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Keywords Abstract
Bedrock unconfined compressive strength (UCS) is a key parameter in designing the
Intact rock geosciences and building related projects comprising both the underground and surface

rock structures. Determination of rock UCS using standard laboratory tests is a
complicated, expensive, and time-consuming process, which requires fresh core
specimens. However, preparing fresh cores is not always possible, especially during the
drilling operation in cracked, fractured, and weak rocks. Therefore, some attempts have
recently been made to develop the indirect methods, i.e. intelligent predictive models for
rock UCS estimation, which require no core preparation and laboratory equipment. This
work focuses on the application of new combinations of intelligent techniques including
adoptive neuro-fuzzy inference system (ANFIS), genetic algorithm (GA), and particle
swarm optimization (PSO) in order to predict rock UCS. These models were constructed
based on the collected laboratory datasets upon 93 core specimens ranging from weak to
very strong rock types. The proposed hybrid model results were compared with each
other, and the real data and multiple regression (MR) results. These comparisons were
made using coefficient of correlation, mean of square error, mean of absolute error, and
variance account for indices. The comparison results proved that the ANFIS-GA
combination had a relatively higher accuracy than the ANFIS-PSO combination, and
both had a higher capability than the MR model. Furthermore, the ANFIS-GA and
ANFIS-PSO model results were completely in accordance with the UCS laboratory test,
and they were more accurate than the previous single/hybrid intelligent models. Lastly, a
parametric study of the suggested models showed that the density and Schmidt hammer
rebound had the highest influence, and porosity had the lowest influence on the output
(UCS).
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1. Introduction

Unconfined compressive strength (UCS) is the main and road construction in civil operations [1].

utilized parameter for designing the mining, civil,
and geotechnical structures as well as the
infrastructure projects. Indeed, the stability analysis
of these structures is conducted based on both the
intact rock and rock mass geomechanical properties
(i.e. UCS), which is crucial to provide the long-term
stability for efficiency maintenance. Determining
the rock geomechanical properties is also required
for floor, roof, pillar, and slope analysis in mining
and tunneling projects and also for dam, building,

4 Corresponding author: m.rezaei@uok.ac.ir (M. Rezaei).

Nonetheless, the rock UCS is the most important
parameter due to the fact that other rock mechanical
characteristics can be determined according to this
parameter. Bieniawski [2] has stated that UCS
determination is commonly more required for
mining engineers than the other rock properties.
Therefore, it can be concluded that UCS is the most
important rock geomechanical properties whose
high significance has been outlined by many
investigators.
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Commonly, there are two approaches, i.e. direct
(laboratory tests) and indirect (correlated index
tests) methods for UCS determination. Standard
direct methods have been suggested for UCS
determination by ISRM [3] and ASTM [4]. In direct
methods, laboratory test is conducted, in which the
strain of rock core specimen is determined at the
same time as the axial compressive force is
incremented. Accordingly, the pressure at which the
core is broken is considered as the maximum UCS
of the tested rocks [5]. In the second method, index
tests such as point load index, Schmidt hummer
rebound, impact strength, and wave velocity index
as well as the predictive models have been utilized
to estimate UCS as an indirect alternative of the
direct determination method. The main benefits of
the indirect approach utilization are the flexibility
and low-cost implementation [6]. Moreover, there
are some new indirect methods available to estimate
rock mass or intact rock strength including the

Equotip hardness tester [7], block punch index test
[8], core strangle test [9], nail penetration test [10],
and edge load strength test [11] that require a large
number of rock samples with a precise size. Indeed,
specific core specimens, i.e. cubical or cylindrical
cores, should be prepared with high precision to
implement the above-mentioned standard tests.
Moreover, some of these indirect methods/relations
are concluded from the statistical models to predict
UCS, as shown in Table 1. In these statistical
relations, only the mean UCS values are estimated,
and thus low and high values are often
overestimated and underestimated, respectively. On
the other hand, the restrictions and strictness of
direct methods for UCS determination make them
expensive, tedious, and time-consuming. In fact,
preparing the standard core specimens is often
difficult, particularly during the coring operation in
highly broken and weak rocks [12].

