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Abstract 
The determination of the Ultimate Pit Limit (UPL) is the first step in the open pit mine planning process. In this stage 
that parts of the mineral deposit that are economic to mine are determined. There are several mathematical, heuristic 
and meta-heuristic algorithms to determine UPL. The optimization criterion in these algorithms is maximization of the 
total profit whilst satisfying the operational requirement of safe wall slopes. In this paper the concept of largest pit with 
non- negative value is suggested. A mathematical model based on integer programming is then developed to deal with 
this objective. This model was applied on an iron ore deposit. Results showed that obtained pit with this objective is 
larger than that of obtained by using net profit maximization and contains more ore, whilst the total net profit of 
ultimate pit is not negative. This strategy can also increase the life of mine which is in accordance to the sustainable 
development principals. 
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1. Introduction 

The size, location and final shape of an open 
pit are important in the planning of the 
location of waste dumps, stockpiles, 
processing plant, access roads and other 
surface facilities and for development of a 
production program. The pit design also 
defines minable reserves and associated 
amount of waste to be removed during the life 
of the operation. Over the past 45 years the 
determination of optimum open pits has been 
on the areas of operational research in the 
mining industry and many algorithms have 
been published. Heuristic techniques, 
Dynamic programming, linear programming, 
Graph theory and Network flow theory are 
mathematical methods that have been applied 
to determine the UPL. The most common 
optimizing criterion in these algorithms is 
maximization of the total undiscounted net 
profit within the designed pit limits subject to 
mining (access) constraints. The UPL 
problem does not impose any limitations on 
the amount of ore tons to be mined during life 
of mine. This objective function may lead to 

generate a pit shell excluding a huge amount 
of ore because of economic considerations. In 
spite of the importance of economic issues 
during mining process, especially for strategic 
deposits, the environmental and social 
concerns cannot also be neglected. 
Environmental issues may contains Land use, 
management and rehabilitation, Solid waste, 
Water use, Acid mine drainage, Product 
toxicity, Nuisance, etc. Also social issues may 
contain Creation of employment, Employee 
education and skills development, Health and 
safety, Wealth distribution, Relationship with 
local communities etc. Some of these issues 
like job creation and improvement of life 
quality of people may force the government 
managers to extend the life of mine in light of 
economic consideration.  Therefore, the ore 
tonnage that one would like to mine from a 
deposit can be maximized such that the total 
net profit is greater than or equal to zero. This 
goal can guarantee the maximum resource 
exploitation in light of economic 
consideration. In this paper a mathematical 
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model is developed to incorporate this 
objective. 

2. Pit limit optimization 

Open pit design is a computer-bused 

implementation of an algorithm that is applied 

to a three dimensional block model of an ore 

body, i.e. a three-dimensional array of 

identically sized blocks that covers the 

entered ore-body and sufficient surrounding 

waste to allow access to the deepest ore 

blocks. The dimensions of the block vary 

depending on the operational restrictions, 

mineralization and initial drill hole spacing. In 

the block model, each block can be identified 

by (x, y, z) triplet. Each number indicates 

corresponding axis value in (x, y, z) triplet. 

Figure 1 shows an example of a 3D block 

model for UPL determination. 

 

 
Figure 1. An example of a 3D block model for ultimate pit limits determination [1]

Each block is assigned a value in the context 

of its use with optimization algorithms.  

Then a value is estimated for each block. This 

is done by assuming production and process 

costs and commodity prices at current 

economic conditions (i.e. current costs and 

prices). This value is the net (undiscounted) 

revenue that would be obtained by mining and 

treating the block and selling its contents. A 

block is considered as a possible ore block if 

its net profit value obtained from mining is 

positive. Otherwise, the block is considered as 

a waste block. According to the surface 

topography many blocks are air blocks and a 

value of zero is assigned to them. 

