[1]. Rosales-Marín, G., Andrade, J., Alvarado, G., Delgadillo, J.A. and Tuzcu, E.T. (2019). Study of lifter wear and breakage rates for different lifter geometries in tumbling mill: Experimental and simulation analysis using population balance model. Minerals Engineering, 141: 105857.
[2]. Mishra, B.K. and Rajamani, R.K. (1992). The discrete element method for the simulation of ball mills. Applied Mathematical Modelling, 16 (11): 598-604.
[3]. Powell, M.S. and McBride, A.T. (2004). A three-dimensional analysis of media motion and grinding regions in mills. Minerals Engineering, 17 (11-12): 1099-1109.
[4]. Cleary, P.W. (1998). Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Minerals Engineering, 11 (11): 1061-1080.
[5]. Cleary, P.W. (2001). Charge behaviour and power consumption in ball mills: sensitivity to mill operating conditions, liner geometry and charge composition. International journal of mineral processing, 63 (2): 79-114.
[6]. Cleary, P.W. (2001). Recent advances in DEM modelling of tumbling mills. Minerals Engineering, 14 (10): 1295-1319.
[7]. Cleary, P.W., Morrisson, R. and Morrell, S. (2003). Comparison of DEM and experiment for a scale model SAG mill. International Journal of Mineral Processing, 68 (1-4): 129-165.
[8]. Djordjevic, N., Shi, F.N. and Morrison, R. (2004). Determination of lifter design, speed and filling effects in AG mills by 3D DEM. Minerals Engineering, 17 (11-12): 1135-1142.
[9]. Maleki-Moghaddam, M., Ghasemi, A.R., Yahyaei, M. and Banisi, S. (2015). The impact of end-wall effect on the charge trajectory in tumbling model mills. International Journal of Mineral Processing, 144: 75-80.
[10]. Owen, P. and Cleary, P.W. (2015). The relationship between charge shape characteristics and fill level and lifter height for a SAG mill. Minerals Engineering, 83: 19-32.
[11]. Weerasekara, N.S., Liu, L.X. and Powell, M.S. (2016). Estimating energy in grinding using DEM modelling. Minerals Engineering, 85: 23-33.
[12]. Cleary, P.W. and Owen, P. (2018). Development of models relating charge shape and power draw to SAG mill operating parameters and their use in devising mill operating strategies to account for liner wear. Minerals Engineering, 117: 42-62.
[13]. Hasankhoei, A. R., Maleki-Moghaddam, M., Haji-Zadeh, A., Barzgar, M. E. and Banisi, S. (2019). On dry SAG mills end liners: Physical modeling, DEM-based characterization and industrial outcomes of a new design. Minerals Engineering, 141: 105835.
[14]. Bian, X., Wang, G., Wang, H., Wang, S. and Lv, W. (2017). Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation. Minerals Engineering, 105, 22-35.
[15]. Pedrayes, F., Norniella, J.G., Melero, M.G., Menéndez-Aguado, J. M. and del Coz-Diaz, J. J. (2018). Frequency domain characterization of torque in tumbling ball mills using DEM modelling: Application to filling level monitoring. Powder Technology, 323: 433-444.
[16]. B.A. Wills, T.J. and Napier-Munn. (2016). “Wills' Mineral Processing Technology”, 8th edition. Elsevier, pp. 147–180. Chapter 7.
[17]. Jahani, M., Farzanegan, A. and Noaparast, M. (2015). Investigation of screening performance of banana screens using LIGGGHTS DEM solver. Powder Technology, 283, 32-47.
[18]. Nassauer, B., Liedke, T. and Kuna, M. (2013). Polyhedral particles for the discrete element method. Granular matter, 15 (1): 85-93.
[19]. Raji, A.O. and Favier, J. F. (2004). Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method. I: Theory, model development and validation. Journal of food engineering, 64(3), 359-371.
[20]. Nassauer, B. and Kuna, M. (2013). Contact forces of polyhedral particles in discrete element method. Granular Matter, 15 (3): 349-355.
[21]. Balevičius, R., Džiugys, A., Kačianauskas, R., Maknickas, A. and Vislavičius, K. (2006). Investigation of performance of programming approaches and languages used for numerical simulation of granular material by the discrete element method. Computer Physics Communications, 175 (6): 404-415.
[22]. Delaney, G. W., Cleary, P.W., Morrison, R.D., Cummins, S. and Loveday, B. (2013). Predicting breakage and the evolution of rock size and shape distributions in Ag and SAG mills using DEM. Minerals Engineering, 50, 132-139.
[23]. Ting, J.M., Khwaja, M., Meachum, L.R. and Rowell, J.D. (1993). An ellipse‐based discrete element model for granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 17(9), 603-623.
[24]. Shmulevich, I. (2010). State of the art modeling of soil–tillage interaction using discrete element method. Soil and Tillage Research, 111 (1): 41-53.
[25]. Cleary, P.W. and Sawley, M.L. (2002). DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Applied Mathematical Modelling, 26 (2): 89-111.
[26]. Munjiza, A. Cleary, P. W. (2009). Industrial particle flow modelling using discrete element method. Engineering Computations.
[27]. Cleary, P.W. and Sinnott, M.D. (2008). Assessing mixing characteristics of particle-mixing and granulation devices. Particuology, 6 (6): 419-444.
[28]. Cleary, P.W. (2010). DEM prediction of industrial and geophysical particle flows. Particuology, 8 (2): 106-118.
[30]. Just, S., Toschkoff, G., Funke, A., Djuric, D., Scharrer, G., Khinast, J. and Kleinebudde, P. (2013). Experimental analysis of tablet properties for discrete element modeling of an active coating process. AAPS PharmSciTech, 14 (1): 402-411.
[31]. McBride, W. and Cleary, P.W. (2009). An investigation and optimization of the ‘OLDS’elevator using Discrete Element Modeling. Powder Technology, 193 (3): 216-234.
[32]. Goniva, C., Kloss, C., Deen, N.G., Kuipers, J.A. and Pirker, S. (2012). Influence of rolling friction on single spout fluidized bed simulation. Particuology, 10 (5): 582-591.
[33]. Goniva, C., Kloss, C., Hager, A. and Pirker, S. (2010, June). An open source CFD-DEM perspective. In Proceedings of OpenFOAM Workshop, Göteborg (pp. 22-24).
[34]. Kloss, C., Goniva, C., Aichinger, G. and Pirker, S. (2009, December). Comprehensive DEM-DPM-CFD simulations-model synthesis, experimental validation and scalability. In Proceedings of the seventh international conference on CFD in the minerals and process industries, CSIRO, Melbourne, Australia.
[35]. Weerasekara, N.S., Powell, M.S., Cleary, P.W., Tavares, L.M., Evertsson, M., Morrison, R.D. and Carvalho, R.M. (2013). The contribution of DEM to the science of comminution. Powder Technology, 248, 3-24.