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Abstract 
The aim of this work was to delineate the prospects of podiform-type chromite by staged 
factor analysis and geochemical mineralization prospectivity index in Balvard area, SE 
Iran. The stream sediment data and fault density were used as the exploration features 
for prospectivity modeling in the studied area. In this regard, two continuous fuzzified 
evidence layers were generated and integrated using fuzzy operator. Then fractal 
modeling was used for defuzzification of the prospectivity model obtained. Furthermore, 
the prediction-area plot was used for evaluation of the predictive ability of the generated 
target areas. The results obtained showed that using the prospectivity model, 82% of 
mineral occurrences was predicted in 18% of the studied area. In addition, the target 
areas were correlated with the geological particulars including ultrabasic and 
serpentinization rocks, the host rocks of the podiform-type chromite deposit type. 

1. Introduction 
Mineral potential mapping (MPM) is a multi-step 
procedure of constructing evidential maps, 
combining them, and finally, ranking the 
generated target areas for further exploration. The 
knowledge and data-driven methods are two types 
of techniques used to assign the evidential weights 
and combine different evidential maps for MPM 
[1, 2]. 
Integration of the stream sediment geochemical 
data with other types of mineral exploration data 
in knowledge-driven MPM is a challenging issue 
that requires careful analysis of multi-element 
geochemical anomalies as an evidence of the 
presence of the deposit-type sought [2, 3]. In this 
regard, factor analysis (FA), as one of the 
multivariate analysis methods, has been widely 
used for explanation of the geochemical data  
[4-8]. The principal purpose of FA is to define the 
variations in a multivariate dataset by a few 

factors as much as possible and to detect the 
hidden multivariate data structures [9, 10]. To 
improve the results of multi-elemental analyses of 
geochemical data, Yousefi et al. (2012, 2014) [3, 
11] proposed staged factor analysis (SFA), in 
which geochemical noses and non-indicator 
elements were recognized and excluded from the 
analyses to obtain significant multi-element 
signatures of the deposit type sought.  
In addition, Yousefi et al. (2012, 2014) [3, 11] 
proposed to transform the values of the factor 
scores obtained into a logistic space for 
calculating a geochemical mineralization 
prospectivity index (GMPI). GMPI is a 
transformed value of multi-element geochemical 
signatures into the [0, 1] range. Thus a distribution 
map of GMPI of geochemical signature can be 
used as a fuzzy evidence layer for MPM  
[3, 11-15].  
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Exploration of podiform-type chromite deposits is 
important in Iran based on the geological and 
economical parameters. There are many small 
podiform deposits in different ophiolitic zones 
[16, 17]. Geochemical signatures for this 
mineralization type are difficult for interpretation 
and require accurate detection and recognition 
[16-18]. Roshanravan et al. (2018a,b and 2019) 
recognized geochemical signatures of  
podiform-type chromite deposits in the North of 
Iran (Sabzevar ophiolite belt) by a logistic-based 
method [19-21]. The results of these studies 
showed that a neuro-fuzzy model generated with 
continuously weighted spatial evidence values 
was superior to that of the neuro-fuzzy model 
generated with discretely weighted exploration 
evidence data [19-21]. The purpose of this work 
was to generate target areas for further exploration 
of podiform-type chromite mineralization in 
Balvard area (SE Iran) using the geochemical and 
geological datasets. For this, we interpreted 
geochemical multi-element data to obtain a 
significant multi-element geochemical signature 
of the deposit type sought. In this regard, we 
applied SFA and GMPI to generate a continuous 
weighted geochemical evidence layer [13-15]. 
Based on the deposit model, we used a map of 
fault density (FD) in the studied area as another 
exploration feature of the deposit type sought. For 
generating a weighted evidence layer of FD, we 
applied the continuous weighting approach 
proposed by Yousefi et al. (2014) [11] and 
Yousefi and Carranza (2014, 2015a, 2015b) [13-
15]. Then since either of the generated evidence 
layers were continuous and weighted in the [0, 1] 
range, we used fuzzy operator to integrate the 
evidence layers and to generate the target areas for 
further exploration.  
In this work, SFA and GMPI were applied for 
generation of an MPM for podiform-type 
chromite mineralization. Classification of 
geochemical anomalies based on the results 
obtained by SFA and GMPI can differ depending 
on the variety of elemental associations and 
dispersion patterns of geochemical element 
caused by geological settings of the studied area. 
For defuzzification of the prospectivity model and 
for evaluation of the generated target areas, we 
used fractal analysis [e.g. 16] and prediction-area 

(P-A) plot [13, 15] using location of the known 
mineral occurrences in the studied area. 

