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Abstract 
This work aims at figuring out the spatial relationships between the geophysical and 
geological models in a case study pertaining to copper-sulfide mineralization through an 
integrated 3D analysis of favorable target. The Ghalandar Skarn-Porphyry Cu Deposit, 
which is located in NW Iran, is selected for this research work. Three geophysical 
surveys of direct current electrical resistivity and induced polarization tomography along 
with magnetometry are performed to construct the physical properties of electrical 
resistivity, chargeability, and magnetic susceptibility, respectively. Inverse modeling 
and geostatistical interpolation are utilized to generate the physical 3D models. A 3D 
model of Cu grade is generated using ordinary kriging; however, the indicator kriging 
method is run to design a 3D model of rock types through incorporating the drilling 
results. Block models of geophysical and geological characteristics are cast in a similar 
3D mesh to investigate their relationships in copper mineralization. A concentration-
volume multi-fractal method is utilized to divide each model into its sub-sets, where the 
most productive portions in association with Cu-bearing mineralization are 
distinguished. Note that sub-sets of geophysical models are spatially matched with 
geological models of Cu grade and rock types. The zones with low electrical resistivity, 
high chargeability, and low magnetic susceptibility correspond to the main source of Cu 
mineralization in a dominated skarn rock type setting. 

1. Introduction 
Integration of soft and hard data is utilized to 
create a realistic geological model by 
incorporating different sources of information. 
The exploratory geospatial hard data (e.g. 
borehole data) is the direct measurement of what 
is being modeled, while the soft data is everything 
else (e.g. geophysical measurements) [1]. 
Geological models reflecting the geometry of 
mineral targets are required to be consistent with 
different types of information. Taking several 
types of geospatial dataset collected over the 
studied area into account can reduce the 
ambiguity arising from sophisticated favorable 
targets, and enhance the reliability of the results 
[2]. The borehole data usually cannot provide 

enough data because of low spatial density in 
relation to the complexity of the sub-surface to be 
mapped but geophysical measurements can be 
surveyed affordably in a dense data coverage as 
they construct a 3D representation of physical 
property model through inverse modeling [3]. 
Direct current electrical surveys are useful for 
exploration of both the metallic and non-metallic 
mineral resources [4]. The induced polarization 
(IP) and resistivity (Rs) methods have become 
more applicable and popular after improvements 
made in the past two decades with modern 
measurement tools and computer applications [5]. 
The variability of appropriate mineral deposits can 
make interpretations of electrical data more 
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challenging [6]. The IP method has been utilized 
as the main tool to explore the high concentration 
sulfide deposits (e.g. porphyry and skarn copper 
deposits). Experiments have proved that most of 
the sulfide content targets indicate larger 
polarization effects in comparison with silicates 
and iron oxides [7]. Nevertheless, IP responses are 
influenced by both the concentration of minerals 
and complex physical conditions arising from 
background geological setting. The behavior of 
the electric current has also been controlled by 
these conditions [8, 9]. Note that the electrical 
resistivity of skarn targets tends to be high but the 
chargeability response of these rocks highly 
depends on the presence of sulfide contents [10]. 
The porphyry copper deposits are generally 
related to stocks of felsic and porphyritic nature, 
while these intrusive systems are mostly emplaced 
in volcanic systems over down going plates in 
island arc or Andean settings [11]. They provide a 
high geophysical magnetic response. The 
propylitic and phyllitic alterations in association 
with skarn-porphyry Cu deposits destruct 
magnetite in these volcanics, which may 
subsequently cause a low magnetic response over 
magmatic intrusions. Note that a felsic porphyry 
target is usually ferromagnetic, and sometimes a 
sharp localized magnetic high may happen in the 
center of such magnetic low. This system 
generates a sign of porphyry copper deposit that is 
indirectly related to the mineralization. Skarn 
deposits are also generated by replacement of 
carbonates during metasomatism. These kinds of 
rocks are generally found near the contact of 
igneous plutons and sedimentary rocks [12], 
which have different magnetic susceptibilities 
(sometimes even remnant magnetizations) 
compared to the host environment [10]. Therefore, 
magnetic anomaly can work as a footprint of 
skarn-porphyry Cu deposits. 
The geological and geophysical models of  
skarn-porphyry type deposits can be divided into 
some subsets in terms of alteration, rock types, 
and physical properties, where each subset of 
physical models can be controlled by geological 
characteristics. In order to divide each model into 
its subsets, a concentration-volume (C-V) multi-
fractal model can be an appropriate tool in 3D 
studies. Fractal can explain the complexity in the 
distribution of data by estimation of data fractal 
dimensions. Differences in fractal dimensions can 
describe many spatial processes. The fractal 
theory was established and developed by 
Mandelbrot (1983), and was later widely used in 
various branches of earth sciences. The fractal 

