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Abstract

Detection of deep and hidden mineralization using the surface geochemical data is a
challenging subject in the mineral exploration. In this work, a novel scenario based on
the spectrum—area fractal analysis (SAFA) and the principal component analysis (PCA)
has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli
Cu—Au porphyry mineralization area. The Dalli mineral deposit is located on the
volcanic—plutonic belt of Sahand—Bazman in the central part of Iran. The geochemical
Principal Component data was transformed to the frequency domain using the Fourier transformation, and
Analysis SAFA was applied for classification of geochemical frequencies and detection of
geochemical populations. The very low-frequency signals in the fractal method were
separated using the low-pass filter function and were interpreted using PCA. This
scenario demonstrates that the Mo element has an important role in the mineralization
phase in the very low-frequency signals that are related to the deep mineralization; it is
an important innovation in this work. Then the Mo geochemical anomaly has been
mapped using the inverse Fourier transformation. This research work shows that the
high-power spectrum values in SAFA are related to the background elements and the
deep mineralization. Two exploratory boreholes drilled inside and outside the deep Mo
anomaly area properly confirm the results of the proposed approach.
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1. Introduction

The interpretation of geochemical data has
generally been performed in the spatial domain.
Some of these frequent methods in the spatial
domain consist of the mineral potential mapping

the deep geochemical anomaly [15, 18-20]. The
geochemical background and the deep mineral
deposits can  create the low-frequency
geochemical signals in the surface. The deep
[1-5], factor analysis [6, 7], and fractal methods mineralized and non-mineralized zones can be
[8-11]. The geochemical data has been analyzed distinguished using the discriminant criteria in
in the spatial domain more than the frequency FD.

domain (FD). The frequency characteristics of The geochemical distribution map can be
geochemical processes have been considered for considered as different frequency signals [21].
determination of anomaly and background These maps can be transferred to FD using the

[12-16]. The spectral analysis has been widely
used for data processing and pattern recognition in
the geosciences [17]. There is a relationship
between the geochemical frequency signals and

two dimensional-Fourier transform (2D-FT) [22,
23]. The frequency signals of geochemical data
can be determined in FD. One of the equations
used for conducting FT is presented bellow [24]:

F(Kx,Ky):T Tf(x,y)cos(Kx x +K ,y)dxdy —i T Tf (x,y)sin(K, x + Ky )dxdy (1)
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where f(x,y) is the initial geochemical function,
and K, and K, are “wave numbers” in the
direction of x and y axes. The real and imaginary
components of the signals are R(K,, K,) and I(K,,
Ky). The power spectrum values are calculated as
follow [25, 26]:

2 2

EK,.K,)=R"(K,.K,)+I*K,.K,) 2)
The fractal method has been defined in FD by
applying the spectrum-area fractal model [27].
In this work, a new combined method based on
SAFA and PCA is proposed for interpretation of
the surface geochemical data. The complicated
geochemical populations can be decomposed
using this method. Identification and detection of
mineralization anomalies from the barren rocks is
an essential issue in the mining exploration. This
proposed method is useful for detection of the
deep mineralization that may cause the weak
anomaly in the surface. In this work, the
SAFA-PCA method is used to identify the blind
Mo geochemical anomaly in the depth based on
the surface geochemical data in the Dalli
mineralization area. PCA, as an important
dimension reduction tool, converts the datasets to
uncorrelated factors [16]. The PCA method is
commonly utilized for interpretation of data in the
geoscience field [28-34].

2. Materials and methods

2.1. Studied area

The Dali Cu-Au porphyry mineralization area is
located in the Urmieh-Dokhtar intrusive-volcanic
belt in Iran [35, 36]. The mineralization of copper
and gold is shown in the igneous diorite, quartz
diorite porphyry, and porphyritic amphibole
andesite, andesite, dacite, and pyroclastic in this
area (Figure 1) [37]. The volcanic and pyroclastic
rocks are related to the Miocene volcanic rocks
and are disposed with a length of 30 km in the
north-north east direction.

In the north part of the area, mineralization is
shown in the andesite, quartz diorite, and
granodiorite rocks. The potassic alteration is more
shown in the central part of the area, has occurred
in the tonalitic rocks, and consists of the
mineralization of quartz, magnetite, and biotite.
The sericite, sericite—chlorite, and
propylitic-potassic alterations are located around
the potassic alteration. In the diorite and andesite
rocks, the copper and gold mineralizations are
more located in the alterations of potassic—phyllic
and propylitic—silicic [36, 37].
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2.2. Spectrum-area fractal analysis (SAFA)
Various fractal methods have been used for
interpretation of geochemical data [38]. SAFA is
a new method that has been applied in the
frequency domain of geochemical dada. SAFA
illustrates the relationships between the areas of
different frequency signals in the power spectrum
distribution map and the spectral energy density
above S[A(>S)] on 2D-FT, and for a 2D linear
case gives:

3)

B is the anisotropic scaling exponent [16]. The
power—law relationships in the spatial and
frequency domains are powerful tools for
anomaly separation in the geochemistry according
to the distinctive generalized self-similarity
[39-42]. SAFA has been applied for elimination
of the very low-frequency signals as the
background factor from the anomaly factor [16,
22,27,43-46]. SAFA is performed as bellow:

(1) The interpolation of the surface geochemical
data in the spatial domain. (2) The transformation
of geochemical data in the spatial domain to FD
using 2D-FT. (3) The delineation of the SAFA
plot (the power spectrum values versus the area
with the log—log scaling). Several populations are
distinguished based on the straight lines that can
be fitted on the SAFA plot. The higher cut-off
value separates the signals with the high-power
spectrum values from the other frequencies. The
obtained frequency class based on this cut-off
value is related to the background and the deep
mineralization  elements. This fact was
demonstrated properly in this research work.

AES)oc 5

3. Discussion

A grid net of 50 x 50 m® was utilized for the
systematic soil sampling. 165 samples with the
size fraction of —200 mesh were collected and
analyzed for 30 elements using the ICP-MS
method in this area. The geochemical distribution
maps of 30 elements in the spatial domain of
geochemical data were transferred to the
frequency domain wusing 2D-FT. The 2D
distribution map of the power spectrum values
versus the wave numbers in the vertical and
horizontal directions for Cu and Mo is illustrated
in Figure 2.

The wave number values in the center of this
image are zero.

SAFA was performed on the power spectrum
distribution map of Cu, and three straight lines
were fitted on the fractal diagram based on the



Mabhdiyanfar/ Journal of Mining & Environment, Vol. 10, No. 3, 2019

least-square regression (Figure 3). The area A(S)
is equal to the number of cells (multiplied by the
cell area) with the power spectrum values greater
than S. The power spectrum value is increased
towards the right, and accordingly, the area is
decreased. The geochemical populations are
defined by the breakpoints and the different line
segments in this log-log plot. Accordingly, there
are three populations in the Cu power spectrum
data. The first and second Cu thresholds are 12.3
and 13.95, respectively. The right-hand straight

line presents the low-frequency signals with the
power spectrum values more than 10 and
pertains to the background component and the
weak surface anomalies. These weak anomalies in
the surface are related to the blind and the deep
ore deposit. Identifying the relationship between
the geochemical frequency signals and the

location of the deep ore deposit is a novel
interesting
geochemistry.

achievement in the mining
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Figure 1. The geology map of studied area and the position of exploratory works [37].
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Figure 2. The power-spectrum distribution maps of Cu and Mo obtained by the Fourier transformation [18].
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Figure 3. The log-log plot of SAFA for Cu element (logarithm of area versus logarithm of power spectrum values

The various geochemical populations that were
distinguished by SAFA can be separated using
several filter functions. A low-pass filter based on
the threshold of 10"’ was performed on the
power spectrum distribution map to remove the
high and the moderate frequency geochemical
signals. Therefore, the wave numbers with the
power spectrum values more than 10" were
preserved and the other frequencies were
removed. Detection and separation of the weak
surface anomaly from the background is a major
subject in the mineral exploration. The deep
mineral deposits can create the weak surface
anomalies with a low variability. These weak
surface anomalies hold the low concentrations and
consist of the low frequency signals. Some deep
mineral deposits may cause very weak anomalies

PS)).

698

in the surface. Therefore, the concentrations of
mineralization elements have a low variability and
may be less than the background values. This
means that FD of the surface geochemical data for
blind and deep geochemical anomalies consists of
the low-frequency signals. Therefore, in order to
detect and determine the background component
and the deep mineralization factor, PCA was
performed on the low-frequency signals of the
elements. In this work, the SAFA-PCA scenario
was successfully used for the Mo potential
mapping in the depth based on the surface
geochemical data. PCA, as a dimension-reduction
method, reduced the 30 features (elements) to 2
components based on the low-frequency signals
(Table 1 and Figure 4).



Mahdiyanfar/ Journal of Mining & Environment, Vol. 10, No. 3, 2019

Table 1. The rotated component matrix obtained from the SAFA- PCA approach.