Table 1. Some available indirect statistical/empirical relations to estimate UCS.

Equation Rock type Reference

UCS =0.25EH +28.14p —0.75n —15.47GS — 21.55RT G;ﬁgj}gai'gﬂf:f‘;ﬁ 32?2??126* [6]
UCS =183 —-16.55n Granite [13]
UCS =74 .4exp( —0.04n) Sandstone [14]
UCS =0.386 EH +39.268 p —1.307 n — 246 .804 o et o [15]
UCS =10.1exp( —0.821n) Shale, claystone, and siltstone [16]
UCS = exp( 0.818 + 0.059 SH ) Gypsum [17]
UCS = 7.3PLS '™ Limestone, sandstone, and marl [18]
UCS = 0.0.0065 V, +1.468 PBI +4.094 PLS +2.418 TS — 225 Weak, fractured, and thin-bedded [19]
uUcs =31.5vV, -63.7 Limestone, dolomite, and marble [20]
UCS =1.4459 exp( 0.0706 SH ) Granitic rocks [21]
UCS =0.89SH +13.1PLS -1.68V 6 -35.9 Limestone, dacite, and marble [22]
UCS =088 p*™SsH °#cl % Igneous and sedimentary rocks [23]
UCS =0.48SH +1.863 PLS +0.248 WC +7.972V , — 23 .859 Gypsum [24]
s - 0.0uzp 2o T o i
UCS =165 .05 exp[ —4.452 /V ] Limestone, marble, and sandstone [26]
UCS =29 63SD — 2858 Travertine, Ilrl?swset:(s)tr:)erieand dolomitic [27]
UCs =5.734 vV, +10 .876 TS - 2.408 PLS - 10 .029 Sedimentary rocks [28]
UCS = 0.458 exp( 1.504 V ) Claystone and mudstone [29]

UCS = exp( 0.011 BPI +0.065 PLS
+0.029 SH -+ 0.000012 Vp +2.157) Granite, schist, and sandstone [30]
UCS =12 .5PLS Pyroclastic rocks [31]
UCS =24.301 +4.874TS Basalt and limestone [32]

UCS =-2.56n+1.384 PLS —127 .411v

+18.251 p - 0.0162 V , — 43.214 Carbonate rocks (3]
UCS = 0.047 exp( 0.065 SD ) Pyroclastic rocks [34]

UCS Uniaxial compressive strength, n porosity, p density, SH Schmidt hardness, PLS point load strength, Vp Primary wave velocity, BPI

block punch index, CI cone indenter hardness, WC water content, SD

slake durability index, v Poisson’s ratio, TS Tensile strength, GS

Grain size, RT Rock type, EH Equotip hardness.
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In fact, to overcome the above-mentioned
difficulties in UCS determination and demand to
acquire rock strength properties in cheaper, feasible,
and quicker procedure with accurate results lead to
develop some intelligent predictive models, i.e.
neural network (NN) tool, fuzzy systems (FSs),
genetic algorithm (GA), etc. A wide range of
applications of these techniques has been reported
in the literatures to model and control different
problems. Particularly, an increase in the
application of these techniques has been reported in
the fields of mining and geosciences [35-46].
Regarding the UCS prediction, Madhubabu et al.
[33] have estimated the carbonate rocks UCS and
elastic modulus by means of the ANN technique.
Gokceoglu [47] has suggested a triangular fuzzy
technique for agglomerate rock UCS estimation
considering petrographic properties. Majdi and
Rezaei [48] have developed an artificial neural
network (ANN) model with a high accuracy to
predict UCS of rocks surrounding a roadway.
Rezaei et al. [49] have proposed a valid Mamdani
fuzzy inference system (FIS) for the UCS
estimation of the surrounding rocks of longwall
access tunnels. Jahed Armaghani et al. [50] have
suggested an ANFIS model to determine granite
rocks UCS and young’s modulus. Moreover,
Ghasemi et al. [51] have proposed a tree-based
model for determining the UCS and young’s
modulus of carbonate rocks. All the above surveyed
references proved the capability of the artificial
intelligent techniques in UCS estimating. However,
these literature surveyings show that few studies
have been conducted on the application of hybrid
intelligent techniques for UCS estimation, which is
the main objective of the current paper.

