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Abstract 
Bedrock unconfined compressive strength (UCS) is a key parameter in designing the 
geosciences and building related projects comprising both the underground and surface 
rock structures. Determination of rock UCS using standard laboratory tests is a 
complicated, expensive, and time-consuming process, which requires fresh core 
specimens. However, preparing fresh cores is not always possible, especially during the 
drilling operation in cracked, fractured, and weak rocks. Therefore, some attempts have 
recently been made to develop the indirect methods, i.e. intelligent predictive models for 
rock UCS estimation, which require no core preparation and laboratory equipment. This 
work focuses on the application of new combinations of intelligent techniques including 
adoptive neuro-fuzzy inference system (ANFIS), genetic algorithm (GA), and particle 
swarm optimization (PSO) in order to predict rock UCS. These models were constructed 
based on the collected laboratory datasets upon 93 core specimens ranging from weak to 
very strong rock types. The proposed hybrid model results were compared with each 
other, and the real data and multiple regression (MR) results. These comparisons were 
made using coefficient of correlation, mean of square error, mean of absolute error, and 
variance account for indices. The comparison results proved that the ANFIS-GA 
combination had a relatively higher accuracy than the ANFIS-PSO combination, and 
both had a higher capability than the MR model. Furthermore, the ANFIS-GA and 
ANFIS-PSO model results were completely in accordance with the UCS laboratory test, 
and they were more accurate than the previous single/hybrid intelligent models. Lastly, a 
parametric study of the suggested models showed that the density and Schmidt hammer 
rebound had the highest influence, and porosity had the lowest influence on the output 
(UCS). 

1. Introduction 
Unconfined compressive strength (UCS) is the main 
utilized parameter for designing the mining, civil, 
and geotechnical structures as well as the 
infrastructure projects. Indeed, the stability analysis 
of these structures is conducted based on both the 
intact rock and rock mass geomechanical properties 
(i.e. UCS), which is crucial to provide the long-term 
stability for efficiency maintenance. Determining 
the rock geomechanical properties is also required 
for floor, roof, pillar, and slope analysis in mining 
and tunneling projects and also for dam, building, 

and road construction in civil operations [1]. 
Nonetheless, the rock UCS is the most important 
parameter due to the fact that other rock mechanical 
characteristics can be determined according to this 
parameter. Bieniawski [2] has stated that UCS 
determination is commonly more required for 
mining engineers than the other rock properties. 
Therefore, it can be concluded that UCS is the most 
important rock geomechanical properties whose 
high significance has been outlined by many 
investigators. 
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Commonly, there are two approaches, i.e. direct 
(laboratory tests) and indirect (correlated index 
tests) methods for UCS determination. Standard 
direct methods have been suggested for UCS 
determination by ISRM [3] and ASTM [4]. In direct 
methods, laboratory test is conducted, in which the 
strain of rock core specimen is determined at the 
same time as the axial compressive force is 
incremented. Accordingly, the pressure at which the 
core is broken is considered as the maximum UCS 
of the tested rocks [5]. In the second method, index 
tests such as point load index, Schmidt hummer 
rebound, impact strength, and wave velocity index 
as well as the predictive models have been utilized 
to estimate UCS as an indirect alternative of the 
direct determination method. The main benefits of 
the indirect approach utilization are the flexibility 
and low-cost implementation [6]. Moreover, there 
are some new indirect methods available to estimate 
rock mass or intact rock strength including the 

Equotip hardness tester [7], block punch index test 
[8], core strangle test [9], nail penetration test [10], 
and edge load strength test [11] that require a large 
number of rock samples with a precise size. Indeed, 
specific core specimens, i.e. cubical or cylindrical 
cores, should be prepared with high precision to 
implement the above-mentioned standard tests. 
Moreover, some of these indirect methods/relations 
are concluded from the statistical models to predict 
UCS, as shown in Table 1. In these statistical 
relations, only the mean UCS values are estimated, 
and thus low and high values are often 
overestimated and underestimated, respectively. On 
the other hand, the restrictions and strictness of 
direct methods for UCS determination make them 
expensive, tedious, and time-consuming. In fact, 
preparing the standard core specimens is often 
difficult, particularly during the coring operation in 
highly broken and weak rocks [12]. 

