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Keywords Abstract

The aim of this work was to delineate the prospects of podiform-type chromite by staged

Geochemical
Mineralization
Prospectivity Index

Staged Factor Analysis
Continuous Weighting

factor analysis and geochemical mineralization prospectivity index in Balvard area, SE
Iran. The stream sediment data and fault density were used as the exploration features
for prospectivity modeling in the studied area. In this regard, two continuous fuzzified
evidence layers were generated and integrated using fuzzy operator. Then fractal
modeling was used for defuzzification of the prospectivity model obtained. Furthermore,
the prediction-area plot was used for evaluation of the predictive ability of the generated

target areas. The results obtained showed that using the prospectivity model, 82% of

Fuzzy Logic

mineral occurrences was predicted in 18% of the studied area. In addition, the target

Podiform-Type Chromite — areas were correlated with the geological particulars including ultrabasic and
serpentinization rocks, the host rocks of the podiform-type chromite deposit type.

1. Introduction

Mineral potential mapping (MPM) is a multi-step
procedure of constructing evidential maps,
combining them, and finally, ranking the
generated target areas for further exploration. The
knowledge and data-driven methods are two types
of techniques used to assign the evidential weights
and combine different evidential maps for MPM
[1,2].

Integration of the stream sediment geochemical
data with other types of mineral exploration data
in knowledge-driven MPM is a challenging issue
that requires careful analysis of multi-element
geochemical anomalies as an evidence of the
presence of the deposit-type sought [2, 3]. In this
regard, factor analysis (FA), as one of the
multivariate analysis methods, has been widely
used for explanation of the geochemical data
[4-8]. The principal purpose of FA is to define the
variations in a multivariate dataset by a few
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factors as much as possible and to detect the
hidden multivariate data structures [9, 10]. To
improve the results of multi-elemental analyses of
geochemical data, Yousefi et al. (2012, 2014) [3,
11] proposed staged factor analysis (SFA), in
which geochemical noses and non-indicator
elements were recognized and excluded from the
analyses to obtain significant multi-element
signatures of the deposit type sought.

In addition, Yousefi et al. (2012, 2014) [3, 11]
proposed to transform the values of the factor
scores obtained into a logistic space for
calculating a  geochemical  mineralization
prospectivity index (GMPI). GMPI is a
transformed value of multi-element geochemical
signatures into the [0, 1] range. Thus a distribution
map of GMPI of geochemical signature can be
used as a fuzzy evidence layer for MPM
[3, 11-15].
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Exploration of podiform-type chromite deposits is
important in Iran based on the geological and
economical parameters. There are many small
podiform deposits in different ophiolitic zones
[16, 17]. Geochemical signatures for this
mineralization type are difficult for interpretation
and require accurate detection and recognition
[16-18]. Roshanravan et al. (2018a,b and 2019)
recognized geochemical signatures of
podiform-type chromite deposits in the North of
Iran (Sabzevar ophiolite belt) by a logistic-based
method [19-21]. The results of these studies
showed that a neuro-fuzzy model generated with
continuously weighted spatial evidence values
was superior to that of the neuro-fuzzy model
generated with discretely weighted exploration
evidence data [19-21]. The purpose of this work
was to generate target areas for further exploration
of podiform-type chromite mineralization in
Balvard area (SE Iran) using the geochemical and
geological datasets. For this, we interpreted
geochemical multi-element data to obtain a
significant multi-element geochemical signature
of the deposit type sought. In this regard, we
applied SFA and GMPI to generate a continuous
weighted geochemical evidence layer [13-15].
Based on the deposit model, we used a map of
fault density (FD) in the studied area as another
exploration feature of the deposit type sought. For
generating a weighted evidence layer of FD, we
applied the continuous weighting approach
proposed by Yousefi et al. (2014) [11] and
Yousefi and Carranza (2014, 2015a, 2015b) [13-
15]. Then since either of the generated evidence
layers were continuous and weighted in the [0, 1]
range, we used fuzzy operator to integrate the
evidence layers and to generate the target areas for
further exploration.