In this paper, combinations of the intelligent
algorithms including the ANFIS, GA, and PSO
techniques were utilized for UCS estimation of
dissimilar rock types classified as weak to very
strong rocks. The two new hybrid algorithms
ANFIS-GA and ANFIS-PSO were developed for
UCS (output) prediction based on the three easily
determinable input variables including Schmidt
hammer rebound, density, and porosity. These
proposed models were constructed and verified
using 93 experimental data determined in the
laboratory. Finally, their results were compared
with the results of the conventional multiple
regression (MR) and available previous intelligent
models reported in the current publications.
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2. Applied techniques

2.1. ANFIS

The details of the ANFIS algorithm are well-
described in the literature [52], and thus it is briefly
outlined here. Originally, FIS is able to simulate the
inference procedure and linguistic features of the
human understanding without application of an
accurate quantitative investigation. On the other
hand, ANNs are a combination of many
interdependent processing components that are
comparable to neurons. In conventional ANN, just
weight quantity alters throughout the learning
phase, whereas in a neuro-fuzzy decision-making
system, the learning capability of ANN is coupled
with the reasoning process of FIS. In the ANFIS
method, the human process of decision-making is
intelligently imitated by a combination of ANN and
FIS. In this approach, the learning capability of
ANN is coupled with the reasoning process of FIS.
Basically, ANFIS utilizes a FIS and adjusts it using
a back-propagation algorithm and employing a
group of input-output information. A combination
of ANN and FIS enables FIS to learn. Neural
network algorithms in combination with FIS can be
applied to calculate the unknown factors, and this
decreases the error values, as traditionally described
for every parameter of the model, and this
optimization process makes the model adaptive
[52]. The structure of an adaptive neural network
includes several nodes joined via oriented links. A
node function with unchangeable or adaptable
parameters defines each node. Neural network
algorithms, when FIS is loaded, can be applied to
calculate the unknown factors, and this decreases
the error values, as traditionally described for every
parameter of the model, and this optimization
process makes the model adaptive. The adaptive
neural network and its operationally identical to FIS
are presented in Figures. la and 1b, respectively.
Overall, an ANFIS with two input parameters
including x and y and one output z are considered,
and its related fuzzy ‘if-then’ rules based on the
Takagi and Sugeno FIS type is presented in the
above Figure [52].

2.2.PSO

PSO is a heuristic algorithm-based approach, which
was introduced by Kennedy and Eberhart. This
technique solves a problem by having a population
of possible answers. In this approach, each particle
is nominated with a pace that is different from the
other soft computing techniques. Particles move
around in the search domain with paces that are
dynamically regulated based on their previous
characteristic. Accordingly, the particles during the
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search process have an inclination to fly towards
the most appropriate search domain [53]. The
positions of particles are updated as they move
continuously in the search domain until the
algorithm is terminated. Although the main
disadvantage of PSO is the slow converging of the
solution, it is very suitable for finding the local
optimum. On one hand, PSO is a highly functional

(a)

algorithm to Figure out global optimum but, on the
other hand, the search pace to find the best answer
is very slow in this technique [53]. Consequently,
combination of the PSO ability in global search
along with its strong local search causes a much
more appropriate search outcome. Figure. 2
illustrates a simple flow diagram of the PSO
algorithm [53].

Wi fy=p,xtq,y tr,
:"'1f1 +w, f,
a W+,
W fi=px+qy+r, ="'1f1 +w2f2
( ] | J
|| |
Premise Part Consequent Part
(b) Layer 1 Layer 4
l Layer 2 Layer 3 l
Layer 5
o O R
X < ‘ ‘: W :
A, W f,
f
Bl \_Vz fz
Y t 1t
B XY

Fixed Node

Adaptive Node

Figure 1. (a) Schematic structure of the TSK fuzzy model; (b) ANFIS model structure [52].