Table 1. Some available indirect statistical/empirical relations to estimate UCS. 
Equation Rock type Reference 

RTGSnEHUCS 55.2147.1575.014.2825.0    
Granite, limestone, sandstone, 

granodiorite, and dolomite [6] 

nUCS 55.16183   Granite [13] 
)04.0exp(4.74 nUCS   Sandstone [14] 

804.246307.1268.39386.0  nEHUCS   Granite, limestone, sandstone, 
granodiorite, and dolomite [15] 

)821.0exp(1.10 nUCS   Shale, claystone, and siltstone [16] 
)059.0818.0exp( SHUCS   Gypsum [17] 

71.13.7 PLSUCS   Limestone, sandstone, and marl [18] 

225418.2094.4468.10065.0.0  TSPLSPBIVUCS p  
Weak, fractured, and thin-bedded 

rocks [19] 

7.635.31  pVUCS  Limestone, dolomite, and marble [20] 
)0706.0exp(4459.1 SHUCS   Granitic rocks [21] 

9.3568.11.1389.0  pVPLSSHUCS  Limestone, dacite, and marble [22] 
89.022.072.5088 CISHUCS   Igneous and sedimentary rocks [23] 

859.23972.7248.0863.148.0  pVWCPLSSHUCS  Gypsum [24] 

SHUCS 584.20028.0  
Travertine, limestone, dolomitic 

limestone, and schist [25] 

]/452.4exp[05.165 pVUCS   Limestone, marble, and sandstone [26] 

285863.29  SDUCS  
Travertine, limestone, and dolomitic 

limestone [27] 

029.10408.2876.10734.5  PLSTSVUCS p  Sedimentary rocks [28] 

)504.1exp(458.0 pVUCS   Claystone and mudstone [29] 

)157.2000012.0029.0
065.0011.0exp(




pVSH
PLSBPIUCS  

Granite, schist, and sandstone [30] 

PLSUCS 5.12  Pyroclastic rocks [31] 

TSUCS 874.4301.24   Basalt and limestone [32] 

214.430162.0251.18
411.127384.156.2




pV
PLSnUCS


  Carbonate rocks [33] 

)065.0exp(047.0 SDUCS   Pyroclastic rocks [34] 
UCS Uniaxial compressive strength, n porosity, ρ density, SH Schmidt hardness, PLS point load strength, Vp Primary wave velocity, BPI 

block punch index, CI cone indenter hardness, WC water content, SD slake durability index, ν Poisson’s ratio, TS Tensile strength, GS 
Grain size, RT Rock type, EH Equotip hardness. 
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In fact, to overcome the above-mentioned 
difficulties in UCS determination and demand to 
acquire rock strength properties in cheaper, feasible, 
and quicker procedure with accurate results lead to 
develop some intelligent predictive models, i.e. 
neural network (NN) tool, fuzzy systems (FSs), 
genetic algorithm (GA), etc. A wide range of 
applications of these techniques has been reported 
in the literatures to model and control different 
problems. Particularly, an increase in the 
application of these techniques has been reported in 
the fields of mining and geosciences [35-46]. 
Regarding the UCS prediction, Madhubabu et al. 
[33] have estimated the carbonate rocks UCS and 
elastic modulus by means of the ANN technique. 
Gokceoglu [47] has suggested a triangular fuzzy 
technique for agglomerate rock UCS estimation 
considering petrographic properties. Majdi and 
Rezaei [48] have developed an artificial neural 
network (ANN) model with a high accuracy to 
predict UCS of rocks surrounding a roadway. 
Rezaei et al. [49] have proposed a valid Mamdani 
fuzzy inference system (FIS) for the UCS 
estimation of the surrounding rocks of longwall 
access tunnels. Jahed Armaghani et al. [50] have 
suggested an ANFIS model to determine granite 
rocks UCS and young’s modulus. Moreover, 
Ghasemi et al. [51] have proposed a tree-based 
model for determining the UCS and young’s 
modulus of carbonate rocks. All the above surveyed 
references proved the capability of the artificial 
intelligent techniques in UCS estimating. However, 
these literature surveyings show that few studies 
have been conducted on the application of hybrid 
intelligent techniques for UCS estimation, which is 
the main objective of the current paper.  
In this paper, combinations of the intelligent 
algorithms including the ANFIS, GA, and PSO 
techniques were utilized for UCS estimation of 
dissimilar rock types classified as weak to very 
strong rocks. The two new hybrid algorithms 
ANFIS-GA and ANFIS-PSO were developed for 
UCS (output) prediction based on the three easily 
determinable input variables including Schmidt 
hammer rebound, density, and porosity. These 
proposed models were constructed and verified 
using 93 experimental data determined in the 
laboratory. Finally, their results were compared 
with the results of the conventional multiple 
regression (MR) and available previous intelligent 
models reported in the current publications. 