analysis methods can be utilized by researchers 
along spatial resolution obtained from geospatial 
dataset analysis to find the relationships between 
mineralogical, geochemical, geological, and 
geophysical signatures [13, 14]. The use of fractal 
models has led to a better understanding of 
geophysical phenomena from the micro to the 
macro level [15, 16]. This method is utilized for 
different subsets of geophysics such as separating 
anomaly from background, signal analysis, and 
geomagnetic polarity analysis [17, 18]. Fractal 
methods can help to investigate the relationships 
between the geophysical features and the spatial 
information of analysis of mineral deposit 
occurrence data [19, 20]. Fractal dimensions 
correspond to variations in physical attributes [16, 
21]. Thus fractal dimensions of geophysical data 
variations bring helpful and applicable 
information about identifying mineralization areas 
[19]. 
The purpose of this work was to distinguish the 
geophysical anomalies from the background data, 
utilizing a C-V multifractal method, where the 
physical property models are divided into some 
subsets to find their relationship with geological 
characteristics. The aforementioned model was 
suggested by Afzal et al. (2011), and was 
considered as an appropriate way to explain the 
spatial distribution of different attributes within 
the different ore bodies [22, 23]. Significance of 
the concentration component in the C-V fractal 
analysis makes the estimation accuracy of 
concentration a crucial issue. Thus choosing a 
proper estimation method is required to correctly 
run a C-V multi-fractal analysis [21]. 
Integration of geophysical modeling in 
geostatistical interpolation has been utilized to 
tackle problems of geological modeling. Abedi et 
al. (2014) have incorporated magnetic data as a 
secondary soft variable in the grade modeling of a 
deposit. They applied the multivariate kriging 
method to interpolate an undersampled grid of 
iron grade from borehole drilling. Since the iron 
grade and magnetic susceptibility have a 
remarkable correlation, this physical property has 
been utilized as a dense soft variable in grade 
estimation through geostatistical modeling [24]. In 
addition, Asghari et al. (2016) examined 
multivariate geostatistics based on geo-electrical 
properties for estimation of copper grade to 
decrease the estimation variance and uncertainty. 
This method can be beneficial when a sporadic 
pattern of drilling exists. In this case, the sulfide 
factor (as a ratio of electrical chargeability to 
electrical resistivity) was utilized as a secondary 
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correlated variable to estimate the distribution of 
Cu grade. The results obtained verified that 
incorporating soft variable yields good results in 
comparison with ordinary kriging when running a 
single variable estimation [25]. 
This work focuses on the Ghalandar deposit as a 
Cu-sulfide mineralization that is located in the 
East Azerbaijan Province in Iran. The main 
motive of the work was to localize and extract 
anomalous copper zones through electrical and 
magnetometry surveys. Physical models of 
electrical resistivity, chargeability, and magnetic 
susceptibility were constructed in 3D through 
inverse modeling and geostatistical interpolation. 
These models were classified into some subsets 
(zones) through the C-V multi-fractal approach to 
search for their relationships with the geological 
characteristics. The 3D models of Cu grade along 
with rock type were prepared by ordinary and 
indicator kriging, respectively. They presented 
that anomalous physical models were in close 
association with the main zones of mineralization. 
The remainder of this work has been prepared as 
what follows. The second section concisely 
presents the formulation of ordinary and indicator 
kriging, and then explains the C-V multi-fractal 
approach. The geological setting of the Ghalandar 
skarn-porphyry Cu deposit is explained in the 
third section. In the fourth section, the 
geophysical and geological models are 
constructed, where inverse modeling and 
geostatistical interpolation are utilized. The C-V 
multi-fractal is employed in the discussion section 
to find the spatial relationships between the 
physical models and Cu-bearing zones. Finally, all 
achievements are summarized in the conclusion 
section. 

2. Methodology 
The following sub-sections describe the 
formulation of the kriging and C-V multi-fractal 
methods, respectively. 

2.1. Ordinary and indicator kriging 
methodology 
The highly noted kriging method, which is known 
as the best unbiased linear estimator, was utilized 
in this work. In addition to constraining the 
formulation for generating the lowest estimation 
variance, this method can guarantee the 
estimations to be unbiased, provided that the 
selected regional variable is normally distributed 
[26]. The outcome of the kriging method is 
minimization of an anticipated variance error 
based on weight calculation. There are a variety of 

kriging methods that have differences in how they 
treat the local or stationary domain mean that is 
shown as conditions on the set of weights. The 
ordinary kriging (OK) method works on the basis 
of the minimum variance linear estimate at 
locations where the actual values are unknown 
[27]. 
The indicator kriging (IK) estimation is a  
non-parametric approach, meaning that this 
method does not make the estimated distribution a 
priori. The IK method can manage extremely 
variable natural phenomena without any capping 
extraordinary values or non-linear transformation 
[28]. This method aims at modeling complex 
mineralization with non-Gaussian structure. 
Indeed, these structures include asymmetric 
spatial continuity of high and low values. The 
indicator approach categorizes the data into 1 and 
0 depending on the relationship with a cut-off 
value for a given value. 