2.3.GA

The genetic algorithm (GA) approach is an
evolutionary and global search algorithm, which is
a quite powerful optimization technique for a
complicated search domain. This technique was
established in early 1970 by inspiring from the
natural genetic and hypotheses of the Darwin’s
evolutionary [54]. The development stages of this
algorithm can be briefly defined as reproduction,
cross-over and mutation. In the reproduction stage,
a new-born group of population is produced by
selecting the most suitable solution from the
available population. In this stage, a complicated
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contest with a specific probability is applicable. The
main phase of the genetic algorithm development is
cross-over, which is recognized as recombination.
Cross-over is a genetic algorithm tool that combines
the genetic data of two parents to produce the new
children in the generating process. Finally, mutation
is a genetic operator that is employed to retain the
genetic verity from one offspring of chromosomes
to the next generation. Finally, mutation changes
one or more gene values in a chromosome. Figure.
3 illustrates a simple flow sheet of GA modelling
Processes.
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Initialize a continuous
PSO population
Calculate fitness
value
Update velocity
and position

Termination
Criteria?

Figure 2. Flow diagram of the PSO algorithm [53].

2.4. Multiple regression analysis

Multiple regression (MR) analysis is a conventional
statistical model available to forecast the value of
one or more dependent parameters from a single
variable or a group of independent variables [55].
Multiple linear regression models were constructed
in the current research work for output prediction.
Generally, a typical multiple regression formulation
is presented in the following format:

y=p8,+0X%+..+ B X +e Q)

where y is the output parameter whose amount is
related to the input parameters (X1, Xz, ... Xx) that is
selected by the examiner, 1, ... k are the parameters
of regression, and fo,... p« are the constant
coefficients.

3. Data collection

Generally, considerable datasets are required for
construction/development and evaluation of the
artificial intelligence modelling. In fact, collection
of data is the main step in developing the intelligent
models. For this purpose, about 93 core specimens
were prepared upon the different rock blocks
classified from weak to very strong types. Core
specimens were prepared as a right cylinder shape
with 54 mm diameter (NX-size) and 2.5:1 ratio of
height-to-diameter according to the suggested
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Figure 3. A simple flow sheet of GA modeling
processes [54].

standard method by ISRM (1981). In the next step,
UCS, density, porosity, and Schmidt hammer
rebound of the rock core specimens were measured
in the laboratory. UCS was determined using an
automated uniaxial compression testing machine
(Figure. 4) according to the proposed standards by
ASTM [4]. Also the porosity parameter was
determined using the saturation-caliper approach in
the lab according to the suggested method by ISRM
[56]. Moreover, the density of core specimens was
determined by the core weight division to its
volume. Finally, a common Schmidt hammer device
was applied for the Schmidt hammer rebound
determination of the samples in the laboratory. It
should be noted that the density and Schmidt
hammer rebound tests have been performed
according to the procedure proposed by ISRM [56].
During the several recent vyears, the above-
mentioned tests have been performed by the authors
in their personal laboratories, and the measured data
have been recorded as exhaustive datasets to
develop the proposed models in this work. As
mentioned earlier, various rock types including
weak, medium, strong, and very strong rocks were
tested for data preparation. The tested rock types
include Gabbro, Amphibolite, Granodiorite, Norite,
Quartz  diorite, Serpentine, Groana, Dunite,
Peridotite, Olivine, Pyroxenite, Dolerite, Basalt,
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Quartzite, Diopside, Diabase, Granite, Eclogite,
Syenite, Anorthosite, Slate, Dolomite, Sandstone,
Pitchstone, Siltstone, Shale, Limestone, Marl,
Gneiss, Gypsum, Anhydride, Chalk, Tuff,
Conglomerate, Rhyolite, Schist, and Marble.

As a common process in the intelligent modelling,
the prepared datasets were divided into two types
including the construction/training (70%  of
datasets) and evaluation/testing (30% of datasets)
data. The construction/training datasets were
applied for developing the hybrid intelligent models
and MR method, while the evaluation/testing
datasets were considered for testing the models
capability and their verifications. The statistical
characteristics of the prepared datasets and variable
symbols are given in Table 2. Moreover, ten
samples of the prepared datasets are shown in Table
3.