2. Geological setting of Balvard area 
The studied area is located on the 1:100000 
geological quadrangle map of Balvard in the 
Kerman Province, SE Iran. The area is located on 
the Nain-Baft Ophiolitic belt in the  
structural-metamorphic Sanandaj-Sirjan zone of 
Iran (SSZ: Figure 1: [22]). The SSZ trends 
northwestward in the western Iran on the 
Precambrian to Paleozoic basement, and exposes 
abundant Late Jurassic to Upper Cretaceous I-type 
granitoids and calc-alkaline volcanic rocks [23].  
The Nain-Baft ophiolitic belt (Central Iran) 
extends in a NW-SE direction parallel to the 
Sanandaj-Sirjan Zone (Figure 1: [22]). The 
outcropping rocks in this belt are slices of 
harzburgites, small bodies of gabbros, and dike 
swarm complexes, accompanied by various 
volcanic rocks with composition of  
basaltic-andesitic lava flows and breccias to 
dacites and rhyolites [22-24]. 
The ophiolite units are located in the NE part of 
the area with a composition of ultramafic and 
mafic rocks (such as diabase and serpentinite), 
capped by pelagic sediments resting directly on 
the ophiolite (Figure 1: [22]). The Paleozoic units 
consisting of ortho-gneiss, muscovite, quartz, 
microcline, and albite occurred in the northern 
part of the studied area. Limestones and  
biotite-chlorite-amphibole schist units outcrop in 
the northern and NE parts of the area (Figure 1: 
[25, 26]).  
There are several alterations consisting of 
chloritization, epidotization, and carbonization. 
Eocene volcanics include trachyandesite and 
trachybasalt within the pyroclastic rocks occurring 
in the NE part of the area (Figure 1). Based on the 
rock types and the geological indicator, the 
studied area has a good potential for prospecting 
chromite and titanomagnetite mineralization [22]. 
However, in this work, the purpose is to generate 
targets for chromite mineralization. The  
Balvard-Baft ophiolite is in fault or 
unconformable contact with Middle to Late 
Eocene sedimentary-volcanic sequences related to 
the Urumieh–Dokhtar magmatic arc [27]. 
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Figure 1. Simplified Geological map of Balvard 1:100,000 sheet within sample locations the Nain-Baft ophiolites 

in the structural-metamorphic Sanandaj - Sirjan zone. 
 
3. Methods 
3.1. Staged factor analysis to recognize clean 
factor(s) 
Analysis of significant anomalies in geochemical 
landscapes based on the stream sediment 
geochemical data is important for creating and 
integrating layers of geochemical evidence in 
MPM for the deposit-type sought [3, 28]. In this 
regard, we used multi-element (Cr, Ni, Co, Fe, 
Mn, Ti, Mg, V, and K) concentration data from 
168 samples of −80 mesh (<177 μm) fraction of 
stream sediments, collected, analyzed, and 
prepared by the Geological Survey of Iran (GSI). 
To determine a multi-element anomalous 
signature of the deposit-type sought, we 
performed SFA [11]. SFA is a multivariate 
analysis for well-organized extraction of 
significant multi-element anomalous signature. In 
this method, to recognize multi-element 
associations in a geochemical dataset,  
non-indicator (noisy) elements are progressively 
delineated and excluded from the analysis until a 
satisfactory significant multi-element signature is 
obtained [11]. Prior to performing SFA, the 
isometric logratio (ilr) transformation [29, 30] was 
applied on the multi-element geochemical data to 
address the closure problem inherent in the 
compositional data [29-31]. Open and raw data 
correlation matrix is depicted in Figure 2. The 

data was back-transformed according to the 
following formula based on arithmetic mean as 
 :[30]	̅ݖ

exp( 2 )
( 2 ) 1




zx
exp z

 (1) 

Moreover, classical principle component analysis 
(PCA) with varimax rotation [32] was used for 
extracting the common factors, and we considered 
only factors with eigenvalues of >1 for 
interpretation. Additionally, we used 0.6 as the 
threshold value for loadings in FA to extract 
significant multi-element geochemical signature 
of the deposit-type sought. A threshold value for 
minimum loading criterion for elemental variables 
should be selected between 0.3 and 0.6 in order to 
reduce the errors of the calculation of the scores in 
factor analysis [e.g. 3, 4, 11, 33]. As a result of 
SFA, which is depicted in Table 1, two  
multi-element associations (i.e. factors) were 
recognized consisting of F1 (Fe-Mn-Ti-V) and F2 
(Cr-Ni-Co-Mg). K is a noisy element based on the 
result of first stage FA in Table 1. Thus it must be 
excluded from the dataset in the second stage FA 
(Table 1). According to the results of SFA, F2 
was selected as multi-element signature of the 
deposit type sought, podiform type of chromite 
deposit. 
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Figure 2. Open and raw data correlation matrix. 