In this work, SFA and GMPI were applied for
generation of an MPM for podiform-type
chromite  mineralization.  Classification  of
geochemical anomalies based on the results
obtained by SFA and GMPI can differ depending
on the wvariety of elemental associations and
dispersion patterns of geochemical element
caused by geological settings of the studied area.
For defuzzification of the prospectivity model and
for evaluation of the generated target areas, we
used fractal analysis [e.g. 16] and prediction-area
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(P-A) plot [13, 15] using location of the known
mineral occurrences in the studied area.

2. Geological setting of Balvard area

The studied area is located on the 1:100000
geological quadrangle map of Balvard in the
Kerman Province, SE Iran. The area is located on
the Nain-Baft Ophiolitic belt in the
structural-metamorphic Sanandaj-Sirjan zone of
Iran (SSZ: Figure 1: [22]). The SSZ trends
northwestward in the western Iran on the
Precambrian to Paleozoic basement, and exposes
abundant Late Jurassic to Upper Cretaceous I-type
granitoids and calc-alkaline volcanic rocks [23].
The Nain-Baft ophiolitic belt (Central Iran)
extends in a NW-SE direction parallel to the
Sanandaj-Sirjan Zone (Figure 1: [22]). The
outcropping rocks in this belt are slices of
harzburgites, small bodies of gabbros, and dike
swarm complexes, accompanied by various
volcanic ~ rocks  with  composition  of
basaltic-andesitic lava flows and breccias to
dacites and rhyolites [22-24].

The ophiolite units are located in the NE part of
the area with a composition of ultramafic and
mafic rocks (such as diabase and serpentinite),
capped by pelagic sediments resting directly on
the ophiolite (Figure 1: [22]). The Paleozoic units
consisting of ortho-gneiss, muscovite, quartz,
microcline, and albite occurred in the northern
part of the studied area. Limestones and
biotite-chlorite-amphibole schist units outcrop in
the northern and NE parts of the area (Figure 1:
[25, 26]).

There are several alterations consisting of
chloritization, epidotization, and carbonization.
Eocene volcanics include trachyandesite and
trachybasalt within the pyroclastic rocks occurring
in the NE part of the area (Figure 1). Based on the
rock types and the geological indicator, the
studied area has a good potential for prospecting
chromite and titanomagnetite mineralization [22].
However, in this work, the purpose is to generate
targets for chromite mineralization. The
Balvard-Baft  ophiolite is in fault or
unconformable contact with Middle to Late
Eocene sedimentary-volcanic sequences related to
the Urumieh—Dokhtar magmatic arc [27].
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Figure 1. Simplified Geological map of Balvard 1:100,000 sheet within sample locations the Nain-Baft ophiolites
in the structural-metamorphic Sanandaj - Sirjan zone.

3. Methods

3.1. Staged factor analysis to recognize clean
factor(s)

Analysis of significant anomalies in geochemical
landscapes based on the stream sediment
geochemical data is important for creating and
integrating layers of geochemical evidence in
MPM for the deposit-type sought [3, 28]. In this
regard, we used multi-element (Cr, Ni, Co, Fe,
Mn, Ti, Mg, V, and K) concentration data from
168 samples of —80 mesh (<177 pm) fraction of
stream sediments, collected, analyzed, and
prepared by the Geological Survey of Iran (GSI).
To determine a multi-element anomalous
signature of the deposit-type sought, we
performed SFA [11]. SFA is a multivariate
analysis for well-organized extraction of
significant multi-element anomalous signature. In
this method, to recognize multi-element
associations in a  geochemical dataset,
non-indicator (noisy) elements are progressively
delineated and excluded from the analysis until a
satisfactory significant multi-element signature is
obtained [11]. Prior to performing SFA, the
isometric logratio (ilr) transformation [29, 30] was
applied on the multi-element geochemical data to
address the closure problem inherent in the
compositional data [29-31]. Open and raw data
correlation matrix is depicted in Figure 2. The
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data was back-transformed according to the
following formula based on arithmetic mean as
Z [30]:

