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Abstract
The Urumieh-Dokhtar Magmatic Arc (UDMA) is recognized as an important porphyry,
disseminated, vein-type, and polymetallic mineralization arc. In this work, we aim to
identify and subsequently determine the geochemical anomalies for exploration of Pb, Zn,
and Cu mineralization in the Mial district situated in UDMA. The factor analysis,
Local linear model tree; ~ Concentration-Number (C-N) fractal model, and Local Linear Model Tree (LOLIMOT)
algorithm are used for this purpose. The factor analysis is utilized in recognition of the
Mial. correlation between the elements and their classification. This classified data is used for
training the LOLIMOT algorithm based on the relevant elements. The results of the
LOLIMOT algorithm represent anomalies in the areas with no lithogeochemical samples,
although the C-N log-log plot for target elements are generated based on the stream
sediment and lithogeochemical samples, which can be delineated by the mineral potential
maps of the target elements. The results obtained by the LOLIMOT and fractal modeling
show that the SW and the Eastern parts of the area are proper for further exploration of
Cu, Pb, and Zn.
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1. Introduction

The Urumieh-Dokhtar Magmatic Arc (UDMA)
was formed as a result of the sub-division of the
Zagros orogenies in the Cenozoic era, and it is a
thick and linear intrusive-extrusive complex.
UDMA comprises several lithological units
including small to large plutonic bodies (diorites,
granodiorites, gabbro, and granites) and widely
distributed basaltic lava flows, trachybasalt
(locally shoshonitic), andesite, dacite, trachyte,
ignimbrites, and pyroclastic. The youngest rocks
are lava flows and pyroclastic from Quaternary and
the oldest known pluton in this assemblage cuts
across the Upper Jurassic formations and overlain
uncomfortably by Lower Cretaceous fossiliferous
[1-3].

Geochemical exploration has been used for mineral
prospecting in the different types of deposits [4, 5].
The critical challenge is to identify the
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geochemical anomalies from the background and
separation of the highly and extremely
geochemical anomalies [6-9]. The stream
sediment data plays an important role in the
discrimination of different anomalies with the
determination of elemental thresholds in the
reconnaissance and prospecting stages [10-13].

Without a correct geochemical interpretation of the
datasets, defining the anomalies can lead to areas
without a mineralization potential. Using the
conventional statistical methods such as the
histogram analysis, summation of mean, standard
deviation, and box plot for defining the anomalies
are required to be used cautiously because of the
particular characteristics of the geochemical data
[7, 14-20]. These characteristics include spatial-
dependence of data, range of different processes
that influence the element abundances measured,
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sampling methods, and level of analytical
precision. As a result, no single universally
applicable statistical test has been developed for
identifying the anomalies [14]. Integrating
different identifying methods such as the
intelligence ones can rise the degree of confidence
in the identification of anomaly zones [8, 21-23].
The modern techniques of artificial intelligence
(Al) has been applied in almost all the fields of the
human knowledge [24, 25]. Combining different
intelligent methods is an ongoing research zone in
Al. The aim is to achieve a hybrid approach that
benefits from all the available components.
Machine learning and Al deal with the difficulties
that are hard in formulating the algorithms that are
needed to be translated into programs [26]. From
another viewpoint, Al tries to find the hidden
structures in the data, and in this case, the various
classes of learning algorithm such as decision tree,
support vector machines, and neural networks can
be used [26-28].

The fuzzy sets theory was initiated by Lotfi Zadeh
[29]. Fuzzy systems suggest a mathematic calculus
to interpret the individual human information of the
actual processes, and in this way, it will handle real
information with a more or less level of
uncertainty. The neuro-fuzzy algorithm is a kind of
predictor that is a non-linear modeling and it
figures out complicated patterns [25].

Due to the aforementioned subjects, determination
of the elemental distribution related to the stream
sediment and lithogeochemical data using some
intelligent method such as neuro-fuzzy algorithm
can be very useful [28, 30]. This method improves
the performance in combination with the
mentioned methods [27, 31, 32].

Moreover, the structural methods, specifically the
fractal/multifractal models, have been used for
geochemical exploration in different scales since
the 1990s [33—-40]. Fractal modeling, introduced by
Mandelbrot (1983), is commonly applied in
dealing with the elemental concentration. These
methods include the concentration-number (C-N)
[41, 42] concentration-area (C-A) [33] spectrum-
area (S-A) [36], concentration-distance [37], and
singularity technique models that can be found in
numerous studies [21, 43-45].