 

 

2. Applied techniques 
2.1. ANFIS 
The details of the ANFIS algorithm are well-
described in the literature [52], and thus it is briefly 
outlined here. Originally, FIS is able to simulate the 
inference procedure and linguistic features of the 
human understanding without application of an 
accurate quantitative investigation. On the other 
hand, ANNs are a combination of many 
interdependent processing components that are 
comparable to neurons. In conventional ANN, just 
weight quantity alters throughout the learning 
phase, whereas in a neuro-fuzzy decision-making 
system, the learning capability of ANN is coupled 
with the reasoning process of FIS. In the ANFIS 
method, the human process of decision-making is 
intelligently imitated by a combination of ANN and 
FIS. In this approach, the learning capability of 
ANN is coupled with the reasoning process of FIS. 
Basically, ANFIS utilizes a FIS and adjusts it using 
a back-propagation algorithm and employing a 
group of input-output information. A combination 
of ANN and FIS enables FIS to learn. Neural 
network algorithms in combination with FIS can be 
applied to calculate the unknown factors, and this 
decreases the error values, as traditionally described 
for every parameter of the model, and this 
optimization process makes the model adaptive 
[52]. The structure of an adaptive neural network 
includes several nodes joined via oriented links. A 
node function with unchangeable or adaptable 
parameters defines each node. Neural network 
algorithms, when FIS is loaded, can be applied to 
calculate the unknown factors, and this decreases 
the error values, as traditionally described for every 
parameter of the model, and this optimization 
process makes the model adaptive. The adaptive 
neural network and its operationally identical to FIS 
are presented in Figures. 1a and 1b, respectively. 
Overall, an ANFIS with two input parameters 
including x and y and one output z are considered, 
and its related fuzzy ‘if-then’ rules based on the 
Takagi and Sugeno FIS type is presented in the 
above Figure [52].  

2.2. PSO 
PSO is a heuristic algorithm-based approach, which 
was introduced by Kennedy and Eberhart. This 
technique solves a problem by having a population 
of possible answers. In this approach, each particle 
is nominated with a pace that is different from the 
other soft computing techniques. Particles move 
around in the search domain with paces that are 
dynamically regulated based on their previous 
characteristic. Accordingly, the particles during the 
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search process have an inclination to fly towards 
the most appropriate search domain [53]. The 
positions of particles are updated as they move 
continuously in the search domain until the 
algorithm is terminated. Although the main 
disadvantage of PSO is the slow converging of the 
solution, it is very suitable for finding the local 
optimum. On one hand, PSO is a highly functional 

algorithm to Figure out global optimum but, on the 
other hand, the search pace to find the best answer 
is very slow in this technique [53]. Consequently, 
combination of the PSO ability in global search 
along with its strong local search causes a much 
more appropriate search outcome. Figure. 2 
illustrates a simple flow diagram of the PSO 
algorithm [53]. 

 

 
Figure 1. (a) Schematic structure of the TSK fuzzy model; (b) ANFIS model structure [52]. 

2.3. GA 
The genetic algorithm (GA) approach is an 
evolutionary and global search algorithm, which is 
a quite powerful optimization technique for a 
complicated search domain. This technique was 
established in early 1970 by inspiring from the 
natural genetic and hypotheses of the Darwin’s 
evolutionary [54]. The development stages of this 
algorithm can be briefly defined as reproduction, 
cross-over and mutation.  In the reproduction stage, 
a new-born group of population is produced by 
selecting the most suitable solution from the 
available population. In this stage, a complicated 

contest with a specific probability is applicable. The 
main phase of the genetic algorithm development is 
cross-over, which is recognized as recombination. 
Cross-over is a genetic algorithm tool that combines 
the genetic data of two parents to produce the new 
children in the generating process. Finally, mutation 
is a genetic operator that is employed to retain the 
genetic verity from one offspring of chromosomes 
to the next generation. Finally, mutation changes 
one or more gene values in a chromosome. Figure. 
3 illustrates a simple flow sheet of GA modelling 
processes. 
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Figure 2. Flow diagram of the PSO algorithm [53]. Figure 3. A simple flow sheet of GA modeling 
processes [54]. 