   
 

1
;

0
   

k
k

k

    if    z x z
i x z

    if   z x z  
 (1)

 

In this formalism, xz  is a given continuous value 
with a threshold/cut-off of kz . This is a non-linear 
transformation of the data value into the binary 
code of 1 or 0. The kriging indicator-transformed 
data provides a product value between 0 and 1 for 
each estimated point. This is an estimate of the 
ratio of the values in the neighborhood that are 
greater than the cut-off value. The outcome of IK 
is a data distribution near the point to be 
estimated. This distribution is termed a 
conditional cumulative distribution function. The 
mentioned distribution of values has been used for 
many goals, in addition to simply deriving the 
expected value. Relevant criteria can be utilized to 
derive the estimate required, not simply the 
average of the local distribution [29]. 
Indicator variogram can provide information 
about the spatial distribution of each class of 
values, allowing the evaluation of the probability 
to exceed cut-off values. This variogram value 
measures how often two distinct points belong to 
different categories, above or below a pre-defined 
cut-off [30]. 
The main incentive of using IK in geoscience 
applications arises from its non-parametric 
characteristic. Furthermore, the mixed data 
populations can be dealt with using the IK 
algorithms. As IK divides the overall sample 
distribution with several thresholds, it is not 
necessary to fit or take a specific  
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analytically-derived distribution model for the 
data [29]. Note that another merit of this method 
is that there is no need for a back-transform. IK 
can be applied equally to both categorical and 
continuous variables. The indicator approach 
lends itself to the estimation of variables that have 
discrete values such as rock type or lithology. In 
the mentioned cases, categorical IK will generate 
the probability of a given rock type code 
occurring at a certain location. Therefore, 
probability maps of given lithologies or rock types 
based on rock code data can be produced [29]. 

2.2. C-V multi-fractal methodology 
The fractal concentration-area method was 
suggested by Cheng et al. (1994) in order to 
separate the anomalous regions from the 
background to characterize the distribution of 
major, minor, and trace element concentrations of 
ore deposit. The general form of this model can 
simply be described as follows: 

   1 2 ;     A v A v      (2) 

In this equation,  A v   and  A v   are 

areas with elemental concentration values    
that are less than and greater than the contour 
value  , v  indicates the threshold values that 
outline the boundaries between different zones, 
and 1  and 2  are the characteristic exponents. 
Certain concentration contours indicating break-
points in the log-log plots of concentration 
contours against areas are considered threshold 
values distinguishing geochemical or geophysical 
populations [31]. It has been proposed that the  
C-A method is valid for volumetric extensions 
because distributions of elements in a certain 
direction are in accordance with the fractal models 
[31, 32]. Consequently, the C-V fractal model can 
be expressed in the following general form: 

   1 2 ;     V v V v      (3) 

In this equation,  V v   and  V v   are 
two volumes with elemental concentration values 
   that are less than and greater than the 
contour value  , v  indicates the threshold values 
that outline boundaries between different zones, 
and 1  and 2  are the characteristic exponents. 
This equation can be converted to a simple form, 
as follows: 

  V    (4) 

where  V   denotes the volume with 
concentration values lower than   defining that 
zone. In the log-log plot of the C-V curve, certain 
concentration contours showing break-points in 
the plots are considered the threshold values to 
segregate variable populations [21]. 