In this work, an integrated methodology including
factor analysis (FA), fractal Concentration-
Number (C-N) model, and local linear model tree
(LOLIMOT) was applied to identify the
geochemical anomalies associated with Pb-Zn and
Cu mineralization based on stream sediment,
lithogeochemical, and heavy mineral data in Mial
district, Central Iran. The main objective of this
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work was to identify the geochemical anomalies
that could provide vectors to mineral resource
exploration.

2. Methods

2.1. Factor analysis

One of the dimension-reduction techniques is
Factor analysis (FA), which deals with the
compositional data [46-48]. The aim of FA is to
explain the variation in a multivariate dataset by as
limited factors as possible, and also to detect the
hidden multivariate data structure [20, 48-51].

2.2. Concentration—-number (C-N) fractal model
The C-N fractal model has been proposed by
Hassanpour and Afzal (2013) based on the
Number-Size (N-S) model established by
Mandelbrot  (1983), which relates the
frequency distribution of the elemental
concentrations based on its number of samples
by a power-law relation. In this model, the
geochemical data has not been faced pre-
treatment and evaluation [38, 41, 53, 54].

A similar set of data that shows a distinct
pattern can be distinguished by different
straight lines fitted to the values of the results
obtained from the geological, geochemical,
and mineralogical information [55-58].
Geochemical background and different
anomalies are separated by the breakpoints
between the straight-line segments in the log-
log plots that are related to the threshold
values.

On the log-log plot, the optimal threshold for

distinguishing the geochemical anomalies
from the background is the common
concentration  value on both linear
relationships [4, 37, 42].

2.3. LOLIMOT

One of the widespread non-linear model

architectures is the local model networks, also
known as the Takagi-Sugeno neuro-fuzzy systems
[24], [59-64]. Generally, in order to parameterize
the local model, a linear approach is used, and
usually, the least squares method is used to
estimate the mentioned parameters [25], [65-69].
The intelligent and highly independent systems
play a great role in both the industrial and academic
settings [67], [70], [59], [65], [66], [71].

LOLIMOT is an incremental tree-construction
algorithm that partitions the input space by axis-
orthogonal splits; it is carried out by a Matlab code
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[66]-68], [71]-73]. The inputs and outputs of
LOLIMOT are collected into a spread sheet using
Microsoft Excel for the analysis and various
visualizations of summaries to enhance the
discussions of the results.

The divide and conquer strategy is one of the most
significant factors for the accomplishment of
LOLIMOT [66], [71], [72], [74], [75]. In the Local
Linear Models (LLMs), the network output is
calculated as a weighted summation of the outputs
of each LLM, where the validity function is
explained as the operating point-dependent
weighting factors. The basic approach with LLM is
to divide the input space into small sub-spaces with
fuzzy validity functions, which are typically
chosen as normalized Gaussians [26], [65], [70],
[76-78]. Any created linear part with its validity
function can be defined as a fuzzy neuron.
Subsequently, the entire model is a neuro-fuzzy
network with one hidden layer and a linear neuron
in the output layer that basically computes the
weighted summation of locally linear model
outputs [65], [72], [79], [80].

LOLIMOT is incremental based on three iterative
steps. First, the worst LLM is definite based on the
local loss function. This LLM neuron is chosen to
be divided. In the next step, all partitions of LLMs
on the input space are checked. Finally, the best
division for the new neuron is added [66], [68],
[75], [81-83]. The first five iterations of the
LOLIMOT algorithm for a 2D input space is
shown in Figure 1.

The important methodology with LLNFM is to
divide the input space into small sub-spaces with
fuzzy validity functions. Using the fuzzy validity
functions is important, particularly in the
conjugation of two different linear models, as it
helps the conjugation to be a smooth line instead of
a broken one. By the results, any created linear part
with its validity function can be called a fuzzy
neuron. Consequently, the network structure can be
described as a neuro-fuzzy network with one
hidden layer and the weighted summation of the
outputs of locally linear models by a linear neuron
in the output layer can simply be calculated [68],
[78], [84], [85].
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Figure 1. Operation of the LOLIMOT algorithm in the first five iterations for a 2D input space [67].