2.4. Multiple regression analysis 
Multiple regression (MR) analysis is a conventional 
statistical model available to forecast the value of 
one or more dependent parameters from a single 
variable or a group of independent variables [55]. 
Multiple linear regression models were constructed 
in the current research work for output prediction. 
Generally, a typical multiple regression formulation 
is presented in the following format: 

exxy kk   ...110                             (1) 

where y is the output parameter whose amount is 
related to the input parameters (x1, x2, ... xk) that is 
selected by the examiner, 1, ... k are the parameters 
of regression, and β0,… βk are the constant 
coefficients. 

3. Data collection 
Generally, considerable datasets are required for 
construction/development and evaluation of the 
artificial intelligence modelling. In fact, collection 
of data is the main step in developing the intelligent 
models. For this purpose, about 93 core specimens 
were prepared upon the different rock blocks 
classified from weak to very strong types. Core 
specimens were prepared as a right cylinder shape 
with 54 mm diameter (NX-size) and 2.5:1 ratio of 
height-to-diameter according to the suggested 

standard method by ISRM (1981). In the next step, 
UCS, density, porosity, and Schmidt hammer 
rebound of the rock core specimens were measured 
in the laboratory. UCS was determined using an 
automated uniaxial compression testing machine 
(Figure. 4) according to the proposed standards by 
ASTM [4]. Also the porosity parameter was 
determined using the saturation-caliper approach in 
the lab according to the suggested method by ISRM 
[56]. Moreover, the density of core specimens was 
determined by the core weight division to its 
volume. Finally, a common Schmidt hammer device 
was applied for the Schmidt hammer rebound 
determination of the samples in the laboratory. It 
should be noted that the density and Schmidt 
hammer rebound tests have been performed 
according to the procedure proposed by ISRM [56]. 
During the several recent years, the above-
mentioned tests have been performed by the authors 
in their personal laboratories, and the measured data 
have been recorded as exhaustive datasets to 
develop the proposed models in this work. As 
mentioned earlier, various rock types including 
weak, medium, strong, and very strong rocks were 
tested for data preparation. The tested rock types 
include Gabbro, Amphibolite, Granodiorite, Norite, 
Quartz diorite, Serpentine, Groana, Dunite, 
Peridotite, Olivine, Pyroxenite, Dolerite, Basalt, 



Rezaei1 and Asadizadeh./ Journal of Mining & Environment, Vol. 11, No. 1, 2020 

236 

Quartzite, Diopside, Diabase, Granite, Eclogite, 
Syenite, Anorthosite, Slate, Dolomite, Sandstone, 
Pitchstone, Siltstone, Shale, Limestone, Marl, 
Gneiss, Gypsum, Anhydride, Chalk, Tuff, 
Conglomerate, Rhyolite, Schist, and Marble. 
As a common process in the intelligent modelling, 
the prepared datasets were divided into two types 
including the construction/training (70% of 
datasets) and evaluation/testing (30% of datasets) 
data. The construction/training datasets were 
applied for developing the hybrid intelligent models 
and MR method, while the evaluation/testing 
datasets were considered for testing the models 
capability and their verifications. The statistical 
characteristics of the prepared datasets and variable 
symbols are given in Table 2. Moreover, ten 
samples of the prepared datasets are shown in Table 
3. 

 
Figure 4. The applied device for UCS determination. 

Table 2. Statistical characteristics of prepared datasets used for modeling. 
Parameter Symbol Min. Max. Variance Std. dev. 

Porosity (%) n 0.1 41.17 60.88 7.8 
Density (g/cm3) ρ 1.65 3.8 0.19 0.43 

Schmidt hammer rebound (-) R 25.25 71.33 73.65 8.58 
Unconfined compressive strength (MPa) UCS 23 361.37 7072.73 84.09 

 
Table 3. Ten samples of prepared datasets for the 

current modeling. 
n (%) ρ (g/cm3) R (-) UCS (MPa) 
3.56 2.6 61 184 
7.7 2.56 54 127 
3 3.4 55 260 

11.03 1.71 44 23 
2.17 2.67 50.5 110 
3.7 3.24 55.16 230 
9.6 2.33 51 90 

0.22 2.77 64.33 282 
14.32 2.2 48.33 70 

6 3.8 41.66 150 

4. UCS modelling 
In this paper, two new hybrid intelligent algorithms 
including the ANFIS-GA and ANFIS-PSO models 
along with the MR statistical model were developed 
and proposed to estimate the UCS of rock core 
specimens. For this purpose, considering a suitable 
dividing approach is required to divide the prepared 
input data into the construction/training and 
evaluation/testing datasets to start the modelling 
process. As mentioned earlier, 93 data series were 
provisioned to construct the above three models in 
this work. In order to divide the prepared datasets, a 
random approach was utilized. Accordingly, 70% of 
them was selected for model development 
(construction/training data) and the remaining 30% 

was considered to test the developed models 
(evaluation/testing data). For modelling the soft 
computing methods, normalization of such datasets 
was carried out to the domain of [0, 1] to have an 
effective training phase. In the present work, a 
normalization process was conducted by Equation. 
(2). This helped the better training and developing 
of the applied models in order to acquire the 
accurate results. 