_exp(v22)
exp (\/EZ_) +1

Moreover, classical principle component analysis
(PCA) with varimax rotation [32] was used for
extracting the common factors, and we considered
only factors with eigenvalues of >1 for
interpretation. Additionally, we used 0.6 as the
threshold value for loadings in FA to extract
significant multi-element geochemical signature
of the deposit-type sought. A threshold value for
minimum loading criterion for elemental variables
should be selected between 0.3 and 0.6 in order to
reduce the errors of the calculation of the scores in
factor analysis [e.g. 3, 4, 11, 33]. As a result of
SFA, which is depicted in Table 1, two
multi-element associations (i.e. factors) were
recognized consisting of F1 (Fe-Mn-Ti-V) and F2
(Cr-Ni-Co-Mg). K is a noisy element based on the
result of first stage FA in Table 1. Thus it must be
excluded from the dataset in the second stage FA
(Table 1). According to the results of SFA, F2
was selected as multi-element signature of the
deposit type sought, podiform type of chromite
deposit.

(1)
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Figure 2. Open and raw data correlation matrix.

Table 1. Rotated component matrix of the first and second steps of factor analysis. Loadings in bold represent
the selected elements based on a threshold of 0.6 (the absolute threshold value).

First step Second step
Element F1 F2  Element F1 F2
Cr 501 .684 Cr 490 .677
Ni 063 .930 Ni 028 .943
Co 547 780 Co S14 811
Fe 892 392 Fe 875 429
Mn 774 374 Mn 758 405
Ti 941  -.081 Ti 945 -.055
Mg 207 903 Mg 166 931
v 949 219 v 943 245
K -.053 -.427
3.2. Generation of GMPI map importance  for  prospecting the mineral

The derived sample factor scores (FSs) depicting
significant multi-element signatures of the
deposit-type sought (here F2) usually lie outside
the [0, 1] range. Therefore, a logistic sigmoid
function was used to calculate a GMPI, a derived
geochemical multi-element signature of the
deposit-type sought in a weight space, to create
fuzzy geochemical evidence maps, as follows:

F
eS

GMPI= 2)
1+ ™

where FS is the factor score of each sample per

indicator component achieved by factor analysis.

GMPI is a fuzzy weight assigned to stream

sediment samples to represent their relative
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deposit-type sought. Moreover, using GMPI, the
evidential scores of stream sediment samples are
calculated continuously based on the FSs of
samples [3, 13].

In this work, the FS values of indicator factor,
F(Cr-Ni-Co-Mg), were unbounded, so we used
Eq. (1) to transform the FS values to logistic
space. Yousefi et al. (2012; 2014) [3, 13] have
demonstrated that a GMPI map is an enhanced
weighted geochemical evidence layer compared to
a geochemical evidence layer generated based on
the results of ordinary FA. The GMPI distribution
map of podiform type chromite deposit (GMPI
chromire) 18 depicted in Figure 3.
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3.3. Generation of structure evidential map

Structural investigations have recognized the
important role of enhanced rock permeability in
forming mineral deposits [34]. The presence of
structural discontinuities is generally considered
to be a major criterion for the presence of
deposits. Faults facilitate the passage of magmas
and the circulation of hydrothermal fluids
[cf. 35-37]. Faults/fractures are common loci of
many types of mineral deposits, and thus the
presence of such geological features indicates the
enhanced structural permeability of rocks in the
sub-surface [2]. It is generally accepted that fault

deeply-sourced melts as well as hydrothermal
fluids [37].