Optimum pit limit determination is one of the 

most important steps in mine planning design 

process. Feasibility analysis, long term 

production scheduling and the assessment of 

the capital exposure and corporate risk can be 

significantly impacted by the results of the 

optimum pit limit determination. The UPL 

problem can be defined as determining the 

final mining limits of a mineral deposit in 

such a way that some standard of maximum 

value or profitability is obtained from it's 

extraction. The standard of profitability is 

defined as maximizing the difference between 

the profit obtained from extracted ores and the 

costs incurred in removing associated waste 

materials. By using ultimate pit design 

techniques, economic depth and limit of an 

open pit can be easily determined. The 

optimization techniques in designing UPL can 

be classified into two categories: 

 Heuristic techniques (Floating cone, 

Korobov algorithm, etc.) 
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 Rigorous techniques (Dynamic 

programming, Linear programming, 

Graph theory, Network flow theory, etc.) 

Heuristic methods have been one of the most 

widely used methods for UPL analysis; 

however, these methods mostly fail to 

generate true optimal designs. 

Moving cone method is the most common 

heuristic technique [2]. An upward cone is 

made up of slopes corresponding to the 

restriction on the pit’s slopes on each ore 

block. If the material inside the cone contains 

a profitable amount of ore, then the material 

inside the cone is removed. The process is 

repeated until no more profitable cones of 

material exist. In spite of its rapid execution 

speed and easy conceptualization, this method 

may fail to generate true ultimate pit limits 

due to mutual support between overlapping 

cones. Another heuristic method is Korobov 

algorithm [3]. Korobov algorithm operates by 

basing a cone on every positive block in the 

pit and allocating the positive values within 

the cone against the negative values within 

the cone until no negative values remain, so 

that the positive blocks pay for the negative 

blocks.  

There is still no heuristic based method which 

has been proven to converge to an optimal 

answer.  

Dynamic programming approach [4] as 

originally defined by Lerchsand Grossmann is 

able to generate the optimal pit contours in 

given 2D cross sections , however, three 

dimensional extensions produce erratic 

results. Several attempts have been made to 

extend the original 2D algorithm concepts to 

the design of truly optimum 3D ultimate pit 

limits. The algorithms suggested by Johnson 

& Mickle [5], Johnson and Sharp [6], 

Konigsberg [7 ] used the original 2D concept 

to produce a 3D pit contour, but these 

methods may yield final pit limits that are far 

from optimal. 

The problem of determining the optimum pit 

limit with the objective of profit 

maximization in the form of Linear 

Programming (LP) can be formulated as:  

 


  

N

i

M

j

O

k

ijkijk XcMax
1 1 1

    

 
 

Subject to: 

 
   ijk     Slope  contraints

ijkijk XX        

integer  and    10  ijkX  

 

(1) 

  

where, ijk are indices correspond to the row, 

column and level of blocks in the block 

model. N, M and O are the number of 

blocksin different direction. ijkc is the net 

value of block ijk,
ijkX is the set of blocks 

which must be removed in order to mine 

block ijk. ijkX is a binary variable that is 1 if 

the block ijkis mined, and zero otherwise. 

Slope constraints insure that all overlaying 

blocks to be mined be for mining a given 

block. There are a two block configurations to 

define mine slopes, 1:5 block configuration 

(five overlaying blocks must be removed to 

mine one) and a 1:9 (nine overlaying blocks 

must be removed to mine one). If 1:5 pattern 

is carried up over several levels, an 

undesirable wall slope will be obtained [8]. 

Therefore, in this paper a nine-above 

relationship is used. Figure 2 shows a 1:9 

block precedence relationship described. 