Figure 4. The applied device for UCS determination.

Table 2. Statistical characteristics of prepared datasets used for modeling.

Parameter Symbol Min. Max. Variance  Std. dev.
Porosity (%) n 0.1 41.17 60.88 7.8
Density (g/cm®) P 1.65 3.8 0.19 0.43
Schmidt hammer rebound (-) R 25.25 71.33 73.65 8.58
Unconfined compressive strength (MPa) UCS 23 361.37 7072.73 84.09

Table 3. Ten samples of prepared datasets for the
current modeling.

n(%) p(gem® R() UCS (MPa)
3.56 2.6 61 184
7.7 2.56 54 127

3 34 55 260

11.03 171 44 23
2.17 2.67 50.5 110
3.7 3.24 55.16 230
9.6 2.33 51 90
0.22 2.77 64.33 282

14.32 2.2 48.33 70

6 3.8 41.66 150

4. UCS modelling

In this paper, two new hybrid intelligent algorithms
including the ANFIS-GA and ANFIS-PSO models
along with the MR statistical model were developed
and proposed to estimate the UCS of rock core
specimens. For this purpose, considering a suitable
dividing approach is required to divide the prepared
input data into the construction/training and
evaluation/testing datasets to start the modelling
process. As mentioned earlier, 93 data series were
provisioned to construct the above three models in
this work. In order to divide the prepared datasets, a
random approach was utilized. Accordingly, 70% of
them was selected for model development
(construction/training data) and the remaining 30%
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was considered to test the developed models
(evaluation/testing data). For modelling the soft
computing methods, normalization of such datasets
was carried out to the domain of [0, 1] to have an
effective training phase. In the present work, a
normalization process was conducted by Equation.
(2). This helped the better training and developing
of the applied models in order to acquire the
accurate results.

X X - Xmin
Xmax - Xmin

where X is an input variable, X .

)

normalized

o 1S the minimum

value of a variable, and X, is the maximum value

of it. Development of these suggested models will
be outlined in the following sub-sections in detail.

4.1. ANFIS-PSO/GA modeling

In the ANFIS-PSO/GA modelling, UCS is basically
predicted by ANFIS. However, to train ANFIS, the
learning methodology was separately utilized on the
basis of the PSO and GA algorithms in order to
enhance its prediction capability and accuracy for
obtaining the optimum results. The mentioned
datasets in Section 3 were utilized for the ANFIS
model training using the PSO and GA algorithms
separately. The suggested ANFIS structure includes
three input variables (n, p, R) along with one output
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variable (UCS). The PSO/GA-based ANFIS
approaches were performed using a MATLAB-
based program. Using this program, a specific
modelling of UCS was carried out based on the
porosity, density, and Schmidt hammer rebound
variables. At the first step, the prepared laboratory
data was converted to normal values between 0 and
1. After that, the methodology of PSO/GA, which
was explicated in the prior section, was functioned
to discover the best values/types of ANFIS
predictive model parameters. For running these
ANFIS-PSO/GA algorithms, 100 generations under
the 50 population size were employed. When the
last generation was terminated, the best
values/types of the ANFIS predictive model
parameters to estimate the UCS value were
obtained, as provided in Table 4.

4.2 MR modelling

Multivariable regression (MR) is a branch of the
statistical regression analysis in which the output
variable(s) can be estimated in the form of a
predictive equation on the basis of the input
(independent) variables. Indeed, determining the
inherent relations between the output (dependent)
variable(s) and the input (independent) variable(s)
is possible by this method. The MR approach was
broadly utilized in the geosciences fields, especially
in mining, rock engineering, and rock mechanics by

many researchers [57]. In this section, statistical
correlation between the output (UCS) and
considered input characteristics (n, p, R) is
surveyed based on the MR analysis. The SPSS23
software package was utilized for multivariate
relation generation between the above-mentioned
input-output variables based on the same datasets as
applied for intelligent modelling (construction
data). For MR analysis of UCS, all of the possible
combinations of input parameters along with the
independently status of single inputs were tested in
order to predict UCS. The MR models summary
including the correlation  coefficient  (R),
determination coefficient (R?), adjusted value of R?,
and estimations standard error are demonstrated in
Table 5. According to this Table, the MR model,
considering all of the three input parameters (model
7), have high correlation values (R, R?, and adjusted
R?) and the minimum value of estimation standard
error. Therefore, it is considered as the best MR
model to predict UCS based on the current input
variables. Accordingly, the main results of this
optimum statistical analysis and its obtained
coefficients are given in Table 6. Finally, the
acquired relation from this optimum MR analysis is
given in Equation. (3).

