[1]. Kirsch, C. (1898). Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Zeitschrift des Vereines Dtsch. Ingenieure; 42:797–807.

[2]. Obert, L. and Duvall, W.I. (1967). Rock mechanics and the design of structures in rock.

[3]. Bray, J. (1978). Analytical and computational methods in engineering rock mechanics. Taylor & Francis.

[4]. Hoek, E. and Brown, E.T. (1980). Underground excavations in rock. CRC Press.

[5]. Goodman, R.E. (1989). Introduction to rock mechanics. Wiley New York.

[6]. Hudson, J.A. and Harrison, J.P. (2000). Engineering rock mechanics: an introduction to the principles. Elsevier.

[7]. Brady, B.H.G. and Brown, E.T. (2013). Rock mechanics: for underground mining. Springer Science & Business Media.

[8]. Savin, G.N. (1961). Stress concentration around holes.

[9]. Poulos, H.G. and Davis, E.H. (1974). Elastic solutions for soil and rock mechanics. John Wiley.

[10]. Popov, E.P. and Balan, T.A. (1990). Engineering mechanics of solids. Prentice Hall Englewood Cliffs, NJ.

[11]. Ameen, M. (2005). Computational elasticity. Harrow Alpha Sci. Int. Ltd.

[12]. Jaeger, J.C., Cook, N.G.W. and Zimmerman, R. (2009). Fundamentals of rock mechanics. John Wiley & Sons.

[13]. Sadd, M.H. (2009). Elasticity: theory, applications, and numerics. Academic Press.

[14]. Nam, S.W. and Bobet, A. (2007). Radial deformations induced by groundwater flow on deep circular tunnels. Rock Mech. Rock Eng. 40 (1):23.

[15]. Timoshenko, S.P. and Goodier, J.N. (1970). Theory of Elasticity, 3rd Edn McGraw-Hill. New York.

[16]. Bobet, A. (2009). Elastic solution for deep tunnels. Application to excavation damage zone and rockbolt support. Rock Mech. Rock Eng. 42 (2):147–74.

[17]. Oreste, P.P. and Peila, D. (1996). Radial passive rockbolting in tunnelling design with a new convergence-confinement model. Int. J. rock Mech. Min. Sci. Geomech. Abstr. 33 (5):443–54.

[18]. Carranza-Torres, C. and Fairhurst, C. (1999). The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek–Brown failure criterion. Int. J. Rock Mech. Min. Sci. 36(6):777–809.

[19]. Carranza-Torres, C. and Fairhurst, C. (2000). Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion. Tunn. Undergr. Sp. Technol. 15 (2):187–213.

[20]. Sharan, S.K. (2003). Elastic–brittle–plastic analysis of circular openings in Hoek–Brown media. Int. J. Rock Mech. Min. Sci. 40 (6):817–24.

[21]. Sharan, S.K. (2005). Exact and approximate solutions for displacements around circular openings in elastic–brittle–plastic Hoek–Brown rock. Int. J. Rock Mech. Min. Sci. 42(4):542–9.

[22]. Sharan, S.K. (2008). Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek–Brown rock. Int. J. Rock Mech. Min. Sci. 1(45):78–85.

[23]. Bobet, A. (2006). A simple method for analysis of point anchored rockbolts in circular tunnels in elastic ground. Rock Mech. Rock Eng. 39 (4):315.

[24]. Oreste, P. (2008). Distinct analysis of fully grouted bolts around a circular tunnel considering the congruence of displacements between the bar and the rock. Int. J. Rock Mech. Min. Sci. 45 (7):1052–67.

[25]. Carranza-Torres, C. (2009). Analytical and numerical study of the mechanics of rockbolt reinforcement around tunnels in rock masses. Rock Mech. Rock Eng. 42 (2):175–228.

[26]. Bobet, A. (2011). Einstein HH. Tunnel reinforcement with rockbolts. Tunn. Undergr. Sp. Technol. 26 (1):100–23.

[27]. Tan, C.H. (2016). Difference solution of passive bolts reinforcement around a circular opening in elastoplastic rock mass. Int. J. Rock Mech. Min. Sci. 81:28–38.

[28]. Tan, C.H. (2016). Passive bolts reinforcement around a circular opening in strain-softening elastoplastic rock mass. Int. J. Rock Mech. Min. Sci. (88):221–34.

[29]. Lazemi, H.A., Marji, M.F., Bafghi, A.R.Y. and Goshtasbi, K. (2013). Rock Failure Analysis of the Broken Zone Around a Circular Opening/Analiza pęknięcia skały w strefie naruszonej wokół otworu kolistego. Arch. Min. Sci. 58 (1):165–88.

[30]. Abdollahi, M.S., Najafi, M., Bafghi, A.Y. and Marji, M.F. (2019). A 3D numerical model to determine suitable reinforcement strategies for passing TBM through a fault zone, a case study: Safaroud water transmission tunnel, Iran. Tunn. Undergr. Sp. Technol. 88:186–99.

[31]. Einstein, H.H. and Schwartz, C.W. (1979). Simplified analysis for tunnel supports. J. Geotech. Geoenvironmental Eng. 105 (ASCE 14541).

[32]. Kreyszig, E. (2011). Advanced engineering mathematics. United States of America: Jhon Wiley & Sons. INC.

[33]. Simmons, G.F. (2016). Differential equations with applications and historical notes. CRC Press.

[34]. Brown, E.T., Bray, J.W., Ladanyi, B. and Hoek, E. (1983). Ground response curves for rock tunnels. J. Geotech. Eng. 109(1):15–39.

[35]. Airy, G.B.I.V. (1863). On the strains in the Interior of beams. Philos. Trans. R. Soc. London. 153:49–79.

[36]. Little, R.W. (1973). Elasticity Prentice-Hall. Englewood Cliffs, NJ. 88–94.

[37]. Michell, J.H. (1899). On the direct determination of stress in an elastic solid, with application to the theory of plates. Proc. London Math. Soc. 1 (1):100–24.

[38]. Kolosov, G.V. (1909). On the Application of the Theory of Functions of a Complex Variable to a Plane problem in the Mathematical Theory of Elasticity. Printing-house K Mattisena, Juriev.

[39]. Muskhelishvili, N.I. (1966). Some basic problems of the mathematical theory of elasticity. Nauka, Moscow.

[40]. Rocscience. Phase 2, www.rocscience.com. (2004).