Fault investigations have been used to study
chromite mineralization in the literature [20].
Thus areas with high FD represent favorability for
podiform-type chromite deposits. In this work, we
used FD as an evidence layer to prospect the
deposit-type sought. To generate the FD map, the
total length of faults per pixel of the studied area
was calculated. Then because the FD values were
unbounded, for generating a weighted evidence
layer, we applied Eq. (3) from Yousefi et al.
(2014) [11], a logistic function, for transforming

zones act as major channel ways for the FD values to weight space, fuzzy space
(Figure 4).
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Figure 4. Fuzzy score of fault density.
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3.4. Integration of weighted evidence layers

In fuzzy MPM, the fuzzy evidence maps (Figures
3 and 4) are combined to obtain a map of fuzzy
prospectivity values for delineating the target
arecas for further exploration of the mineral
deposit-type sought [2, 3]. Fuzzy evidence maps
are integrated using suitable fuzzy operators [38].
In this regard, any of the existing fuzzy operators
can be used considering the mineralization type
sought and the purpose of the integration. We
used the fuzzy gamma operator to integrate the
weighted evidential maps (Figure 5) because it
involved both the fuzzy algebraic sum and fuzzy
algebraic product operators in a scheme. The
output of the fuzzy algebraic product is less than
or equal to the lowest fuzzy score at every
location in the input fuzzy evidence maps. Thus
the fuzzy algebraic product has a ‘decreasive’
effect, meaning that the presence of very low but
non-zero fuzzy scores tends to deflate or
underestimate the overall support for the
proposition, and so it is appropriate in combining
complementary sets of evidence. The output of
the fuzzy algebraic sum is greater than or equal to
the highest fuzzy score at every location in the
input fuzzy evidence maps. Thus the fuzzy

405362
S

3263770

Prospectivity score
pm 0.93

= 0.027

‘ Cr occurrence 7’

algebraic sum has an ‘increasive’ effect, meaning
that the presence of very high fuzzy scores (but
not equal to 1) tends to inflate or overestimate the
overall support for the proposition, and so it is
appropriate in combining supplementary sets of
evidence. Considering that the target areas for
prospecting podiform chromite deposits must
exhibit the presence of supplementary evidential
features representing interactions of conditions
favorable for mineral deposit formation, such
areas should have high prospectivity values.
Consequently, using the fuzzy algebraic sum to
model the ‘increasive’ effect of supplementary
sets of evidence is more (but not totally) suitable
than using the fuzzy algebraic product to model
the ‘decreasive’ effect of supplementary sets of
evidence. To achieve this in a single operation, we
used the fuzzy gamma operator with a high value
of gamma, which was equal to 0.9.

The results obtained by the map of fuzzy
prospectivity score reveal that the main prospects
for podiform chromite deposits with a NW-SE
trend situated in the central parts of the area
(Figure 5). These prospects were validated by the
chromite occurrences in the Balvard area, as
depicted in Figure 5.

451462

3263770

3237270

7 Kilometers

405362

Figure S. Prospectivity map of chromite in the studied area (selected areas are shown by rectangles).

3.5. Evaluation of the prospectivity map

3.5.1. Using P-A plot

After generation of prospectivity models in a
studied area, locations of known mineral deposits
of the type sought in the area or field observations
can be used as an empirical test to evaluate the
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results and to obtain measures of success [e.g. 1,
2, 39-43]. In this work, the locations of known
podiform chromite occurrences were used in a
P-A plot [13-15] to evaluate the model. For this,
the prospectivity values were classified utilizing
fractal [43] because as Yousefi and Carranza
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(2014; 2015b) [13, 15] illustrated, prospectivity
models, a combination of geological features with
fractal dimensions [e.g. 2, 44-47] have fractal
dimensions as well. In this work, the
concentration—area (C—A) model proposed by
Cheng et al. (1994) [16] was utilized to determine
thresholds for classifying the prospectivity values
in the fuzzy prospectivity model. Based on P-A
the log-log plot (Figure 6), five classes of
prospectivity scores are delineated in this area
(Figure 6). Based on the P-A log-log plot (Figure
6), there is a multi-fractal nature for chromite
prospectivity in this area, which reveals that main
chromite prospects commences from prospectivity
values higher than 0.57. There are three chromite
occurrences that are correlated to the classified
prospectivity model of podiform chromite, as
depicted in Figure 7. These occurrences were
located in the high prospectivity values in the
model. After generation of a classified map of
prospectivity, the P-A plot [13, 15] was used to
quantify the ability of the prospectivity model in
prediction of mineral occurrences (Figure 8).