minmax

min

XX
XXX normalized 


                        (2) 

where X is an input variable, minX  is the minimum 
value of a variable, and maxX is the maximum value 
of it. Development of these suggested models will 
be outlined in the following sub-sections in detail. 

4.1. ANFIS-PSO/GA modeling 
In the ANFIS-PSO/GA modelling, UCS is basically 
predicted by ANFIS. However, to train ANFIS, the 
learning methodology was separately utilized on the 
basis of the PSO and GA algorithms in order to 
enhance its prediction capability and accuracy for 
obtaining the optimum results. The mentioned 
datasets in Section 3 were utilized for the ANFIS 
model training using the PSO and GA algorithms 
separately. The suggested ANFIS structure includes 
three input variables (n, ρ, R) along with one output 
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variable (UCS). The PSO/GA-based ANFIS 
approaches were performed using a MATLAB-
based program. Using this program, a specific 
modelling of UCS was carried out based on the 
porosity, density, and Schmidt hammer rebound 
variables. At the first step, the prepared laboratory 
data was converted to normal values between 0 and 
1. After that, the methodology of PSO/GA, which 
was explicated in the prior section, was functioned 
to discover the best values/types of ANFIS 
predictive model parameters. For running these 
ANFIS-PSO/GA algorithms, 100 generations under 
the 50 population size were employed. When the 
last generation was terminated, the best 
values/types of the ANFIS predictive model 
parameters to estimate the UCS value were 
obtained, as provided in Table 4. 

4.2 MR modelling 
Multivariable regression (MR) is a branch of the 
statistical regression analysis in which the output 
variable(s) can be estimated in the form of a 
predictive equation on the basis of the input 
(independent) variables. Indeed, determining the 
inherent relations between the output (dependent) 
variable(s) and the input (independent) variable(s) 
is possible by this method. The MR approach was 
broadly utilized in the geosciences fields, especially 
in mining, rock engineering, and rock mechanics by 

many researchers [57]. In this section, statistical 
correlation between the output (UCS) and 
considered input characteristics (n, ρ, R) is 
surveyed based on the MR analysis. The SPSS23 
software package was utilized for multivariate 
relation generation between the above-mentioned 
input-output variables based on the same datasets as 
applied for intelligent modelling (construction 
data). For MR analysis of UCS, all of the possible 
combinations of input parameters along with the 
independently status of single inputs were tested in 
order to predict UCS. The MR models summary 
including the correlation coefficient (R), 
determination coefficient (R2), adjusted value of R2, 
and estimations standard error are demonstrated in 
Table 5. According to this Table, the MR model, 
considering all of the three input parameters (model 
7), have high correlation values (R, R2, and adjusted 
R2) and the minimum value of estimation standard 
error. Therefore, it is considered as the best MR 
model to predict UCS based on the current input 
variables. Accordingly, the main results of this 
optimum statistical analysis and its obtained 
coefficients are given in Table 6. Finally, the 
acquired relation from this optimum MR analysis is 
given in Equation. (3). 

RnUCS 708.5749.82825.1784.350    (3) 
 

Table 4. The best achieved values/types for the applied models. 
ANFIS values/types Description/value 
Fuzzy inference engine Sugeno-type 

Input membership function type Gaussian (“gaussmf”) 
Output membership function type Linear 

Cluster influence center 0.7 
Number of inputs 3 

Number of Outputs 1 
Approach of optimization PSO/GA 

Number of iterations 1000 
Training data number 65 
Testing data number 28 

Size of the initial step 0.3 
Decrease rate step size 0.9 
Increase rate step size 1.10 
Fuzzy rules number 6 
GA values/types Description/value 
Size of population 50 
Rate of mutation 0.05 

Cross-over 0.7 
PSO values/types Description/value 
Size of population 50 

W 0.5 
C1 2 
C2 2 
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Table 5. MR models summary for UCS prediction. 

Table 6. The main results of optimum MR statistical analysis for UCS prediction. 