 
Table 1. Rotated component matrix of the first and second steps of factor analysis. Loadings in bold represent 

the selected elements based on a threshold of 0.6 (the absolute threshold value). 
First step Second step 

Element F1 F2 Element F1 F2 
Cr .501 .684 Cr .490 .677 
Ni .063 .930 Ni .028 .943 
Co .547 .780 Co .514 .811 
Fe .892 .392 Fe .875 .429 
Mn .774 .374 Mn .758 .405 
Ti .941 -.081 Ti .945 -.055 
Mg .207 .903 Mg .166 .931 
V .949 .219 V .943 .245 
K -.053 -.427    

 
3.2. Generation of GMPI map 
The derived sample factor scores (FSs) depicting 
significant multi-element signatures of the 
deposit-type sought (here F2) usually lie outside 
the [0, 1] range. Therefore, a logistic sigmoid 
function was used to calculate a GMPI, a derived 
geochemical multi-element signature of the 
deposit-type sought in a weight space, to create 
fuzzy geochemical evidence maps, as follows: 

e
1  e




FS

FSGMPI  (2) 

where FS is the factor score of each sample per 
indicator component achieved by factor analysis. 
GMPI is a fuzzy weight assigned to stream 
sediment samples to represent their relative 

importance for prospecting the mineral  
deposit-type sought. Moreover, using GMPI, the 
evidential scores of stream sediment samples are 
calculated continuously based on the FSs of 
samples [3, 13]. 
In this work, the FS values of indicator factor, 
F(Cr-Ni-Co-Mg), were unbounded, so we used 
Eq. (1) to transform the FS values to logistic 
space. Yousefi et al. (2012; 2014) [3, 13] have 
demonstrated that a GMPI map is an enhanced 
weighted geochemical evidence layer compared to 
a geochemical evidence layer generated based on 
the results of ordinary FA. The GMPI distribution 
map of podiform type chromite deposit (GMPI 
Chromite) is depicted in Figure 3.  
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Figure 3. Distribution map of GMPIChromite. 

 
3.3. Generation of structure evidential map 
Structural investigations have recognized the 
important role of enhanced rock permeability in 
forming mineral deposits [34]. The presence of 
structural discontinuities is generally considered 
to be a major criterion for the presence of 
deposits. Faults facilitate the passage of magmas 
and the circulation of hydrothermal fluids  
[cf. 35-37]. Faults/fractures are common loci of 
many types of mineral deposits, and thus the 
presence of such geological features indicates the 
enhanced structural permeability of rocks in the 
sub-surface [2]. It is generally accepted that fault 
zones act as major channel ways for  

deeply-sourced melts as well as hydrothermal 
fluids [37]. 
Fault investigations have been used to study 
chromite mineralization in the literature [20]. 
Thus areas with high FD represent favorability for 
podiform-type chromite deposits. In this work, we 
used FD as an evidence layer to prospect the 
deposit-type sought. To generate the FD map, the 
total length of faults per pixel of the studied area 
was calculated. Then because the FD values were 
unbounded, for generating a weighted evidence 
layer, we applied Eq. (3) from Yousefi et al. 
(2014) [11], a logistic function, for transforming 
the FD values to weight space, fuzzy space 
(Figure 4).  

 

 
Figure 4. Fuzzy score of fault density. 
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3.4. Integration of weighted evidence layers  
In fuzzy MPM, the fuzzy evidence maps (Figures 
3 and 4) are combined to obtain a map of fuzzy 
prospectivity values for delineating the target 
areas for further exploration of the mineral 
deposit-type sought [2, 3]. Fuzzy evidence maps 
are integrated using suitable fuzzy operators [38]. 
In this regard, any of the existing fuzzy operators 
can be used considering the mineralization type 
sought and the purpose of the integration. We 
used the fuzzy gamma operator to integrate the 
weighted evidential maps (Figure 5) because it 
involved both the fuzzy algebraic sum and fuzzy 
algebraic product operators in a scheme. The 
output of the fuzzy algebraic product is less than 
or equal to the lowest fuzzy score at every 
location in the input fuzzy evidence maps. Thus 
the fuzzy algebraic product has a ‘decreasive’ 
effect, meaning that the presence of very low but 
non-zero fuzzy scores tends to deflate or 
underestimate the overall support for the 
proposition, and so it is appropriate in combining 
complementary sets of evidence. The output of 
the fuzzy algebraic sum is greater than or equal to 
the highest fuzzy score at every location in the 
input fuzzy evidence maps. Thus the fuzzy 