The intersection point of the two curves consisting
of prediction rate of known mineral occurrences
corresponding to prospectivity classes and the
percentage of occupied areas corresponding to the
prospectivity classes is a criterion to evaluate the
fuzzy prospectivity model (Figure 5) [13, 14].
This is because if an intersection point appears in
a higher place in the P—A plot, it depicts a smaller

5

area containing a larger number of mineral
deposits. Thus it is “easier” to find undiscovered
deposits type sought in such a smaller area [13,
14]. The intersection point of the P—A plot for
fuzzy prospectivity model (Figure 7) shows 82%
of mineral occurrences predicted only in 18% of
the studied area. Mihalasky and Bonham-Carter
(2001) [48] used the prediction rate of mineral
occurrences of each class of evidential layers
divided by their corresponding occupied area,
termed as normalized density, to recognize
positive and negative association of mineral
occurrences by classes of evidential values.
Mihalasky and Bonham-Carter (2001) [48, 49]
mentioned that the normalized density >1 was a
proper predictor of the deposit type sought.
Yousefi and Carranza (2015b) [15] used the
parameters extracted from an intersection point of
the P-A plot of an evidence layer (or a
prospectivity map) for evaluating individual
evidence layers (or different prospectivity
models). For this, the prediction rate and occupied
area are extracted from intersection point of the
P-A plot, then the value of prediction rate is
divided by the value of occupied area to calculate
normalized density of the prospectivity model.
For prospectivity model in this paper, the value of
normalized density is 4.55 (82/18). Thus as
Mihalasky and Bonham-Carter (2001) [48]
mentioned the model as a predictor of the ore
deposit-type.
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Figure 6. Log-log plot of fuzzy prospectivity values in the Balvard area.
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3.5.2. Mineralization and field observations occurrences have a good correlation with

In this paper, considering the prospectivity map,
Figure 6, the areas with high values of
prospectivity were selected for field observation
(Figure 5). Fieldwork can be conducted in the
delimited target areas to evaluate/validate MPM
results because MPM aims to delimit target areas
for further exploration of this deposit-type. This
operation showed that the areas with high values
of GMPIcyomie are correlated with chromite
occurrences in the studied area (Figure 8).
Furthermore, three podiform chromite
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determined areas by GMPI and the staged factor
analysis. Thus the area with high GMPIlchomie
values can be selected as the target area for further
exploration of undiscovered podiform chromite
deposits in the studied area.

F1 (Fe-Mn-Ti-V) and F2 (Cr-Ni-Co-Mg) can be
represented  titnomagnetite =~ and  chromite
mineralization, respectively. = Moreover, the
existing serpentinization and high fault density
values in the area have a positive influence with
chromite ore mineralization, especially in the NE
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and northern parts of the studied area (Figures 1,
3, and 4).

4. Conclusions

The results of this work show that GMPI and SFA
can be used for a better interpretation for
generation of an MPM. The target areas obtained
by the methodology have a spatial association
with known podiform chromite occurrences.
Furthermore, combination among GMPI, fractal
modelling, and staged factor analysis is a useful
method for prospecting of metallic ore deposits,
especially podiform chromite. The staged factor
analysis can be effectively utilized to remove
pseudo-anomalies and recognize major anomalies
in the Balvard area. Based on the results obtained
in this work, there are chromite ore prospects in
the NE and northern parts of the Balvard area. In
addition, field observations show geological
features  including ultrabasic rocks and
serpentinization, which represent evidence of
podiform chromite mineralization in the area.
Moreover, the Cr occurrences are correlated with
this result, which validate the method for future
challenges.
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