3. Case Study

3.1. Geological setting

The Mial district is located in the central part of the
major magmatic metallogenic belt in Iran, named
the Urumieh-Dokhtar magmatic arc (UDMA),
which contains copper porphyry deposits with
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other types of related mineralization such as lead
and zinc and epithermal deposits [1], [86]-91].
This prospecting area is shown on the map with the
main tectonic units of Iran ([92]; Figure 2).
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Figure 2. The structural map of Iran [92] with location of the Mial area as a red square.

The central part of UDMA comprises the rock unit
from Permian up to Quaternary and intense
magmatism activity with Tertiary plutonism [86],
[93-96]. The main faults have the NW-SE trend in
this region [2]. The geological map of the Mial area
with data locations including stream sediment,
lithogeochemical data, and heavy mineral is
depicted in Figure 3. This area mainly contains
lapilli tuff, andesite breccia, red marl, and sandy
limestone.

3.2. Dataset

In this work, three types of data were used
consisting of the following data (Figure 4):

e 210 stream sediment samples at a density of
one sample per 0.1 km?. Choosing the
sample location was based on the stream
distributions, which were extracted from the
1:50,000 topographic map and also the
number of stream branches. The size of each
sample was -80 mesh.

e 98 lithogeochemistry samples  were
collected from the whole area. These
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samples were taken using the chip sampling
method. The samples were taken from the
most  potentiated areas and  were
unsystematic.

e 86 samples were taken from 20 to 30 cm
under the stream floor and from the most
potentiated areas based on the geochemical
expert's opinions for the heavy minerals
studied. The sample size was -20 mesh.

The following 12 elements were determined by
Inductively Coupled Plasma (ICP) and represented
in ppm: Pb, Fe, Al, Ca, Mg, Ag, As, Bi, Co, Cu, Zn
and Mo. The remaining element (Au) was
determined by fire assay and represented in ppb.
The descriptive statistics of the stream sediment
and the lithogeochemical data are represented in
Table 1.

In order to check the analysis accuracy, 10% of the
total samples were divided into two parts with two
different codes, and the analysis results were
acceptable based on the laboratory standard for
repeated samples.
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Figure 3. Geological map of the Mial area in scale of 1:25,000.

Table 1. Descriptive statics of lithogeochemistry and stream sediment data.

N Minimum Maximum Mean  Std. Deviation Skewness Kurtosis Detection

Elements . L . . L . . Limit
Statistic ~ Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error (ppm)

Lithogeochemistry data

Al 98 7873 98870 77115.13 21154.607 -1.772 244 2.7 483 100
Ca 98 2901 236356 52700.28  43335.920 2.282 244 6.7 .483 100
Fe 98 11638 154182 48949.00 22514.258 2.329 244 7 .483 100
Mg 98 686 260-03 13017.90 6308.480 -.328 244 -5 .483 100
Ag 98 13 356.50 10.3427 46.33060 6.205 244 40.8 .483 0.1
As 98 7.1 2726.1 127.399 384.2713 4.866 244 26.2 .483 0.5
Bi 98 .29 171.30 3.7065 18.17737 8.371 244 76.3 .483 1
Co 98 7 31 15.52 3.731 1.041 244 2.4 483 1
Cu 98 3 33299 797.36 3937.269 6.921 244 52.0 .483 1
Mo 98 .63 12.86 2.0236 2.07554 2.456 244 8.0 .483 0.5
Pb 98 10 49798 1717.55 7619.105 5.177 244 27.3 483 1
Zn 98 30 1782 169.90 293.981 4.018 244 17.1 .483 1

Stream sediment data

Pb 210 7.2 5160.0 128.013 423.3564 8.806 .168 97.3 .334 1
Fe 210 32800 68600 46863.33 6361.234 462 .168 NG .334 100
Al 210 56600 101000 79235.24  11033.628 -.183 .168 -.8 .334 100
Ca 210 16400 111000 52440.48  25908.644 .690 .168 -.6 .334 100
Mg 210 11300 28100 17744.29 3057.909 .688 .168 2 .334 100
Ag 210 27 5.03 5701 52314 6.521 .168 48.1 334 0.1
As 210 5.2 71.2 18.695 10.6292 2.454 .168 8.0 .334 0.5
Bi 210 .0 1.3 222 .1461 4.496 .168 26.2 .334 1
Co 210 10.6 26.2 16.673 2.7656 .246 .168 -2 .334 1
Cu 210 14.1 138.0 36.209 15.3059 2.548 .168 10.9 .334 1
Mo 210 .3 2.5 1.005 .2496 782 .168 5.6 .334 0.5
Zn 210 69 273 125.10 40.788 1.152 .168 .8 .334 1
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4. Discussion