3. Geological setting of Ghalandar  
Skarn-Porphyry Cu deposit 
The north dipping subduction of the Neo-Tethys 
Ocean starting at the Mesozoic formed the Iranian 
plateau [33, 34]. Upon maturing the subduction 
zone and the overlying continental magmatic arc, 
igneous activities led to a thick belt of mostly 
Cenozoic volcanic/plutonic units that are named 
in Iran as the Urumieh-Dokhtar magmatic 
assemblage zone (UDMA), depicted in Figure 1, 
whereby a distinct and linear intrusive-extrusive 
complex located between and parallel to the 
Sanandaj-Sirjan metamorphic zone (SSZ) and the 
central Iran domain occurred [35]. The  
Agh-Daragh prospect zone, as the region of 
interest in this work, is located at the UDMA 
zone. UDMA is indeed the main host of porphyry-
type and epithermal metallic mineralization 
systems by generating the enormous economically 
valuable deposits of Cu, Au, and Mo in Iran [36, 
37]. This zone has thickened in a range of about 
50-100 km, which mostly consists of an  
Andean-type magmatic arc in adjacency to the 
Central Iranian Micro-Continent (CIMC). UDMA 
is characterized in the structural geology map of 
Iran by Cenozoic extrusive and intrusive rocks of 
Eocene-Quaternary age and associated 
volcanoclastic rocks. Note that magmatic 
intrusions are mostly dominated by the  
sub-volcanic porphyritic granitoid units of granite, 
granodiorite, diorite, and tonalite [38, 39]. 
The simplified geological setting of the  
Agh-Daragh is presented in Figure 2a. In the 
western portions of the area and the north of the 
granodiorite masses, there are a series of green 
tuffs and volcanic ashes in terms of time 
associated with Cretaceous era. In the NE of the 
Gavdel village, there is a sedimentary unit. The 
color of this unit is dark gray, and it is generally 
composed of shale and limestone units. The main 
plutonic mass in the region, closely related to the 
plutonic mass of the Shiverdagh, is a porphyry 
granodiorite unit, which includes pink feldspar 
(sometimes with grains bigger than 1 cm). In 
some portions, the surface of the intrusive masses 
has been severely weathered. In terms of 
mineralogy constituents, they comprise 



Salarian et al./ Journal of Mining & Environment, Vol. 10, No. 4, 2019 

1065 
 

plagioclase, alkali feldspar, quartz, and 
hornblende. Quaternary sediments in the shape of 
conglomerate have covered the region, mostly 
forming agricultural lands [41]. 
Ghalandar deposit that encompasses the Ayran 
Goli and Gowdal mineralization is located about 
23 km away from the north of Ahar City, East 
Azerbaijan Province, NW Iran. This area consists 
of Eocene and Oligocene lithological layers 
created by intrusion of massive volcanic rocks 
into a carbonated host, leading to the formation of 
Cu-Fe skarn-type mineralization (Figures 2a and 
2b). Previous studies have reported that 
favorability for Cu-Fe mineralization is evident in 
this region, where the main genetic models of 

Ghalandar deposit are in the forms of porphyry 
and skarn. The porphyry system has dominated 
the SE portions, while the skarn system locates at 
the western regions [42, 43]. Figure 2a shows the 
regional geological map of the Agh-Daragh 
prospect zone, whilst the detailed geological 
setting of the Ghalandar Cu-Fe porphyry-skarn 
deposit is portrayed in Figure 2b. The layout of 
electrical resistivity tomography and magnetic 
surveys is superimposed on Figure 2b. In addition, 
after modeling geophysical data, sixteen boreholes 
were drilled to create the geometry of Cu 
mineralization for investigating its mining 
potential. 

 

 
Figure 1. Geological map of Iran and location of the studied area (reproduced with permission of Richards et al. 

2006) [40]. 
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Figure 2. 1:25,000 scale geology map of the Agh-Daragh prospect zone (a), detailed geological setting of the 

Ghalandar Cu-Fe porphyry-skarn deposit (b). 
 

4. 3D modeling of Ghalandar deposit 
The following sub-sections describe the procedure 
of 3D geological and geophysical modeling of Cu 
deposit through geostatistical data interpolation 
and geophysical data inversion, respectively. 

4.1 Geological models 
In this section, the procedure of building 3D 
models of Cu grade and rock type from boreholes 
is discussed. All the sixteen boreholes were 
drilled vertically in this work. The boreholes 
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cover a total length of about 2760 m. 3D 
visualization of all drilling superimposed by the 
surface topography is indicated in Figure 3. The 
statistical descriptions of Cu grade derived from 
boreholes are summarized in Table 1. The 
histogram and box-plot of this variable were 
illustrated in Figure 4 (4th row). Before generating 
those 3D geological models, it is required to 
produce a block model. Assuming a fixed length 
and width of 20 m and a height of 10 m for each 
voxel, the 3D blocky model was generated to 
surround all drilling. These dimensions were 
chosen according to the average distance between 
the boreholes. Since a 3D covariance model is 
necessary for running geostatistical-based 
interpolation methods, the directional variogram 
model is required to be plotted. The directional 
variogram models for the Cu grade and rock-type 
variables were searched, and subsequently, the 
variogram models with the highest spatial 

continuity were selected based on a trial-and-error 
test in several directions. 
The fitted variogram models are shown in Figure 
5. Table 2 lists the parameters of each variogram 
model. After finding the required inputs for 
implementing the kriging, 3D models of Cu 
sulfide grade and rock type were created (Figures 
6a and 6b). The point that should be noted is that 
the 3D model of Cu grade was created using OK 
but the IK method was performed to design a 3D 
model of rock type. There were several rock types 
in the studied area that were grouped into two 
main types, namely porphyry and skarn. Based on 
the borehole analysis, 85% of the rocks have been 
dominated by the skarn type. In the geostatistical 
data analysis, the variance (sill of variogram) of 
the indicator data is equal to the multiplication of 
the percentage of the indicators. It can be seen in 
Figure 5a that the sill of indicator variogram has 
reached approximately to this proportion (0.85	×
	0.15). 