UCS =-350.784 —1.825n + 82.749p + 5.708R  (3)

Table 4. The best achieved values/types for the applied models.

ANFIS values/types

Description/value

Fuzzy inference engine

Input membership function type

Sugeno-type
Gaussian (“gaussmf”)

Output membership function type Linear
Cluster influence center 0.7
Number of inputs 3
Number of Outputs 1
Approach of optimization PSO/GA
Number of iterations 1000
Training data number 65
Testing data number 28
Size of the initial step 0.3
Decrease rate step size 0.9
Increase rate step size 1.10
Fuzzy rules number 6
GA values/types Description/value
Size of population 50
Rate of mutation 0.05
Cross-over 0.7
PSO values/types Description/value
Size of population 50
W 0.5
C1 2
C2 2

237



Rezaeil and Asadizadeh./ Journal of Mining & Environment, Vol. 11, No. 1, 2020

Table 5. MR models summary for UCS prediction.

Model Model Input(s) R value R? value Adjusted value of Estimations
output No. R square Std. error
1 n 0.585 0.342 0.335 68.58464
2 p 0.655 0.429 0.422 63.91807
3 R 0.794 0.630 0.626 51.42595
UCS 4 n, p 0.771 0.594 0.585 54.14955
5 n, R 0.825 0.680 0.673 48.0898
6 p, R 0.907 0.822 0.818 35.83491
7 n, p, R 0.918 0.843 0.838 33.83951
Table 6. The main results of optimum MR statistical analysis for UCS prediction.
Predictor Coefficient Standardized coefficients (Beta) t-value Sig.
Constant -350.784 - -10.532 0
n -1.825 -0.169 -3.454 0.001
p 82.794 0.431 9.631 0
R 5.708 0.583 11.893 0
5. Results and Discussion Z.n:l (Ameas = Apred )‘
5.1. Verification using laboratory data MAE == (6)
In order to verify the proposed ANFIS-GA, ANFIS- n
PSO, and MR models, the results achieved for them var( A —A )
were compared with the real data attained from the VAF =100(1- mes pred ) 7)
laboratory experiments. The evaluation/testing data var(Aes)

(19 data series), which was not utilized in the model
construction, was applied for this verification.
Indeed, the prediction performance and ability of
the proposed models were controlled based on the
evaluation/testing datasets. For this aim, four
statistical indices (Sls), i.e. the coefficient of
correlation (R), mean of square error (MSE), mean
of absolute error (MAE), and variance account for
(VAF) were computed for all the developed models.
The R index stands for the correlation of the model
results with the real datasets. On the other hand, the
MSE and MAE indices demonstrate the model
errors compared to the real values. Finally, different
amounts of the real dataset variance with the model
output(s) were calculated using the VAF index. In
general, the higher values for R and VAF (nearer to
100%) and the lower amounts of MSE and MAE
(near to zero) proved the better performance and
capability of a model. The following equations were
utilized to calculate the above-mentioned indices:

i(Apred - 'E‘pred)(Aimeas - 'K\neas)

