[1]. Voigt, M. J., Miller, J., Bbosa, L., Govender, R. A., Bradshaw, D., Mainza, A. and Becker, M. (2019). Developing a 3D mineral texture quantification method of drill core for geometallurgy. Journal of the Southern African Institute of Mining and Metallurgy, 119 (4): 347-353.
[2]. Lishchuk, V., Koch, P.H., Ghorbani, Y. and Butcher, A.R. (2020). Towards integrated geometallurgical approach: Critical review of current practices and future trends. Minerals Engineering, 145, 106072.
[3]. Ashley, K.J. and Callow, M.I. (2000). Ore variability: Exercises in geometallurgy. Engineering and Mining Journal, 201 (2): 24.
[4]. Bennett, C. and Lozano, C. (2004). The Architecture of the Geometallurgical Model. Proceedings Procemin, 1-8.
[5]. David, D. (2007). The importance of geometallurgical analysis in plant study, design and operational phases. In Proceedings Ninth Mill Operators’ Conference 2007 (pp. 241-248).
[6]. Williams, S.R. and Richardson, J.M. (2004). Geometallurgical Mapping: A new approach that reduces technical risk. In Proceedings 36th Annual Meeting of the Canadian Mineral Processors (pp. 241-268).
[7] Ehrig, K. (2011). Quantitative mineral mapping A building block for geometallurgy at Olympic Dam In: The First AusIMM International Geometallurgy Conference. p. 31.
[8]. Garrido, M., Sepulveda, E., Ortiz, J. M., Navarro, F. and Townley, B. (2018). A methodology for the simulation of synthetic geometallurgical block models of porphyry ore bodies. In Procemin 14th International Mineral Processing Conference (PROCEMIN). 5th International Seminar on Geometallurgy (GEOMET). Santiago, Chile (pp. 1-10).
[9]. Keeney, L. and Walters, S.G. (2011). A methodology for geometallurgical mapping and orebody modelling. n: The First AusIMM International Geometallurgy Conference, 5–7 September. p. 217–225.
[10]. Lishchuk, V., Lund, C., Lamberg, P. and Miroshnikova, E. (2018). Simulation of a mining value chain with a synthetic ore body model: Iron ore example. Minerals, 8 (11): 536.
[11]. Heiskari, H., Kurki, P., Luukkanen, S., Gonzalez, M.S., Lehto, H. and Liipo, J. (2019). Development of a comminution test method for small ore samples. Minerals Engineering, 130, 5-11.
[12]. Hilden, M.M. and Powell, M.S. (2017). A geometrical texture model for multi-mineral liberation prediction. Minerals Engineering, 111, 25-35.
[13]. Mwanga, A., Rosenkranz, J. and Lamberg, P. (2015). Testing of ore comminution behavior in the geometallurgical context—A review. Minerals, 5 (2): 276-297.
[14]. Koch, P.H., Lund, C. and Rosenkranz, J. (2019). Automated drill core mineralogical characterization method for texture classification and modal mineralogy estimation for geometallurgy. Minerals Engineering, 136, 99-109.
[15]. Kuhar, L.L., McFarlane, A.J., Chapman, N.M., Meakin, R.L., Martin, R., Turner, N.L. and Robinson, D.J. (2013). Calibration and testing of a geometallurgical leaching protocol for determining copper mineralogical deportment. In Proceedings of the 2nd AusIMM International Geometallurgy Conference (pp. 177-186).
[16]. Rincon, J., Gaydardzhiev, S. and Stamenov, L. (2019). Coupling comminution indices and mineralogical features as an approach to a geometallurgical characterization of a copper ore. Minerals Engineering, 130, 57-66.
[17]. Napier-Munn, T.J., Morrell, S., Morrison, R.D. and Kojovic, T. (1996). Mineral comminution circuits: their operation and optimisation.
[18]. Cohen, H.E. (1983). Energy usage in mineral processing. Trans. IMM, 92, C160-C164.
[19]. Deutsch, J.L., Palmer, K., Deutsch, C.V., Szymanski, J. and Etsell, T. H. (2016). Spatial modeling of geometallurgical properties: techniques and a case study. Natural Resources Research, 25 (2): 161-181.