4.1, Classification of data by FA

The stream sediment and geochemical data is
required to be pre-processed before FA because of
the data closure problem [20, 49, 97]. Using the
principal component analysis (PCA) can be helpful
in challenge with a large dataset [48, 51, 98-101].
The concentration dataset is divided into subsets,
and this is revealed by different factors [102]. The
components in each subset are correlated with one

another, and are fundamentally independent from
the components in the other subsets ([51], Table 2).
Here, the factors involved should be representative
of the underlying and prior geological and
metallogenic process that created the correlations
among these variables [57]. Ln transformation is
applied to pre-process the data by the PCA method
using the SPSS statistical software package in
order to find the elemental correlation coefficients.

Table 2. Rotated component matrix for extraction of the factors using PCA.

Component
1 2 3 4 5 6 7

LnCr -.152 .130 483 .107 -.710 -.230 149
LnMn .557 -.213 .058 .644 .176 -.135 -111
LnNi -.044 -127 .840 -.041 -.292 -.013 -.020
LnPb .303 .341 -.200 723 .185 .285 .108
LnFe .811 -.003 -.238 137 -.282 -.077 .020
LnAl .867 .030 -.073 143 .281 .037 -.207
LnCa -.832 -.242 -111 -.012 -.259 .061 .004
LnLi .088 -.163 426 -.190 -.381 174 -.567

LnP .324 131 576 170 .460 -124 117
LnMg .816 -.331 -.101 .209 -.061 115 .008
LnK -.245 -.078 .819 .163 .209 125 -.205
LnNa .694 .085 -.178 .099 .259 -.475 -101
LnZr .002 -.486 451 453 -.130 .325 .168
LnAg -.046 .248 .014 714 -.180 234 -.003
LnAs 152 .817 .038 -.007 .072 -.040 -.188
LnBi .023 .676 134 .304 -.081 118 .239
LnCo .942 .032 -.048 .006 -.105 .015 .075
LnCu 742 .391 .057 242 .168 229 .088
LnMo -.188 714 .282 .096 -.145 -.322 -.151
LnSh 434 461 -.055 436 .235 .343 .013
LnZn .239 .073 -.024 .876 471 -.028 -.118
LnCd 405 .381 212 421 415 -.037 -122

4.2. Fractal modeling

According to the C-N log-log plots of the stream
sediment data, there are four, three, and five
geochemical populations for Pb, Zn, and Cu,
respectively (Table 3 and Figure 4). These
geochemical populations are achieved from the
added trendline to the C-N log-log plot, and where
there is an abvious change in the data distribution,
the trendline will break. Each element (Pb, Zn, and
Cu) grade can be divided in to different groups
based on these breaks using a simple antilog for 10
to the A power, where A is equal to the number in
the x-axis where the break point is located. The
grade classification in the corresponding anomaly
maps is based on these break points. Moreover, the
elemental symbol maps were created by the
ArcGIS 10.3.1 software and correlated with
geological units, as shown in Figure 4. However,
the Pb high-intensity anomalies commence from
977 ppm in the intercalation of red marl, sandy
limestone, lapilli tuff, and andesitic breccia rock,
which are close to the andesitic dikes and
lineament aggregation in the Southern, Eastern,
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and Western parts of the area (Figure 4). The
moderate-intensity Zn anomalies occurred in
association with red marl, sandy limestone, lapilli
tuff, and andesitic breccia rock, and began from
231 ppm (Figure 4). The moderate-intensity Cu
anomal samples have values higher than 95 ppm,
which are located in the lapilli tuff and andesitic
breccia rock in the Western part of the area (Figure
4).