There are two ways of implementing these 

constraints [9]: 

 
 

Figure 2. Simple precedence relationships [9] 
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 Using 9 constraints for each block: 

In this method nine separate linear constraints 

should be written to insure that all nine blocks 

must be mined first, these equations are: 

 

0 BBBAAA XX  

0 BBBABA XX  

0 BBBACA XX  

0 BBBBAA XX  

0 BBBBBA XX                                                                                                                                

0 BBBBCA XX  

0 BBBCAA XX  

0 BBBCBA XX  

0 BBBCCA XX  

 

 

 

 

 

(3) 

 

 

Generally above inequalities can be re-written 

as: 

, . 1     1, , 1

0 or 1        1, , 1

l m k ijk

ijk

X X O l i i i

X m j j j

     

   
 

(4)

 

 

 

An advantageous of this formulation is that 

constraints matrix is totally unimodular, 

which insures that all ijkX will take on integer 

values in the optimal solutions; therefore, the 

integer requirements, 1or  oX ijk  , can be 

eliminated from the formulation [9]. 

Unfortunately, if other kinds of constraints 

ore added to this model this property is lost 

and should be solved by integer programming 

solution methods.   

 

 Using one constraint for each block 
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1 1
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   

 

 

(5) 

 

 

 

The advantage of this formulation is that only 

one constraint per block instead of nine is 

incorporated in the modeling procedure, 

which results in decreasing the model size. In 

this paper this strategy is applied for UPL 

modeling.        

While Integer programming based models 

produce optimal solution for ultimate pit limit 

problems, it cannot be readily implemented 

for realistically size mines.        

Network flow model based on the network 

theory on maximum flow and minimum cut 

[10] and also Graph theory of Lerchs & 

Grossmann (LG) [4] are alternate solution 

techniques for the linear programming 

problem. In the network flow analysis, the 

block model of the deposit is represented by a 

network. A detailed Analysis of the algorithm 

can be found in [11] and [12].  

The Lerchs & Grossmann 3D Graph Theory 

algorithm make use of the property of a block 

model of an open –cut mine that it can be 

modeled as a weighted directed graph in 

which the vertices represented blocks and the 

arcs represented mining restrictions on other 

blocks. The ultimate pit problem can be cast 

as one of finding the maximal valued closure 

of a directed graph. This algorithm will 

converge to an optimal solution.  Zhao and 

Kim [13] also presented a 3D graph theory 

oriented algorithm for optimum ultimate pit 

limit design. They claimed that their 

algorithm performs much faster than the LG 

algorithms and produce a true optimal 

solution to the ultimate pit limit problem. 

As mentioned before, all the above algorithms 

try to find the UPL with the objective of net 

profit maximization. In the next section a new 

mathematical algorithm is proposed which 

produce the largest pit with non-negative 

value. 

3. The largest pit with a non-negative net 

value 

The objective of this model is finding a pit 

with a non-negative net profit such that the 

total ore tonnage to be mined from a deposit 

is maximized. This problem can be 

formulated as: 

Objective function: objective function is set 

to maximization of the total amount of ore 

tons extracted. This objective forces the 

model to extract the whole ore blocks. 

Therefore, it can be written in the following 

form: 
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
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ijkijk XpMax
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(6)

 

where, ijkp is the tonnage of ore per each 

block. 

Non-negative profit constraints: this 

constraint insures that the total net profit 

obtained from extracting the volume of 

material (ore and waste blocks) is non-

negative: 

 

0
1 1 1


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N

i

M

j

O

k

ijkijk Xc  
(7) 

 

Slope constraints: 

01,1,1  ijkkji XX  

01,,1  ijkkji XX  

01,1,  ijkkji XX                              

01,1,  ijkkji XX  

01,,1  ijkkji XX  

01,1,1  ijkkji XX  

01,,1  ijkkji XX  

01,1,1  ijkkji XX  

01,1,1  ijkkji XX  

 

 

 

 

 

(8) 

 

Integer constraints: 

 

integer  and    10  ijkX  (9)
 

This problem can be solved by popular 

integer programming algorithms like Branch 

and Bound or cutting plane techniques [14]. 

This problem can also be transformed so that 

it looks like the ultimate pit limit problem and 

therefore, it can be solved by one of the 

ultimate pit limit problem. This can be done 

by using Lagrangian relaxation method [15]. 