5. Results and Discussion 
5.1. Verification using laboratory data 
In order to verify the proposed ANFIS-GA, ANFIS-
PSO, and MR models, the results achieved for them 
were compared with the real data attained from the 
laboratory experiments. The evaluation/testing data 
(19 data series), which was not utilized in the model 
construction, was applied for this verification. 
Indeed, the prediction performance and ability of 
the proposed models were controlled based on the 
evaluation/testing datasets. For this aim, four 
statistical indices (SIs), i.e. the coefficient of 
correlation (R), mean of square error (MSE), mean 
of absolute error (MAE), and variance account for 
(VAF) were computed for all the developed models. 
The R index stands for the correlation of the model 
results with the real datasets. On the other hand, the 
MSE and MAE indices demonstrate the model 
errors compared to the real values. Finally, different 
amounts of the real dataset variance with the model 
output(s) were calculated using the VAF index. In 
general, the higher values for R and VAF (nearer to 
100%) and the lower amounts of MSE and MAE 
(near to zero) proved the better performance and 
capability of a model. The following equations were 
utilized to calculate the above-mentioned indices: 
















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1
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                         (5) 
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AA

MAE
n

i ipredimeas 


 1
)(

           (6) 

)
)var(

)var(
1(100

imeas

ipredimes

A
AA

VAF


                   (7) 

where n is the datasets number, imeasA is the average 

of actual datasets, ipredA  is the average of 

forecasted datasets, and imeasA  and ipredA  are the 
ith actual and forecasted elements, correspondingly. 
Based on the 19 numbers of the evaluation/testing 
dataset, the prior mentioned statistical indices were 
calculated for all the suggested models (Table 7). 
As revealed in the this table, the anticipation 
capability of the proposed intelligent models 
(ANFIS-GA and ANFIS-PSO models) in terms of 
R, MSE, MAE, and VAF was much higher than the 
statistical model. However, the correctness of the 
ANFIS-GA approach was somewhat better than the 
ANFIS-PSO procedure. For more evaluation, 
correlation between the real data and the predicted 
ones from the ANFIS-GA, ANFIS-PSO, and MR 
models are illustrated in Figures. 5-7, respectively. 
The last comparison was also proved that the results 
of the suggested hybrid intelligent models were 
more correlated with the real data in comparison 
with the statistical approach, and their outputs were 
completely nearer to the real ones. Finally, 
comparing the results of the suggested models with 
the real evaluation datasets is depicted in Figure. 8, 
which verify the prediction capability of the 
proposed hybrid intelligent models. 

Model 
output 

Model 
No. Input(s) R value R2 value Adjusted value of 

R square 
Estimations 
Std. error 

UCS 

1 n 0.585 0.342 0.335 68.58464 
2 ρ 0.655 0.429 0.422 63.91807 
3 R 0.794 0.630 0.626 51.42595 
4 n, ρ 0.771 0.594 0.585 54.14955 
5 n, R 0.825 0.680 0.673 48.0898 
6 ρ, R 0.907 0.822 0.818 35.83491 
7 n, ρ, R 0.918 0.843 0.838 33.83951 

Predictor Coefficient Standardized coefficients (Beta) t-value Sig. 
Constant -350.784 - -10.532 0 

n -1.825 -0.169 -3.454 0.001 
ρ 82.794 0.431 9.631 0 
R 5.708 0.583 11.893 0 
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Table 7. Comparing the proposed model performances using the computed statistical indices. 
Index ANFIS-GA model ANFIS-PSO model MR model 

R 97.57 97.41 89.99 
MSE 192.20 154.23 612.52 
MAE 9.60 9.98 21.87 
VAF 97.29 97.32 89.95 

 
Figure 5. Correlation between the ANFIS-GA model results and the real data. 

 
Figure 6. Correlation between the ANFIS-PSO model results and the real data. 

 
Figure 7. Correlation between the LR model results and the real data. 
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Figure 8. Comparing the suggested model results with the real evaluation datasets. 

