbio 3.3 97.78 1.0841 1.0875 6

5 rbio 3.3 97.56 1.0834 1.0874 8

6 rbio 3.7 98.96 1.0875 1.0853 9

7 rbio 3.1 99.83 1.0899 1.0841 4

8 rbio 3.3 98.94 1.0874 1.0834 5

9 rbio 3.3 98.22 1.0853 1.0807 3

10 rbio 3.1 96.37 1.0800 1.0800 10

4. Discussion

Different re-rankings of JRC obtained from the
utilized methods are subjected to ambiguity and
uncertainty. The Condorcet criterion means that
when there are more than two options, the winner
should overcome all of them [74]. Therefore, the
number of winners, losers, and equals might be
considered. To do this, the results obtained were
fused with Condorcet (Figure 8), making a
decision matrix (Figure 9) [20]. The decision
matrix can be simplified. According to the

decision matrix obtained from the Condorcet data
fusion method, the profile numbers 4, 5, and 6
gained equal score (Figure 9).

For decision-making, Borda count was used [73],
and the final score was gained.

Naturally, the positions of the equal options are
the same. Thus scores of profiles 4, 5, and 6 are
27, 26, and 29, respectively. The results of this
method were fused with the results obtained from
Condorcet, and the final ranking was achieved
(Figure 10).

Method, ={JRC,’,JRC; .JRC{,JRC] . JRC} . JRC; ,JRC,,JRC},JRC: JRC,|

Method, ={JRC," JRC; .JRC} . JRC JRC{,JRC: JRC} JRC] JRC] JRC,,|

Method, = {JRC}"JRC} ,JRC},JRC] JRC{,JRC; JRC; . JRC; JRC: JRC,,}

Method 5,y ={JRC|* JRC] JRC} JRC] JRC],

10°

JRC}JRCY,JRC],JRC; JRC,}

Method ;= {JRC,.JRC; JRCS,JRC] JRC{ JRCS . JRC.JRCS JRC] JRC),}

JRC, JRC, JRC; JRC,
RC, [ - 3.2,0 3.2,0 3.2,0
JRC, 2,3,0 - 5,0,0 50,0
JRC; 2,3,0 0,5,0 - 32,0
JRC, 2,3,0 0,5,0 2,3,0 -

JRC; 2,3,0 0,5,0 14,0 2,3,0
JRC, 2,3,0 0,5,0 14,0 4,1,0
JRC; 0,5,0 14,0 2,3,0 2,3,0
JRCy 2,3,0 0,5,0 14,0 1,4,0
JRCy 2,3,0 0,5,0 2,3,0 2,3,0
JRCyp 0,5,0 0,5,0 14,0 1,4,0

JRC;s
32,0
5,0,0
4,1,0
3,20
2,3,0
2,3,0
2,3,0
2,3,0

1,4,0

JRCs JRC; JRCy JRCy JRC)o
32,0 5,0,0 32,0 32,0 500 ]
5,0,0 4,1,0 5,0,0 5,0,0 5,0,0
4,1,0 3,20 4,1,0 3,20 4,1,0
1,4,0 3,20 4,1,0 3,20 4,1,0
3,20 3,20 3,20 3,20 4,1,0
- 3,20 4,1,0 4,1,0 4,1,0
2,3,0 - 3,20 3,20 5,0,0
1,4,0 2,3,0 - 3,20 4,1,0
1,4,0 2,3,0 2,3,0 - 4,0,1
1,4,0 0,5,0 1,4,0 0,4,1 - —

Figure 8. Pairwise matrix using Condorcet data fusion method for the results obtained for all methods.
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win
JRC1 [ 9
JRC2 8
JRC3 7
JRC4 5
JRC5 5
JRC6 5
JRC7 3
JRC8 2
JRCY 1
JRCI0 | 0

lost draw

0 0
1 0
2 0
4 0
4 0
4 0
6 0
7 0
7 1
8 1|

Figure 9. Decision matrix, applying the Condorcet method on pairwise matrix.
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Figure 10. Ranking JRC exemplar profiles after data

The statuses of the three profiles were compared
with the original trend line (Figure 11) by
calculating the error value in accordance with the
Manhattan norm (Equation 10) [75].

lp=al, =2 |p: -4, (10)
i=1

The results that represent the final rankings are
shown in Figure 12. The newly ranked profiles
(JRCy) can provide improved results compared to

Profile No.
fusion and turning it into the New JRC (JRCy).

the original ranking (JRC). The results of
Condorcet confirmed the original ranking despite
an ambiguity in the profiles 4, 5, and 6. Borda
Count was used to achieve a robust ranking. It
should be mentioned that the sum of squared error
(SSE) of the original JRC is equal to 0.00410
based on the Manhattan norm; while it is 0.00390
for the newly ranked. This shows a better trend for
JRC\. The suggested ranking is presented in
Figure 12. In other words, if we want to judge
about the roughness of custom profile by referring
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to JRC or decide on any other issue based on
Barton’s JRC [76], this judgment will be
controversial; while it can be claimed that
decision considering powerful methods based on
proven theories (JRCN) is defensible and reliable.

JRC

Another important point is to move away from
differences in decision-making and convergence
of expert opinions to each other. This is possible
with the basis of SSE.

JRCx

Dimension

Profile No.

Dimension

Profile No.

Method
Manhattan norm

error
0.00410

Method
Manhattan norm

error
0.00390

Figure 11. Calculation of error (SSE) using the Manhattan norm.
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NEW ROUGHNESS PROFILES (JRC) range
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Figure 12. Roughness of exemplar profiles before (JRC in left) and after (JRCy in right) re-ranking using the
data fusion-fractal-wavelet-based approach.

5. Conclusions

The JRC profiles are widely utilized to rank the
roughness of the fractures. Digitizing and
analyzing of JRC profiles have confirmed that

ranking of these profiles is challenging. In this
work, a data fusion-based approach was utilized to
achieve a robust ranking for the JRC profiles. In
fact, calculation methods based on the definitive
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approach in assigning quantity dimension to
roughness values can be a reliable indicator in
validating JRC.

Different fractal/wavelet-based methods were
used, and resulted in distinct semi-generalized
ranking of JRC, showing the necessity of re-
ranking of JRC profiles because each method
provided a different response from the other
methods about decision based on the Barton’s
JRC index. To achieve a more reliable ranking,
the rankings obtained as the outcomes from each
method were fused and integrated using the
Condorcet and Borda Count methods. Condorcet
showed ambiguity about ranking of the JRC4,
JRCS, and JRC6 profiles. This ambiguity is the
equality of the number of wins, losses, and draws
in pairwise matrix for these example profiles.
Thus the Borda Count position-based method was
applied to assign proportional score to the
achieved rankings. Based on the results obtained,
addressed JRCN, profile 6 was moved to the
fourth place, while the sequence of others
remained stable. Consequently, the Manhattan-
based SSE decreased from 0.00410 (original JRC)
to 0.00390 (JRCN). Obviously, this result, after
accurate measurements, suggests that the trend
based on JRCN will be more rational. Also it can
be concluded that the achieved ranking is, in fact,
an extension of the Barton’s pattern, which can be
accepted as a new and more accurate and reliable
applicable pattern.
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