 

 
Figure 3. Location map of boreholes with topography surface in the studied region. 
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Figure 4. Statistical charts of histogram plot and box-plot for the electrical resistivity (1st row), chargeability 

(2nd row), magnetic susceptibility (3rd row), and Cu concentration (4th row). 
 

Table 1. Statistical summary of the drilled boreholes. 

 Number Mean  Variance Maximum Upper quartile  Median Lower quartile Minimum 
Cu Sulfide (%)  378  0.75  0.39 3.5  1 0.5  0.5 0 
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Figure 5. Experimental directional semi-variogram, models, and number of pairs for the (a) rock type and (b) 

Cu grade. 

 
Figure 6. 3D visualization of the geological models of (a) rock types and (b) Cu grade. 

 
Table 2. Parameters obtained for the variogram models of the Cu grade and rock type. 

 Azimuth Dip Range (m) sill nugget model 
Cu Sulfide 60 60 90 0.3 0 spherical 
Rock type 90 60 70 0.105 0.024 spherical 
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4.2. Geophysical models 
According to the direction and nature of 
mineralization in the studied area, the 
geoelectrical survey was carried out with the aim 
of localizing sulfide copper mineralization. In 
order to acquire the data, a Scintrex IPR 12 
equipment was used to conduct direct the current 
electrical tomography survey. There were seven 
electrical profiles to obtain information about the 
electrical resistivity (Rs) and induced polarization 
(IP) traits of sub-surface minerals (Figure 2b). 
The profiles were designed along an N-S 
direction. The pole-dipole array configuration was 
chosen for data acquisition according to the 
mineralization type, deposit situation, and 
surveying conditions. This array can achieve a 
greater depth of investigation, a more efficient 
field operation, and also a high rate of data 
collection. The approach developed by Loke [44] 
was run to invert the 2D electrical profiles. 
In addition to electrical survey, the studied area 
was covered by a total magnetometry survey to 
determine the trend of mineralization. The 
magnetic survey was carried out using  
Scintrex-Envi Pro magnetometer. Station spacing 
was chosen about 3 m, while the average distance 
of profiles was about 50 m apart. Profiles were 
surveyed along an N-S direction (Figure 2b). The 
Earth’s magnetic field has a declination and 
inclination angle of 57.7 and 5.8 degrees, 
respectively, with a background intensity of 
49,045 nT. The approach proposed by Li and 
Oldenburg (1996) was utilized to generate the 3D 
model of the magnetic susceptibility property. The 
mesh size was designed in accordance with the 
studied area and the spacing of the data available 
in the region. The mesh height usually grows 
slightly with depth. When the surface topography 
of the area is present in the shallow region, the 
ratio of height to width of about 0.5 is suitable. 
However, at depth, a mesh height can be close to 
the mesh width [45]. The model domain for 
inverting the magnetic data was discretized into 
prismatic cells such that the core region spatially 
covered the entire survey area with 6-m cubic 
cells in the x (east), y (north), and z (depth) 
directions. Padding cells extending beyond the 
prospect region are designed to allow for any 
probable regional effect that might exist in the 
area. Cells above the topography were also 
removed from the model space. In addition to the 

magnetic susceptibility model, Salarian et al. 
(2019) has presented the procedure of inverting 
the electrical data in this region to generate the 
electrical models of resistivity and induced 
polarization [46]. 
The statistical features of Rs, IP, and magnetic 
susceptibility are given in Table 3. The histogram 
and box-plot of these geophysical variables are 
shown in Figure 4 (1st, 2nd, and 3rd rows, 
respectively). After selecting the best directional 
variogram for implementing the kriging, the 
models of electrical properties were interpolated 
in 3D blocky models, similar to the one used in 
geological modeling. 3D inversion of the 
magnetic susceptibility model was also up-scaled 
to such blocky model through an OK method. 
This operation was carried out to unify all 3D 
models. The fitted variogram models for 
interpolating geophysical properties are shown in 
Figure 7. Table 4 lists the parameters of each 
variogram. The 3D estimations of geophysical 
properties are visualized in Figure 8. 
Many models can reproduce data. However, some 
of them are not applicable for a particular 
application. Decreasing the number of acceptable 
models is necessary. It is an important 
requirement that the data obtained from the 
recovered model fits the survey data within an 
acceptable error range. The second important 
requirement is that the recovered model must be 
compatible with the geological conditions of the 
sub-surface. This requires the model to be smooth 
in all spatial directions. The predicted data should 
not match the observed data completely because if 
either is inaccurate, the recovered model will be 
wrong. The aim of the inversion is to reproduce 
the true data. True data means the data that would 
be measured if measurements are exact [47]. 
Figure 9 shows that the observed data and the 
predicted magnetometry data are in good 
agreement with each other. Electrical models 
could also predict appropriately original 
observations. (The interested readers are referred 
to the work by Salarian et al. 2019.) [46]. The 
cross-correlation plot between the observed and 
predicted magnetometry data is displayed in 
Figure 10. The Pearson’s linear correlation 
coefficient between the observed magnetic data 
against the predicted data was obtained to be 
equal to +0.99. 
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Figure 7. Experimental directional semi-variogram, models, and number of pairs for (a) electrical resistivity, (b) 