 

5.2. Comparison with available intelligent models 
For further validation and evaluation of the 
suggested hybrid intelligent models, they were 
compared with the other single/hybrid intelligent 
models proposed by some researchers in the recent 
years, which were reported in the literature. The 
determination coefficient (R2) index resulting from 
these models is used as a comparison basis for 
comparison object in order to confirm the suggested 
models. The values of R2 index resulted from the 
available/previous intelligent single/hybrid models, 
and the proposed hybrid models in the current 
research work for UCS estimation are given in 
Table 8. As it can be concluded from this table, the 
prediction capacity and ability of the suggested 
hybrid intelligent models in this paper is 
considerably higher than the majority of 
available/previous single/hybrid intelligent models. 
Nevertheless, only the proposed ANFIS model by 
Jahed Armaghani et al. [50] is relatively as accurate 
as the suggested hybrid intelligent models in the 
current work. In addition to their accuracies, the 
most important benefit of the suggested hybrid 
intelligent models compared to the previous 
single/hybrid intelligent models is that only the rock 
easily definable properties (n, ρ, R) are regarded as 
their input variables. On the other hand, 
expensively and hardly definable variables were 
considered as the input parameters of the previous 
single/hybrid intelligent models. This comparison 
proved that the suggested hybrid intelligent models 
in this paper were quite precise and reasonably 
priced compared to the previous single/hybrid 
intelligent models. The above two mentioned points 
are the main superiorities and novelties of the 
current research work compared to the similar 
available works.  

Table 8. Comparing the proposed models in this work 
with the available intelligent single/hybrid models for 

UCS prediction. 
Model Type Acquired R2 Reference 

ANN 0.94 [6] 
FIS 0.67 [19] 
FIS 0.97 [22] 

ANN 0.4 [23] 
ANFIS 0.94 [24] 

FIS 0.98 [30] 
ANN 0.97 [33] 
GP 0.83 [37] 
FIS 0.92 [47] 

ANN 0.97 [48] 
FIS 0.94 [49] 

ANFIS 0.99 [50] 
Un-pruned type of TA 0.89 

[51] 
Pruned type of TA 0.80 

FIS 0.64 [58] 
GP 0.86 [59] 

ANN 0.67 [60] 
ANN 0.93 [61] 
FIS 0.88 [62] 
GP 0.88 [63] 

ANN 0.86 [64] 
ANN 0.97 [65] 
ANN 0.50 [66] 

GA–ANN 0.96 [67] 
GP 0.63 [68] 

ANFIS 0.83 [69] 
SVR 0.77 [70] 

PSO–ANN 0.97 [71] 
PSO–ANN 0.97 [72] 
ICA–ANN 0.94 [73] 
ICA–ANN 0.92 [74] 

ANFIS–GA 0.98 This research 
ANFIS–PSO 0.97 This research 

Here, ANN states the artificial neural network, FIS 
expresses the fuzzy inference system, GP imparts the 
genetic programming, ANFIS intends the adaptive neuro-
fuzzy inference system, SVR demonstrates the support 
vector regression, PSO remarks the particle swarm 
optimization, ICA declares the imperialist competitive 
algorithm, and TA pronounces the tree algorithm. 
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5.3. Parametric study 
A parametric study was performed in this section 
for all the three input variables to realize the 
relative influence of each input on the UCS 
resulting from the three suggested models. The 
results of the parametric study for the ANFIS-GA, 
ANFIS-PSO, and MR models are depicted in 
Figures. 9a, 9b, and 9c, respectively. This 
parametric study was carried out by keeping 
constant the two variables inputs and changing the 
third variable. Accordingly, the influence of the 
third input on UCS can be discovered. For instance, 
the porosity was removed from the input variables, 
and then the ANFIS-GA/ANFIS-PSO/MR model 

was run by the other two input variables. 
Consequently, the influence of porosity on UCS 
could be realized through comparison of the new 
simulation results with the previous results. This 
process was also performed for the other input 
variables. According to this parametric study 
procedure, it was proved that density was the most 
effective variable on UCS in ANFIS-GA and LR 
models, whereas Schmidt hammer rebound was the 
most influence input on UCS in the ANFIS-PSO 
model. On the other hand, porosity was the least 
effectual variable on UCS in all of the above 
proposed models. 

  

 

Figure. 9. Sensitivity analysis of UCS with related inputs: a) ANFIS-GA model; b) ANFIS-PSO model; 
c) MR model. 

6. Conclusions 
Two new hybrid intelligent models (ANFIS-GA and 
ANFIS-PSO) along with a conventional statistical 
approach (MR model) were developed in this work 
for predicting UCS of core rock specimens. For 
UCS (output) prediction in the above models, three 
easily definable variables including porosity, 
density, and Schmidt hardness were regarded as 
inputs. The construction and evaluation of the 
aforementioned models were made based on the 93 
datasets that were determined on the different rock 

core specimens in the laboratory. In order to verify 
the new hybrid intelligent models, their achieved 
results were compared with the statistical model 
results and the real evaluation datasets using the 
indices R, MSE, MAE, and VAF. Finally, the 
proposed hybrid intelligent models were compared 
with the available/previous intelligent single/hybrid 
models for UCS prediction based on the concluded 
R2 values. According to the above tasks, the main 
achieved conclusions are outlined below.  
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 Comparative analysis proved that the 
performance of the ANFIS-GA model was 
rather better than those of the ANFIS-PSO 
model. 