R=10 (4)
\/Z(Apred - Kpred)2 Z(Ameas - 'E\neas)2
1S )
MSE:HZ(Ameas_ Apred) (5)
i=1
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where n is the datasets number, Rmeas is the average
of actual datasets, Apmd is the average of

forecasted datasets, and A, and A, are the

ith actual and forecasted elements, correspondingly.
Based on the 19 numbers of the evaluation/testing
dataset, the prior mentioned statistical indices were
calculated for all the suggested models (Table 7).
As revealed in the this table, the anticipation
capability of the proposed intelligent models
(ANFIS-GA and ANFIS-PSO models) in terms of
R, MSE, MAE, and VAF was much higher than the
statistical model. However, the correctness of the
ANFIS-GA approach was somewhat better than the
ANFIS-PSO procedure. For more evaluation,
correlation between the real data and the predicted
ones from the ANFIS-GA, ANFIS-PSO, and MR
models are illustrated in Figures. 5-7, respectively.
The last comparison was also proved that the results
of the suggested hybrid intelligent models were
more correlated with the real data in comparison
with the statistical approach, and their outputs were
completely nearer to the real ones. Finally,
comparing the results of the suggested models with
the real evaluation datasets is depicted in Figure. 8,
which verify the prediction capability of the
proposed hybrid intelligent models.
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Table 7. Comparing the proposed model performances using the computed statistical indices.

Index ANFIS-GA model ANFIS-PSO model MR model
R 97.57 97.41 89.99
MSE 192.20 154.23 612.52
MAE 9.60 9.98 21.87
VAF 97.29 97.32 89.95
300 ~
[ ]
oo
A250 _ R*=0.9757 .‘
< o . ®
%200 B .
6 .
= 150 - .
g oo
£ 100 - © 3
E F ol
B 50 o."og
O T T T T T 1
0.00 50.00 100.00 150.00 200.00 250.00 300.00

Measured UCS (MPa)
Figure 5. Correlation between the ANFIS-GA model results and the real data.

300 ~
250 A R*=0.9741 . .

a)

200 - o *

Predicted UCS (0
)
)

0.00 50.00 100.00 150.00 200.00 250.00 300.00
Measured UCS (MPa)
Figure 6. Correlation between the ANFIS-PSO model results and the real data.

300
R?*=0.8999

(]

d

o
1

%]

(=4

(=}
1

Predicted UCS (MPa)
O
o
®
o )
®

o

o
1
[ )

0 . T T T T T 1
0.00 50.00 100.00 150.00 200.00 250.00 300.00
Measured UCS (MPa)

Figure 7. Correlation between the LR model results and the real data.
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Figure 8. Comparing the suggested model results with the real evaluation datasets.

5.2. Comparison with available intelligent models
For further validation and evaluation of the
suggested hybrid intelligent models, they were
compared with the other single/hybrid intelligent
models proposed by some researchers in the recent
years, which were reported in the literature. The
determination coefficient (R®) index resulting from
these models is used as a comparison basis for
comparison object in order to confirm the suggested
models. The values of R? index resulted from the
available/previous intelligent single/hybrid models,
and the proposed hybrid models in the current
research work for UCS estimation are given in
Table 8. As it can be concluded from this table, the
prediction capacity and ability of the suggested
hybrid intelligent models in this paper is
considerably  higher than the majority of
available/previous single/hybrid intelligent models.
Nevertheless, only the proposed ANFIS model by
Jahed Armaghani et al. [50] is relatively as accurate
as the suggested hybrid intelligent models in the
current work. In addition to their accuracies, the
most important benefit of the suggested hybrid
intelligent models compared to the previous
single/hybrid intelligent models is that only the rock
easily definable properties (n, p, R) are regarded as
their input variables. On the other hand,
expensively and hardly definable variables were
considered as the input parameters of the previous
single/hybrid intelligent models. This comparison
proved that the suggested hybrid intelligent models
in this paper were quite precise and reasonably
priced compared to the previous single/hybrid
intelligent models. The above two mentioned points
are the main superiorities and novelties of the
current research work compared to the similar
available works.
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Table 8. Comparing the proposed models in this work
with the available intelligent single/hybrid models for
UCS prediction.