induced polarization, and (c) magnetic susceptibility. 
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Figure 8. 3D visualization of geophysical models of (a) electrical resistivity, (b) chargeability, and (c) magnetic 

susceptibility. 
 

Table 3. Statistical summary of geophysical variables. 

 Number Mean  Variance Maximum Upper quartile  Median Lower quartile Minimum 
Rs (Ohm.m) 606 755.98 2.17E+06 16676.1 706.77 351.14 153.88 4.05 

IP (ms) 606  37.52 1310.46 172.85 49.12 26.66 12.23 0.04  
Susceptibility  330256  0.016  0.0011  0.228 0.015 0  0 0 
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Table 4. Parameters obtained for the variogram models of three geophysical variables. 
 Azimuth Dip Range (m) Sill Nugget Model 
IP 0  0 225 1300 20 Spherical 
Rs  180 20 117 2100000 148706 Spherical 

Susceptibility  0 0 86 0.0013 0 Gaussian  
 

 
Figure 9. Maps of (a) the observed magnetic data and (b) the predicted data. 

 

 
Figure 10. Scatter plot of the observed magnetic data against the predicted data. 
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5. Discussion 
This section aims at investigating the spatial 
correlation of all constructed models of the 
electrical resistivity, chargeability, magnetic 
susceptibility, and Cu grade through a C-V multi-
fractal analysis. As mentioned earlier, the block 
models were estimated via the OK and IK 
methods. Different volumes occupied by different 
values of concentration (values of models) were 
calculated for each geological and geophysical 
model. Hence, thresholds were recognized from 
log-log plots of the multi-fractal curve (Figure 
11). These figures show a power-law relationship 
between the concentration of variables and the 
volume occupied. Break-points of the depicted 
lines in these figures show the threshold values. 
The break-points separate different line segments 
in the plots and divide each model into some 
subsets. Figure 11d shows that the Cu anomalous 
zone is defined by Cu grade greater than 1.85%. 
For these Cu concentrations, the slope of the 
straight line fit is close to the vertical angle. The 
first cut-off of the plot is 0.3%, which is 
interpreted as the threshold of barren host rocks or 
background for the ore element. The region 
between the first and second break-points from 
the left of the Cu log-log plot, i.e. Cu grade 
between 0.3% and 1%, can be interpreted as the 
porphyry zone. At the Cu grade equal to 1%, an 
enriched Cu mineralization (skarn zone) starts to 
build up. This is a new phase of mineralization 
separated from the porphyry regions. The 
threshold values from the C-V multi-fractal 
models of each variable are given in Table 5. It 
can be seen that the spatial variability of the 
element of interest behaves as multi-fractal nature. 
The skarn region begun from 1% Cu but an 
enriched part of skarn had a grade greater than 
1.85%. 
In order to investigate the subsets of each 
geophysical model and mineralized zones of Cu-
bearing occurrence, the productivity variable was 
utilized. The productivity values were calculated 