Component
PC1 PC2
(background component)  (mineralization component)

Au 0.886 0.300
Al 0.985 0.174
As 0.976 0.219
B 0.983 0.182

Ba 0.987 0.159
Ca 0.973 0.189
Ce 0.984 0.175
Co 0.984 0.176
Cr 0.983 0.185
Cu 0.850 0.467
Fe 0.984 0.174
Ga 0.985 0.173
K 0.985 0.170

La 0.985 0.174
Li 0.984 0.176
Mg 0.985 0.170
Mn 0.983 0.184
Mo 0.101 0.989
Na 0.986 0.167
Ni 0.977 0.214
P 0.985 0.173

Pb 0.986 0.164
S 0.895 0.441

Sc 0.982 0.185
Sr 0.985 0.169
Ti 0.984 0.177
v 0.983 0.180

Y 0.985 0.173

Zn 0.986 0.168
Zr 0.979 0.201

The PCA method shows that the 29 elements such
as Cu and Au have a similar treatment and
exposure in the first principal component. All the
30 elements except for Mo are shown in this
factor as the geochemical background component.
In this low-frequency band, Mo is completely
different from the other elements in the spatial
and frequency behaviors. For this reason, it was
separated from the other elements in the rotated
component matrix and was exclusively located in
the second component (Table 1 and Figure 4).
These results demonstrate the interesting
achievement about the situation of Mo in the
depth. The second component pertains to the deep
mineralization phase that is not achievable in the
spatial domain of geochemical data. The deep
mineralization elements cannot simply migrate to
the Earth's surface. Hence, they only create the
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low-frequency signals on the surface geochemical
distribution map. The current research work
shows that the low-frequency geochemical signals
in SAFA are related to the deep mineralization
elements and the background elements.

The Mo geochemical distribution map was
obtained in the spatial domain based on the initial
geochemical data (Figure 5). This map cannot
properly show the situation of Mo anomaly. The
Mo geochemical map was also obtained in FD.
The potential map of the Mo mineralization in the
depth was obtained using the inverse Fourier
transform and the SAFA results (Figure 6). This
map presents the Mo geochemical potential map
in the depth. The two boreholes DDHO03 and
DDHO04 were drilled in this area (Figure 6). The
distribution of Mo concentration in the DDHO03
and DDHO04 boreholes is depicted in Figure 7.
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Figure 4. The component plot in rotated space using SAFA-PCA; Mo has been distinguished as the
mineralization element in the depth.
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Figure 5. The Mo geochemical distribution map in the spatial domain and the position of boreholes.
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Figure 6. The Mo geochemical distribution map in the depth using the SAFA-PCA approach and the position of

boreholes.
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The DDHO03 borehole that is located on the deep the results of the new proposed SAFA-PCA
Mo anomaly area illustrates a deep mineralization method about the deep anomaly. The Mo anomaly
zone from 270 m until 350 m, while the DDH04 map obtained from SAFA-PCA shows the
borehole that drilled in the out of anomaly area exploratory information about the depth better
lacks Mo mineralization in the depth. The than the spatial domain map.
geochemical information and the boreholes in this The proposed hybrid method combining SAFA
studied area confirm the results obtained by the and PCA is an effective pattern recognition
SAFA-PCA method. The mineralization zone approach  for  decomposition of mixed
illustrates a trend for the enrichment of Mo geochemical populations and identification of
towards the depth. The exploratory studies show weak surface geochemical anomalies that have
an oxide zone near the surface and the hypogen been hidden within the strong geochemical
zone in the depth in this area. The drilled background. Based on this work, the low-
boreholes show an obvious association with the frequency signals obtained from SAFA consist of
Mo potential map obtained from the proposed information about the background elements and
approach. These boreholes properly demonstrate the deep mineralization elements.
Mo (ppm) Ma {ppm]
1] 100 200
0 100 200 0 . .
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Figure 7. Variations of Mo concentration in DDHO3 (inside the anomaly) and DDH04 (outside the anomaly).

4. Conclusions the power-spectrum thresholds of 10'*** and
In this research work, SAFA was utilized to 10%% in the diagram of SAFA. The
determine the Cu geochemical populations in the low-frequency bands for 30 elements were
frequency domain based on the power-spectrum separated using a low-pass filter function based on
map. Three geochemical classes were defined by the threshold of 10"%. In the next step, the
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low-frequency signals of geochemical data for all
of elements were interpreted using PCA. PCA, as
a dimension-reduction method, classified the 30
elements into two factors. These results show that
the Mo element is in factor 2 as the mineralization
phase, and the other 29 elements consisting of Cu
and Au were classified in factor 1 as the
background component. The Mo geochemical
anomaly area related to the low-frequency signals
was mapped using the inverse Fourier
transformation. This map shows the potential of
Mo anomaly in the depth. The deep and the blind
mineralizations usually create low-frequency
signals in the geochemical distribution map of
elements in the surface. The exploratory works
such as the boreholes desirably confirm the results
of the SAFA-PCA approach in the studied area.
The Mo anomaly areas in the depth were properly
delineated using the proposed idea. This research
work demonstrated that the SAFA-PCA approach
could identify the blind and deep geochemical
anomaly using the surface geochemical data. This
research work shows that there is a relationship
between the blind geochemical anomaly and the
power spectrum distribution map in FD.
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