algebraic sum has an ‘increasive’ effect, meaning 
that the presence of very high fuzzy scores (but 
not equal to 1) tends to inflate or overestimate the 
overall support for the proposition, and so it is 
appropriate in combining supplementary sets of 
evidence. Considering that the target areas for 
prospecting podiform chromite deposits must 
exhibit the presence of supplementary evidential 
features representing interactions of conditions 
favorable for mineral deposit formation, such 
areas should have high prospectivity values. 
Consequently, using the fuzzy algebraic sum to 
model the ‘increasive’ effect of supplementary 
sets of evidence is more (but not totally) suitable 
than using the fuzzy algebraic product to model 
the ‘decreasive’ effect of supplementary sets of 
evidence. To achieve this in a single operation, we 
used the fuzzy gamma operator with a high value 
of gamma, which was equal to 0.9. 
The results obtained by the map of fuzzy 
prospectivity score reveal that the main prospects 
for podiform chromite deposits with a NW-SE 
trend situated in the central parts of the area 
(Figure 5). These prospects were validated by the 
chromite occurrences in the Balvard area, as 
depicted in Figure 5. 

 

 
Figure 5. Prospectivity map of chromite in the studied area (selected areas are shown by rectangles). 

  
3.5. Evaluation of the prospectivity map 
3.5.1. Using P-A plot 
After generation of prospectivity models in a 
studied area, locations of known mineral deposits 
of the type sought in the area or field observations 
can be used as an empirical test to evaluate the 

results and to obtain measures of success [e.g. 1, 
2, 39-43]. In this work, the locations of known 
podiform chromite occurrences were used in a  
P-A plot [13-15] to evaluate the model. For this, 
the prospectivity values were classified utilizing 
fractal [43] because as Yousefi and Carranza 
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(2014; 2015b) [13, 15] illustrated, prospectivity 
models, a combination of geological features with 
fractal dimensions [e.g. 2, 44-47] have fractal 
dimensions as well. In this work, the 
concentration–area (C–A) model proposed by 
Cheng et al. (1994) [16] was utilized to determine 
thresholds for classifying the prospectivity values 
in the fuzzy prospectivity model. Based on P-A 
the log-log plot (Figure 6), five classes of 
prospectivity scores are delineated in this area 
(Figure 6). Based on the P-A log-log plot (Figure 
6), there is a multi-fractal nature for chromite 
prospectivity in this area, which reveals that main 
chromite prospects commences from prospectivity 
values higher than 0.57. There are three chromite 
occurrences that are correlated to the classified 
prospectivity model of podiform chromite, as 
depicted in Figure 7. These occurrences were 
located in the high prospectivity values in the 
model. After generation of a classified map of 
prospectivity, the P-A plot [13, 15] was used to 
quantify the ability of the prospectivity model in 
prediction of mineral occurrences (Figure 8). 
The intersection point of the two curves consisting 
of prediction rate of known mineral occurrences 
corresponding to prospectivity classes and the 
percentage of occupied areas corresponding to the 
prospectivity classes is a criterion to evaluate the 
fuzzy prospectivity model (Figure 5) [13, 14]. 
This is because if an intersection point appears in 
a higher place in the P–A plot, it depicts a smaller 

area containing a larger number of mineral 
deposits. Thus it is “easier” to find undiscovered 
deposits type sought in such a smaller area [13, 
14]. The intersection point of the P–A plot for 
fuzzy prospectivity model (Figure 7) shows 82% 
of mineral occurrences predicted only in 18% of 
the studied area. Mihalasky and Bonham-Carter 
(2001) [48] used the prediction rate of mineral 
occurrences of each class of evidential layers 
divided by their corresponding occupied area, 
termed as normalized density, to recognize 
positive and negative association of mineral 
occurrences by classes of evidential values. 
Mihalasky and Bonham-Carter (2001) [48, 49] 
mentioned that the normalized density >1 was a 
proper predictor of the deposit type sought. 
Yousefi and Carranza (2015b) [15] used the 
parameters extracted from an intersection point of 
the P-A plot of an evidence layer (or a 
prospectivity map) for evaluating individual 
evidence layers (or different prospectivity 
models). For this, the prediction rate and occupied 
area are extracted from intersection point of the  
P-A plot, then the value of prediction rate is 
divided by the value of occupied area to calculate 
normalized density of the prospectivity model. 
For prospectivity model in this paper, the value of 
normalized density is 4.55 (82/18). Thus as 
Mihalasky and Bonham-Carter (2001) [48] 
mentioned the model as a predictor of the ore 
deposit-type. 