by multiplying the Cu grade and length of the 
borehole samples (Table 6). The normalized 
productivity values for each geophysical fractal 
zone (ratio of productivity over the number of 
blocks per zone) have been superimposed on each 
subset/zone in Figure 11. Tables 7, 8, and 9 give 
the productivity scores in different zones of each 
geophysical model. The anomalous fractal zone 
for each model was highlighted according to the 
values for normalized productivity. The zone with 
the highest value for normalized productivity was 
chosen as the anomalous fractal zone. 
The 3D visualizations of the multi-fractal zones of 
the geophysical models are shown in Figures 12-
15, where each model was re-classified into new 
populations based on the fractal threshold values 
listed in Table 5. According to the productivity 
values, zones 1, 3, and 1 were selected as the 
anomalous zones for Rs, IP, and magnetic 
susceptibility, respectively. Figure 16 shows the 
anomalous zones for each 3D geophysical model. 
It seems that the final model of copper 
mineralization has a strike of E-W in close 
consistency with the models acquired from the 
geophysical properties. This meaningful 
correlation can localize the probable 
mineralization zones for further drilling to further 
envision of its mining potential. 
The proportions of the skarn and porphyry rock 
types were calculated for each geophysical model 
in each fractal zone/subset. The results obtained 
are summarized in Table 10. The anomalous 
zones are shaded in gray in this table. Table 10 
illustrates that the high ratios of the porphyry are 
in association with the low anomalous regions of 
resistivity, low anomalous regions of induced 
polarization, and high anomalous regions of 
magnetic susceptibility. The skarn mineralization 
show a reverse trend in comparison with the 
porphyry mineralization, where high proportions 
of the skarn are in association with the high values 
for electrical resistivity and induced polarization, 
and low values of magnetic susceptibility. 
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Figure 11. The C-V log-log plots of (a) electrical resistivity, (b) chargeability, (c) magnetic susceptibility, and (d) 

Cu grade. The normalized productivity values for each zone have been superimposed on the plots. 
 

Table 5. Summary of threshold values from the C-V multi-fractal models for the electrical resistivity, 
chargeability, magnetic susceptibility, and Cu grade. 

 Zone 1 Zone 2 Zone 3 Zone 4 
Rs (ohm.m) 0 200 1584 4466 

IP (ms) 0 28 50 112 
Susceptibility 0 0.000794 0.0158 0.08 

Cu Sulfide (%) 0 0.3 1 1.85 
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Figure 12. 3D visualization of the multi-fractal models of electrical resistivity, where each model has been re-

classified into new populations based on the fractal threshold values (a) first fractal zone; (b) second fractal zone; 
(c) third fractal zone; and (d) fourth fractal zone. 

 

 
Figure 13. 3D visualization of the multi-fractal models of chargeability, where each model has been re-classified 
into new populations based on the fractal threshold values (a) first fractal zone; (b) second fractal zone; (c) third 

fractal zone; and (d) fourth fractal zone. 
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Figure 14. 3D visualization of the multi-fractal models of magnetic susceptibility, where each model has been re-
classified into new populations based on the fractal threshold values (a) first fractal zone; (b) second fractal zone; 

(c) third fractal zone; and (d) fourth fractal zone. 
 

 
Figure 15. 3D visualization of the multi-fractal models for Cu grade, where each model has been re-classified into 

new populations based on the fractal threshold values (a) first fractal zone; (b) second fractal zone; (c) third 
fractal zone; and (d) fourth fractal zone. 
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Figure 16. 3D visualization of anomalous zones for (a) electrical resistivity, (b) chargeability, (c) magnetic 

susceptibility, and (d) Cu grade. 
 

Table 6. Results of drilled boreholes. 
Borehole ID X collar (m) Y collar (m) Z collar (m) Borehole length (m) Productivity (m.%) 

BH 1 684630 4278350 2345 77.5 28.5 
BH 2 684561 4278425 2364 68.6 64.3 
BH 3 684600 4278444 2384 98 14 
BH 4 684638 4278500 2387 82.5 0 
BH 5 684583 4278455 2377 193 121.5835 
BH 6 684577 4278373 2359 203 81.15 
BH 7 684646 4278420 2362 187 145.45 
BH 8 684690 4278455 2353 165.5 85.84 
BH 9 684356 4278520 2340 190 67.32 
BH 10 684475 4278440 2342 250 160 
BH 11 684487 4278484 2341 220 118.44 
BH 12 684473 4278379 2350 215 147.55 
BH 13 684504 4278566 2261 250 167.53 
BH 14 684541 4278342 2352 228.4 82.64 
BH 15 684636 4278506 2367 135 59.66 
BH 16 684846 4278481 2306 205 120.93 

 
Table 7. Productivity scores in different zones of the electrical resistivity property. 

 Zone 1 Zone 2 Zone 3 Zone 4 
Productivity (m.%) 257.8 573.4 358 58.8 
Number of blocks 66 159 107 26 

Normalized Productivity (m.%) 3.9 3.6 3.34 2.26 
 

Table 8. Productivity scores in different zones of the electrical chargeability property. 

 Zone 1 Zone 2 Zone 3 Zone 4 
Productivity (m.%) 512.68 327.5 511.3 44.28 
Number of blocks 159 100 124 18 

Normalized Productivity (m.%) 3.22 3.27 4.12 2.46 
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Table 9. Productivity scores in different zones of the magnetic susceptibility property. 

 Zone 1 Zone 2 Zone 3 Zone 4 
Productivity (m.%) 621 368 202 120 
Number of blocks 145 134 53 44 

Normalized Productivity (m.%) 4.28 2.74 3.81 2.72 
 

Table 10. The proportion of each rock type for each zone of geophysical model. The most productive zone of each 
model has been highlighted by a shaded gray color. 