 Both hybrid intelligent models are 
considerably superior compared to the MR 
model. 

 The simulation results of the new hybrid 
intelligent models are in extremely close 
agreement with the determined values of UCS 
in laboratory. 

 It was revealed that the suggested hybrid 
intelligent models were relatively more 
accurate than the previous/available 
intelligent single/hybrid models proposed by 
other researchers. 

 By a parametric study, it was discovered that 
density and Schmidt hammer rebound were 
the most influential variables, and porosity 
was the least input in UCS. 

 The major benefit of the recommended 
models is that the easily definable variables 
are considered as their inputs, unlike the 
previous intelligent models. 

 According to the above findings, it can be 
concluded that the proposed hybrid intelligent 
models have a good capability in UCS 
prediction, and they are more economical than 
the other available similar approaches. Thus 
they can be used for UCS determination in 
practice successfully. 
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ســازي اســت کــه هــر دو نــوع ســاختارهاي هاي مرتبط با علوم زمین و ســاختمان) سنگ بستر یک پارامتر کلیدي در طراحی پروژهUCSمقاومت فشاري تک محوري (
پــر هزینــه هاي آزمایشگاهی استاندارد یک فرآینــد پیچیــده، با استفاده از تستمقاومت فشاري تک محوري سنگ تعیین  شود.سنگی سطحی و زیرزمینی را شامل می

کســته و ضــعیف شدار، هــاي درزهویــژه هنگــام عملیــات حفــاري در ســنگهاي سالم بهاي سالم است. با این حال، تهیۀ مغزههاي مغزهبر است که نیازمند نمونهو زمان
هاي پیشگویانۀ هوشــمند بــراي تخمــین مقاومــت فشــاري هاي غیر مستقیم مانند مدلهایی در زمینه توسعه روششاخیراً تلاپذیر نخواهد بود. بنابراین، معمولاً امکان

هــاي هــاي جدیــدي از تکنیــکندارد. تحقیــق حاضــر بــر کــاربرد ترکیــبسازي نمونه و تجهیزات آزمایشگاهی تک محوري سنگ صورت گرفته است که نیازي به آماده
بینــی مقاومــت فشــاري تــک منظــور پــیش) بهPSOسازي ازدحام ذرات () و بهینهGA)، الگوریتم ژنتیک (ANFISفازي تطبیقی (- تم استنتاج عصبیشمند شامل سیسهو

هــاي ضــعیف تــا بســیار قــوي ســاخته از انــواع ســنگاي نمونه مغــزه 93شده بر روي آوري گاهی جمعشهاي آزماها بر اساس دادهمدلمحوري سنگ تمرکز دارد. این 
هــا بــا اســتفاده ایــن مقایســهسه شــده اســت. ) مقایMRرگرسیون چند متغیره ( هاي واقعی و نتایج روششنهادي با همدیگر و با دادههاي ترکیبی پیاند. نتایج مدلدهش
ده اســت. نتــایج مقایســه فــوق اثبــات کــرد کــه ترکیــب شــام مربعات خطا، میانگین خطاي مطلق و حســاب واریــانس انجــهاي ضریب همبستگی، میانگین شاخصاز 

سازي ازدحام ذرات است و هر دو مدل فوق داراي عملکرد بهتري نســبت بــه مــدل رگرســیون چنــد بهینه- تر از ترکیب آنفیسالگوریتم ژنتیک تا حدودي دقیق- آنفیس
ش مقاومــت فشــاري تــک محــوري در سازي ازدحام ذرات کاملاً در تطابق با نتــایج آزمــایهبهین- الگوریتم ژنتیک و آنفیس- هاي آنفیسمتغیره هستند. بعلاوه، نتایج مدل

نشــان داد کــه متغیرهــاي چگــالی شــنهادي هــاي پبدر نهایت، مطالعه پارامتري مدلباشند. هاي هوشمند تکی/ترکیبی قبلی میتر از مدلآزمایشگاه بوده و بسیار دقیق
  شند.با) میشاري تک محوريکمترین تأثیر بر خروجی (مقاومت ف یر و متغیر تخلخل دارايشترین تأثشمیت داراي بیا و قرائت چکش
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