Model Type Acquired R? Reference
ANN 0.94 [6]
FIS 0.67 [19]
FIS 0.97 [22]
ANN 0.4 [23]
ANFIS 0.94 [24]
FIS 0.98 [30]
ANN 0.97 [33]
GP 0.83 [37]
FIS 0.92 [47
ANN 0.97 [48]
FIS 0.94 [49]
ANFIS 0.99 [50]
Un-pruned type of TA 0.89 [51]

Pruned type of TA 0.80

FIS 0.64 [58]
GP 0.86 [59]
ANN 0.67 [60]
ANN 0.93 [61]
FIS 0.88 [62]
GP 0.88 [63]
ANN 0.86 [64]
ANN 0.97 [65]
ANN 0.50 [66]
GA-ANN 0.96 [67]
GP 0.63 [68]
ANFIS 0.83 [69]
SVR 0.77 [70]
PSO-ANN 0.97 [71]
PSO-ANN 0.97 [72]
ICA-ANN 0.94 [73]
ICA-ANN 0.92 [74]

ANFIS-GA 0.98 This research

ANFIS-PSO 0.97 This research

Here, ANN states the artificial neural network, FIS
expresses the fuzzy inference system, GP imparts the
genetic programming, ANFIS intends the adaptive neuro-
fuzzy inference system, SVR demonstrates the support
vector regression, PSO remarks the particle swarm
optimization, ICA declares the imperialist competitive
algorithm, and TA pronounces the tree algorithm.
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5.3. Parametric study

A parametric study was performed in this section
for all the three input variables to realize the
relative influence of each input on the UCS
resulting from the three suggested models. The
results of the parametric study for the ANFIS-GA,
ANFIS-PSO, and MR models are depicted in
Figures. 9a, 9b, and 9c, respectively. This
parametric study was carried out by keeping
constant the two variables inputs and changing the
third variable. Accordingly, the influence of the
third input on UCS can be discovered. For instance,
the porosity was removed from the input variables,
and then the ANFIS-GA/ANFIS-PSO/MR model

was run by the other two input variables.
Consequently, the influence of porosity on UCS
could be realized through comparison of the new
simulation results with the previous results. This
process was also performed for the other input
variables. According to this parametric study
procedure, it was proved that density was the most
effective variable on UCS in ANFIS-GA and LR
models, whereas Schmidt hammer rebound was the
most influence input on UCS in the ANFIS-PSO
model. On the other hand, porosity was the least
effectual variable on UCS in all of the above
proposed models.
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0.92 0.92 0913 0.92
09 09 ‘\./‘
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Figure. 9. Sensitivity analysis of UCS with related inputs: a) ANFIS-GA model; b) ANFIS-PSO model;
¢) MR model.

6. Conclusions

Two new hybrid intelligent models (ANFIS-GA and
ANFIS-PSO) along with a conventional statistical
approach (MR model) were developed in this work
for predicting UCS of core rock specimens. For
UCS (output) prediction in the above models, three
easily definable variables including porosity,
density, and Schmidt hardness were regarded as
inputs. The construction and evaluation of the
aforementioned models were made based on the 93
datasets that were determined on the different rock
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core specimens in the laboratory. In order to verify
the new hybrid intelligent models, their achieved
results were compared with the statistical model
results and the real evaluation datasets using the
indices R, MSE, MAE, and VAF. Finally, the
proposed hybrid intelligent models were compared
with the available/previous intelligent single/hybrid
models for UCS prediction based on the concluded
R? values. According to the above tasks, the main
achieved conclusions are outlined below.
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Comparative  analysis proved that the
performance of the ANFIS-GA model was
rather better than those of the ANFIS-PSO

model.

e Both hybrid intelligent models are
considerably superior compared to the MR
model.

The simulation results of the new hybrid
intelligent models are in extremely close
agreement with the determined values of UCS
in laboratory.

It was revealed that the suggested hybrid
intelligent models were relatively more
accurate  than  the previous/available
intelligent single/hybrid models proposed by
other researchers.

By a parametric study, it was discovered that
density and Schmidt hammer rebound were
the most influential variables, and porosity
was the least input in UCS.

The major benefit of the recommended
models is that the easily definable variables
are considered as their inputs, unlike the
previous intelligent models.

According to the above findings, it can be
concluded that the proposed hybrid intelligent
models have a good capability in UCS
prediction, and they are more economical than
the other available similar approaches. Thus
they can be used for UCS determination in
practice successfully.
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