 Zone 1 Zone 2 Zone 3 Zone 4 

IP 47% Porphyry 
53% Skarn 

36% Porphyry 
64% Skarn 

7% Porphyry 
93% Skarn 

0% Porphyry 
100% Skarn 

Rs 40% Porphyry 
60% Skarn 

37% Porphyry 
63% Skarn 

13% Porphyry 
87% Skarn 

17% Porphyry 
83% Skarn 

Susceptibility 32% Porphyry 
68% Skarn 

34% Porphyry 
66% Skarn 

37% Porphyry 
63% Skarn 

50% Porphyry 
50% Skarn 

 
6. Conclusions 
The performance of multi-fractal modeling of 
geological and geophysical characteristics was 
discussed in the East Azerbaijan Province in Iran 
for a porphyry-skarn Cu mineralization. Defining 
the exploration drilling targets couldn be better 
understood based on the geophysical fractal 
modeling. A geostatistical-based approach was 
utilized to generate the 3D geophysical and 
geological models. The 3D models of rock type, 
Cu grade, and three geophysical variables 
(electrical resistivity, chargeability, and magnetic 
susceptibility) were constructed using the kriging 
method. The C-V multi-fractal model revealed 
four different geophysical populations for each 
geophysical model. Choosing the geophysical 
anomalous zones from background zones was 
done based on the values of productivity criterion 
derived from exploratory drilling. The fractal zone 
with the highest score of productivity was selected 
as the anomalous zone. 
The anomalous model of Cu mineralization had a 
distinct E-W strike in close consistency with the 
anomalous geophysical models. Such a 
meaningful correlation could localize the probable 
anomalous zones of mineralization for further 
exploratory drilling to seek its mining 
prospectivity of the desired region. 
Finally, the relationship between the geophysical 
variables and the rock types was investigated for 
each fractal subset. The results obtained showed 
that the high proportions of the porphyry type 
were in association with the low anomalous 
regions of resistivity, low anomalous regions of 
induced polarization, and high anomalous regions 
of magnetic susceptibility. However, the skarn 
mineralization showed a completely reverse trend 
in comparison with the porphyry rock type. 
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  چکیده:

بعـدي تلفیقـی هـدف     زایی مس سولفیدي از طریق آنالیز سه شناسی و ژئوفیزیکی کانی هاي زمین ارتباط فضایی بین مدلهدف از این پژوهش، به تصویر کشیدن 
پورفیري مس قلندر که در شمال غربی ایران واقع شده است، براي این کار انتخاب شده است. سه برداشـت ژئـوفیزیکی مقاومـت     -مورد نظر است. کانسار اسکارن

هـاي فیزیکـی مقاومـت الکتریکـی، شـارژابیلیتی و       سنجی به ترتیب براي ساختن ویژگی مستقیم و توموگرافی قطبش القایی همراه با مغناطیسالکتریکی جریان 
ار ي عیبعد سهبعدي فیزیکی به کار گرفته شد. مدل  هاي سه آماري براي ساخت مدل یابی زمین سازي معکوس و درون خودپذیري مغناطیسی انجام شده است. مدل

هـاي حفـاري، از روش کریگینـگ شـاخص      بعدي نوع سنگ با استفاده از داده مس به روش کریگینگ معمولی ساخته شده است. همچنین براي طراحی مدل سه
شناسـی   و زمینهاي بلوکی خصوصیات ژئوفیزیکی  زایی مس، مدل شناسی در کانی هاي ژئوفیزیکی و زمین استفاده شده است. به منظور بررسی ارتباط بین ویژگی

تر استفاده شده  هاي کوچک حجم براي تبدیل هر مدل به زیرمجموعه -فرکتال عیار هاي مشابه قرار داده شده است. روش مولتی در یک مدل بلوکی با اندازه سلول
هاي ژئوفیزیکی به  هاي مدل داد که زیرمجموعهوري براي تولید مس را دارا است، شناسایی شده است. نتایج نشان  است و منطقه فرکتالی که بیشترین میزان بهره

شناسی عیار مس و نوع سنگ در ارتباط هستند. مناطقی که مقاومت الکتریکی کم، شارژابیلیتی زیاد و خودپذیري مغناطیسـی کـم    هاي زمین طور فضایی با مدل
 زایی مس (غالباً اسکارن) مطابق هستند. دارند، با منبع اصلی کانی

  آمار، شارژابیلیتی الکتریکی، مقاومت الکتریکی، خودپذیري مغناطیسی. فرکتال، زمین ل مولتیمد کلمات کلیدي:

 

 

 

 