Regarding the elemental log-log plots for the
lithogeochemical  data, two  geochemical
populations for Pb and Zn and three geochemical
populations for Cu were distinguished (Table 3 and
Figure 5). The lithogeochemical symbol maps were
created by the ArcGIS software and correlated with
rock types, as depicted in Figure 5. High-intensity
anomalies in the lithogeochemical samples for Pb
occurred from 25118 ppm. These anomalies are
located in lapilli tuff, andesitic breccia, and near
lineament aggregation in the SW part of the area
(Figure 5). Highly intensive anomalies for Zn
(1445 ppm) are spread in the Western part of the
Mial area in the lapilli tuff, andesitic breccia, and
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mostly near one of the biggest andesitic dike and tuff, and andesitic breccia in the NW and Southern
one of the lineaments shown in Figure 6. The high- parts of the area. These anomalies are mostly
intensity Cu anomal samples have values higher located near one of the biggest andesitic dikes
than 1995 ppm, which are located in the (Figure 5).

intercalation of red marl, sandy limestone, lapilli

Table 3. Elemental thresholds derived via the C-N model based on the stream sediment samples.
Elements Low-intensity thresholds High-intensity thresholds

Pb (ppm) 794 977
Zn (ppm) 208 231
Cu (ppm) 87 95
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Figure 4. Log-log plots and geochemical anomaly maps resulting from the C-N model for Pb, Zn, and Cu based
on the stream sediment samples.
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Table 4. C-N elemental thresholds based on the lithogeochemical samples.

Elements Low-intensity thresholds High-intensity thresholds
Pb (ppm) 70 25118
Zn (ppm) 45 1445
Cu (ppm) 141 1995
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Figure 5. Log-log plots and geochemical anomaly maps resulting from the C-N model for Pb, Zn, and Cu based
on the lithogeochemical samples. LOLIMOT algorithm

The stream sediment and lithogeochemical
samples were studied to evaluate a neuro-fuzzy
method in order to estimate the associated
mineralization with Pb, Zn, and Cu. The LLM Tree
was applied in the Pb, Zn, and Cu mineralization in
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the studied area based on the stream sediment and
lithogeochemical samples.

As mentioned earlier, the factor analysis was used
to reduce the data dimensions and classify them
into specific groups. For this purpose, first, the Ln
function was used to homogenize the data, and then
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the FA method was applied. Based on the rotated
component matrix (Table 3), 7 different groups
were identified. The first group included the Fe, Al
Ca, Mg, Na, Co, and Cu elements, probably related
to the host rock and fourth group with Pb, Zn, Mn,
and Ag based on the geological evidence of the
studied area related to mineralization [1], [43],
[93].

After recognition of the elements with most similar
behaviors, the whole area was estimated for Pb, Zn,
and Cu based on the stream sediment and
lithological data. In order to train the LOLIMOT
system, the stream sediment data was used as the
input (the elements in the mentioned factors) and
the lithogeochemical data (Pb, Zn, and Cu) as the
output. In the Mial area, the sampling network is
irregular for both the stream sediment and
lithogeochemical samples, so finding the
equivalent samples is very important.

Fishnet in ArcGIS was generated, and the pairs in
the same net with the lowest distance were selected
according to the assign stream sediment input data

to their suitable lithological output data, as they
were not exactly from the same coordinate. In this
work, 800 m x 600 m cells were applied to assign
the input and output data. Moreover, totally 32 data
was selected, 70% of the selected data was
allocated for training, and the rest for test. For Cu
estimation, Fe, Al, Ca, Mg, Na, Co, and Cu in the
stream sediment were used as the inputs, and the
output was the Cu grade in the lithological data.
Furthermore, Pb, Zn, Ag, and Cs from the stream
sediment data were inputs, and the outputs were Pb
and Zn from the lithological data, respectively.
Then these three separate groups of data were used
to train the LOLIMOT network. There was only
one output, and the neuro-fuzzy network was
trained.

The correlation coefficient and accuracy
coefficient for the train and test data are shown in
Table 5 and Figure 6. The results obtained were
acceptable, and the LOLIMOT network was proper
for the training process.

Table 5. Correlation coefficient and accuracy coefficient for the train and test data.

Element Correlation coefficient (%0) Accuracy coefficient (%)-R-Squared value
Pb 97 86
Zn 99 91
Cu 96 84

Estimated Pb using LOLIMOT algorithm

y=0.8748x+0.7672
R*=0.8748

Estimated Ln (Pb)

0 2 4 6 8
Real Ln(Pb)

Estimated Ln(Zn)

Estimated Zn using LOLIMOT algorithm

75 y =0.9255x +0,3831
R?=0.9255

3 4 5 6 7 8
Real Ln(Zn)

C

v N ®oo

y =0.9682x
R?=0.8355

Estimated Ln (Cu)

ok N WA

Estimated Cu usnig LOLIMOT algorithm

6

Real Ln (Cu)

Figure 6. Estimated a) Pb, b) Zn, and c) Cu from the train and test steps using the LOLIMOT algorithm.