 

 
Figure 6. Log-log plot of fuzzy prospectivity values in the Balvard area. 
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Figure 7. Classified map of chromite prospectivity model using C-A fractal model. 

 

 
Figure 8. P-A plot for fuzzy prospectivity model in Figure 4. 

 
3.5.2. Mineralization and field observations 
In this paper, considering the prospectivity map, 
Figure 6, the areas with high values of 
prospectivity were selected for field observation 
(Figure 5). Fieldwork can be conducted in the 
delimited target areas to evaluate/validate MPM 
results because MPM aims to delimit target areas 
for further exploration of this deposit-type. This 
operation showed that the areas with high values 
of GMPIChromite are correlated with chromite 
occurrences in the studied area (Figure 8). 
Furthermore, three podiform chromite 

occurrences have a good correlation with 
determined areas by GMPI and the staged factor 
analysis. Thus the area with high GMPIChromite 
values can be selected as the target area for further 
exploration of undiscovered podiform chromite 
deposits in the studied area.  
F1 (Fe-Mn-Ti-V) and F2 (Cr-Ni-Co-Mg) can be 
represented titnomagnetite and chromite 
mineralization, respectively. Moreover, the 
existing serpentinization and high fault density 
values in the area have a positive influence with 
chromite ore mineralization, especially in the NE 
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and northern parts of the studied area (Figures 1, 
3, and 4). 

4. Conclusions 
The results of this work show that GMPI and SFA 
can be used for a better interpretation for 
generation of an MPM. The target areas obtained 
by the methodology have a spatial association 
with known podiform chromite occurrences. 
Furthermore, combination among GMPI, fractal 
modelling, and staged factor analysis is a useful 
method for prospecting of metallic ore deposits, 
especially podiform chromite. The staged factor 
analysis can be effectively utilized to remove 
pseudo-anomalies and recognize major anomalies 
in the Balvard area. Based on the results obtained 
in this work, there are chromite ore prospects in 
the NE and northern parts of the Balvard area. In 
addition, field observations show geological 
features including ultrabasic rocks and 
serpentinization, which represent evidence of 
podiform chromite mineralization in the area. 
Moreover, the Cr occurrences are correlated with 
this result, which validate the method for future 
challenges. 
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  چکیده:

اي و نیز شـاخص  اي در منطقه بلورد (جنوب شرقی ایران) با استفاده از آنالیز فاکتوري مرحلهزایی کرومیت انبانههاي کانههدف اصلی این پژوهش تعیین پتانسیل
ها استفاده شـد. همچنـین از عملگـر فـازي بـراي دو لایـه       اي و تراکم گسلهاي رسوب آبراههلعه از دادهباشد. به همین جهت در این مطاژئوشیمیایی مربوطه می

  و نیز نتیجـه نهـایی اسـتفاده شـده اسـت. در ادامـه از منحنـی         شده يفازهاي بندي لایهسازي فرکتالی براي دسته ذکرشده استفاده شده است. همچنین از مدل
هـاي  زایـی درصد از کانـه  82سنجی نتایج ترسیم و تحلیل شده است. بر این اساس ها و کانسارها براي صحتسازيتحت پوشش کانیبینی در برابر مساحت پیش

اي مورد شناسی کانسارهاي کرومیت انبانهآمده با مشخصات زمین دست بههاي اند. پتانسیلدرصد از مساحت منطقه موردمطالعه قرار گرفته 18در  شده ینیب شیپ
 باشند.ها میهاي مهمی از صحت این پتانسیلهاي اولترابازیک و آلتراسیون سرپانتینیتی نشانهمقایسه قرار گرفته و همپوشانی این مناطق با سنگ

  .ايدهی ممتد، منطق فازي، کرومیت تیپ انبانهاي، وزنزایی، آنالیز فاکتوري مرحلهشاخص ژئوشیمیایی مربوط به تیپ کانه کلمات کلیدي:

 

 

 

 