Lagrangian relaxation is a relaxation 

technique which works by moving hard 

constraints into the objective so as to exact a 

penalty on the objective if they are not 

satisfied. Transformation is done by 

multiplying the profit constraint by a 

Lagrange multiplier, λ, and subtract it from 

the objective function. Therefore, the 

Lagrangian form is: 
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(10) 

 

Thus, the final form of objective function is: 

 


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(11)

 

 

Subject to: 

 Slope constraints (equations 8) 

 

integer  and    10  ijkX

 where, ijkijkijk cpd  .  

The above formulation is exactly the same as 

conventional ultimate pit limit problem. Now 

this problem can be solved using one of the 

existing ultimate pit limit algorithms like LG.  

The only difference between these two 

problems is that parameter is incorporated in 

the objective function. Note that setting , 

the profit constrain is completely relaxed and 

the largest pit which contains the whole ore 

blocks. By increasing the value of  

the total profit is increased until the profit 

constraint is satisfied. There are a number of 

ways to modify this multiplier. The simplest 

way is to change multiplier incrementally by 

some fixed amount at each iteration until the 

convergence is reached. Another and more 

efficient way is subgradient method which 

was first suggested by Held and Karp [16]. 

Some applications of this method can be seen 

in [17] and [18].  

4. Application of suggested algorithm in an 

iron ore deposit 

In order to compare the suggested formulation 

for ultimate pit limit determination with the 

traditional one, a small iron ore mine is 

selected as a case study. The block model of 

http://en.wikipedia.org/wiki/Relaxation_technique_(mathematics)
http://en.wikipedia.org/wiki/Relaxation_technique_(mathematics)
http://en.wikipedia.org/wiki/Relaxation_technique_(mathematics)
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this mine contains 33263 blocks with the 

dimensions of 25m*25m*15m. 

In the first step the ultimate pit limit is 

obtained via traditional objective function 

(profit maximization) by using SURPAC 

6.1.2 software [19] and applying LG 

algorithm. Figure 3 shows a cross section 

through the ultimate pit limit. The pit limit is 

then designed using the proposed model via 

Surpac software and subgradient method. By 

changing the   values in each step, a new 

economic block model is obtained and then 

the traditional ultimate pit limit algorithms 

(using LG algorithm) are usedon each 

economical block models. This process is 

repeated until the right  value, which results 

in satisfying constraint (7), is obtained. Figure 

4 shows a cross section through the ultimate 

pit limit obtained using suggested method. 

The overall results of pit optimization using 

these two objectives are shown in Table 1. 

As can be seen in the above case study, using 

the suggested method results in producing the 

largest pit whilst its total net profit is positive. 

This strategy can extend the life of mine and 

increase the minable ore reserve. 

 

5. Conclusions 

In this paper a new criterion was proposed in 

order to determination the ultimate pit limit. 

This criterion was set to maximization of ore 

extraction in such a way that the total net 

profit obtained from removal of ore and waste 

material is non-negative and slope constraints 

are satisfied. Then the proposed mathematical 

model was transformed so that it looked like 

the traditional ultimate pit limit problem by 

using Lagrangian multipliers. By changing 

this multiplier the largest pit with non-

negative value can be obtained. Applying this 

model on an iron ore deposit showed that 

resultant pit using suggested algorithm 

contains moreore whilst the total net profit is 

still positive. This objective is well suited for 

strategic natural resource like scarce natural 

resources deposits (deposits containing 

uranium, diamonds, especially pure quartz, 

and the yttria rare earth group), deposits 

located in territory used by the country's 

defense sector and large deposits. This 

strategy can increase the life of open pit and 

minable ore reserve. Also this objective is 

more consistent with the social issues of 

sustainable development principals. 

 

Table 1. The results of pit optimization using traditional and suggested methods. 

Pit characteristics Total No. of blocks No. of ore blocks No. of waste blocks Total net profit (*10
6
) 

Traditional model 809 532 277 4.3 

Suggested model 1630 1146 484 1.6 
 

 
 

Figure 3. A cross section of final pit using the traditional objective function 
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Figure 4. A cross section of final pit using the suggested objective function 
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