In order to evaluate the LOLIMOT operation, the
heavy mineral data was applied to validate the
predicted anomalies. The results obtained by
integration of the estimated Pb, Zn, and Cu grades
and the heavy mineral data for each element,
respectively, are shown in Figures. 8 to 10. Due to
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the achieved results, there are two main groups of
mineralization, one is in the lapilli tuff and
andesitic breccia rock in the SW part of the Mial
area and the other one is in the intercalation of red
marl and sandy limestone in the Eastern part of the
area.
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Figure 7. Heavy mineral anomaly map integrated with Pb estimated by LOLIMOT.

Integrated Map of Estimated Zn and Heavy Minerals
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Integrated Map of Estimated Cu and Heavy Minerals
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Figure 9. Heavy mineral anomaly map integrated with Cu estimated by LOLIMOT.

Pb anomaly map resulted from integration of
LOLIMOT& C-N Fractal methods and Hevay mineral data
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Figure 10. Pb anomaly map resulting from integration of the LOLIMOT and C-N fractal methods with heavy
mineral data.
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In the SW part of the area, the Pb-Zn and Cu
anomalies mostly occurred near an andesitic dike
and lineaments, which can show the relation
between the mineralization and the structural
feature. The mineralization in the Eastern part of
the area is mostly related to the Pb and Zn grade
and, in a less degree, to Cuanomalies located in the
limestone rock. The source of the mineralization

Zn anomaly map resulted from integration of

based on evidences was not clear but it could be
related to Skarn-type of the deposit. The results
derived from the LOLIMOT algorithm and the
fractal model were integrated to show the most
potentialed area for the Pb-Zn and Cu
mineralizations in the SW, SE, and central parts of
the studied area (Figures. 10-12).

LOLIMOT& C-N Fractal methods and Hevay mineral data !
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Figure 11. Zn anomaly map resulting from integration of the LOLIMOT and C-N fractal methods with heavy
mineral data.

110



Alipour Shahsavari et al./ Journal of Mining & Environment, Vol. 11, No. 1, 2020

Cu anomaly map resulted from
LOLIMOT& C-N Fractal methods and
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Figure 12. Cu anomaly map resulting from integration of the LOLI
mineral data.

5. Conclusions
In this work, the FA, C-N, and LOLIMOT models
were implemented to detect the geochemical
anomalies associated with Pb, Zn, and Cu
mineralization. The consequences of this work lead
to the following conclusions:
1) The hybrid methodology integrating the
FA and C-N multi-fractal modeling is a
valuable approach for recognizing

111
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| 000 0.00

R 0.01-0.21 229 001-0.18

MOT and C-N fractal methods with heavy

geochemical anomalies. FA for the stream
sediment and lithogeochemical data was
applied to combine the multi-element
concentration values, whereas F1 and F4
could describe the main Pb, Zn, and Cu
mineralization processes successfully in
this region. The C-N fractal model was
utilized to decompose the mixed Pb, Zn,
and Cu geochemical pattern in a complex
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geological and structural setting. The
results obtained suggest that places with
the most fault accumulation and
conjugation are highly potentiated areas
for mineralization. Also the contact of
igneous and sedimentary rocks is another
important  factor for mineralization
occurrence.

2) The neuro-fuzzy LOLIMOT approach was
successfully used to establish the accurate
geochemical characterization in the Pb,
Zn, and Cu anomalies. In order to achieve
reliable predictive models, and choose the
elements with the most similar behaviors,
the FA results were used. The elements in
F1 and F4 were applied as the input data to
estimate the Cu and Pb-Zn potentials as the
output, respectively. The results of this
work show that the NFLLM algorithm can
be a suitable tool for examining the
relationships between the different datasets
and geochemical variables to identify the
mineral anomalies.

3) The hybrid methodology combining the
FA, C-N, and LOLIMOT methods
engaged in this work can be used not only
to use fine geochemical anomalies where
probable mineral resources are presented
but also to further improve the factors that
control the mineralization and their
associated geochemical anomalies.
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