[20]. Sillitoe, R.H. (2010). Porphyry copper systems. Economic geology, 105 (1): 3-41.
[21]. Yildirim, B.G., Bradshaw, D., Powell, M., Evans, C. and Clark, A. (2014). Development of an effective and practical Process Alteration Index (PAI) for predicting metallurgical responses of Cu porphyries. Minerals Engineering, 69, 91-96.
[22]. Boomeri, M., Nakashima, K. and Lentz, D.R. (2010). The Sarcheshmeh porphyry copper deposit, Kerman, Iran: a mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes. Ore Geology Reviews. 38 (4): 367-381.
[23]. Hezarkhani, A. (2006). Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu–Mo deposit, Iran: evidence from fluid inclusions. Journal of Asian Earth Sciences, 28(4-6), 409-422.
[24]. Waterman, G.C. and Hamilton, R.L. (1975). The Sar Cheshmeh porphyry copper deposit. Economic Geology, 70(3), 568-576.
[25]. Shafiei, B. and Shahabpour, J. (2012). Geochemical aspects of molybdenum and precious metals distribution in the Sar Cheshmeh porphyry copper deposit, Iran. Mineralium Deposita, 47 (5): 535-543.
[26]. Etminan, H. (1977). Le porphyre cuprifère de Sar Cheshmeh (Iran): rôle des phases fluides dans les mécanismes d'altération et de minéralisation.
[27]. Lishchuk, V., Lamberg, P. and Lund, C. (2016). Evaluation of sampling in geometallurgical programs through synthetic deposit model. In XXVIII International Mineral Processing Congress, Québec City, September 11-15 2016.
[28]. Niiranen, K. and Böhm, A. (2012). A systematic characterization of the orebody for mineral processing at Kirunavaara iron ore mine operated by LKAB in Kiruna, Northern Sweden. Impc 2012, 1039, 3855-3864.
[29]. Kosick, G., Bennett, C. and DOBBY–SGS, G.L.E.N.N. (2002). Managing Company Risk by Incorporating the Mine Resource Model into Design and Optimization of Mineral Processing Plants. TECHNICAL BULLETIN, 2002, 21.
[30]. Lamberg, P., Rosenkranz, J., Wanhainen, C., Lund, C., Minz, F., Mwanga, A. and Parian, M. (2013, September). Building a geometallurgical model in iron ores using a mineralogical approach with liberation data. In Proceedings of the Second AusIMM International Geometallurgy Conference, Brisbane, Australia (pp. 317-324).
[31]. Dominy, S.C., O’Connor, L. and Xie, Y. (2016). Sampling and testwork protocol development for geometallurgical characterisation of a sheeted vein gold deposit. In Proceedings of the International Geometallurgy Conference, Perth, Australia (pp. 15-16).
[32]. Stewart, M., Coward, S. and Vann, J. (2010). Challenges of quality management in sampling and measurement of geometallurgical variables. Sampling Conference. p. 69–159.
[33]. Suriadi, S., Leemans, S.J., Carrasco, C., Keeney, L., Walters, P., Burrage, K. and Wynn, M.T. (2018). Isolating the impact of rock properties and operational settings on minerals processing performance: A data-driven approach. Minerals Engineering, 122, 53-66.
[34]. Verret, F.O., Chiasson, G. and MCKEN-SGS, A. (2011). SAG mill testing-an overview of the test procedures available to characterize ore grindability. Proceedings, International Autogenous and Semiautogenous Grinding and High Pressure Grinding Roll Technology, Vancouver, 1-14.
[35]. Starkey, J. and Dobby, G. (1996). Application of the Minnovex SAG power index at five Canadian SAG plants. Proceeding Autogenous and Semi-Autogenous Grinding, 345-360.
[36]. Jahani, M., Nonparasitic, M., Farzanegan, A., Moghaddam, M.Y. and Langarizadeh, G. (20130. “Introducing an Empirical New Model to Predict SAG Mill Power Consumption. 23rd international mining congress and exhibition of Turkey.
[37]. Jahani, M., Noaparast, M., Farzanegan, A. and Langarizadeh, G. (2012). Application of SPI for Modeling energy consumption in Sarcheshmeh SAG and ball mills. Journal of Mining and Environment. 2 (1).