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Abstract

An accurate modeling of sophisticated geological units has a substantial impact on
designing a mine extraction plan. Geostatistical simulation approaches, via defining a
variogram model or incorporating a training image (TI), can tackle the construction of
various geological units when a sparse pattern of drilling is available. The variogram-
based techniques (derived from two-point geostatistics) usually suffer from reproducing
complex and non-linear geological units as dyke. However, multipoint geostatistics
(MPS) resolves this issue by incorporating a training image from a prior geological
information. This work deals with the multi-step Single Normal Equation Simulation
(SNESIM) algorithm of dyke structures in the Sungun Porphyry-Cu system, NW Iran. In
order to perform a multi-step SNESIM algorithm, the multi-criteria decision-making and
MPS approaches are used in a combined form. To this end, two TIs are considered, one
for simulating dyke structures in the shallow depth, and two for simulating dyke structures
in a deeper depth. In the first step, a Tl is produced using geological map, which has been
mined out during the previous exploration operations. After producing TI, the 35
realizations are simulated for the shallow depth of deposit in the area under study. To
select the best realization (as a Tl for the next step) of the simulation results, several
statistical criteria are used and the results obtained are compared. To this end, a hybrid
multi-criteria decision-making is designed on the basis of a group of statistical criteria. In
the next step, the dyke structures in the deeper depth are also simulated by the new TI.

1. Introduction

There have been several studies dedicated to the
modeling of different geological scenarios using
various developed geostatistical methods [e.g. 1].
The conventional two-point geostatistics methods
based on the variogram models have been
employed to spatially interpolate the data [e.g. 2,
3], and they are now popular in different fields
including mining, geology, and petroleum [4]. The
critical issue in modeling geological structures is
arising from the presence of heterogeneities and
discontinuities in geological units like a swarm of
dykes. The variogram-based techniques cannot
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reproduce those non-linear continuities, and
subsequently, they have a lack of accuracy in the
reconstruction of a plausible geological model [e.g.
5]. As a solver in tackling such issues in the
geological studies, the multiple-point geostatistics
(MPS) has been proposed, where a training image
(TI) prior to the geological/geophysical
information is incorporated in the interpolation
techniques [e.g. 6].

Various MPS techniques such as those of Tran
(1994) [7] and Roberts (1998) [8] have been
employed to improve the applicability of
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geostatistical modeling. Strebelle (2000) [9] has
proposed the Single Normal Equation Simulation
(SNESIM) algorithm, and later Caers (2001) [10]
has used an invaluable tool to extract the features
of patterns by combining the neural networks and
MPS. Journel (2002) [11] has proposed the
stationary relationship and information fusion to
improve the simulation results. Note that an
updated relationship has been introduced by Zhang
and Journel (2002) to control the target function
[12]. Arpat and Caers (2004) [13] have developed
the Simulation Patch-based (SIMPAT) algorithm
and its modified version [14]. The SNESIM
algorithm, proposed by Strebelle (2002) [15], has
been coded by Remy et al. (2007) [16] in the
SGeMS open-source software. Zhang (2006) [17]
has introduced the Filter-based Simulation
(FILTERSIM) algorithm, later coded by Wu et al.
(2007) [18] in SGeMS. Mariethoz et al. (2010) [19]
have proposed the Direct Sampling (DS) algorithm
as anovel and strong algorithm in MPS. Tahmasebi
et al. (2012) [20] have proposed a new algorithm
(CCSIM) for both the unconditional and
conditional simulations with a raster path. Many
research papers on the pattern-based approach have
also published [21, 22]. Tahmasebi et al. (2014)
[23] have developed and improved the CPU
performance of the CCSIM algorithm in term of
simulating categorical variables. Moura et al.
(2017) [24] have proposed the LSHSIM method as
a new method that generates realizations faster than
the MS-CCSIM method [23]. Bavand Savadkoohi
et al. (2019) [25] have used an effective
combination of CCF and discrete wavelet
transform (DWT) to improve the simulation
results.

The key advantage of the MPS method, rather than
the variogram model (two-point geostatistics), is
the incorporation of a training image (TI) [26],
where such a space underlies the total patterns and
structures of the sought region [27]. The primary
idea of TI has been presented based on the
geological data [28]. In order to obtain TI, different
methods such as the object-based simulation
algorithm have been presented. If the geological
model considers the repeatability of the geological
phenomena, it can be assumed as an image. Novel
methods with ability of importing a higher order
statistics in simulation process utilize such images
[29].

The ultimate motive of this research work was to
run a multi-step SNESIM MPS method. In the first
step, Tl was prepared based on the geological
setting, and then the dykes of shallow regions were
simulated based on the best realization. It is
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expected that the resulting simulated model is in
close consistency with the real environment. Note
that the optimum selection of the simulated
geological model was casted in a multiple criteria
decision-making (MCDM) problem, whilst the
established statistical criteria could appropriately
pick up the optimum geological model [an example
of the statistical criteria can be found in 30-33]. The
VIKOR method as the well-known MCDM
approach [34, 35] was used to prioritize all
realizations of geological models, leading to an
optimal selection of the searched target. Since all
the statistical criteria do not have an equal
importance, we applied the Best-Worst Method
(BWM), originally proposed by Rezaie (2015) [36]
as an extension to the Analytic Hierarchy Process
(AHP) to assign weight to each criterion before
running the VIKOR method. The optimum
realization was passed through the second step,
where deeper portions of dykes were simulated
successfully (Figure 1).

The major purpose of this research work was to
model dykes as important mineralization control
factors in the Sungun porphyry copper deposit. For
this aim, the SNESIM algorithm was used as a
strong MPS algorithm. The choice of a Tl and its
representativeness was a challenging issue subject
to ongoing developments. In order to increase the
accuracy of Tl, the SNESIM algorithm was utilized
with a staged algorithm. To this end, in the first
step, the geological map and information were used
to produce a TI for simulating the dyke structures
in the shallow depth. Then the SNESIM method
was used for reproducing the complex patterns of
dykes in the shallow depth of the deposit. In the
second step, the best realization was selected using
the proposed hybrid MCDM method, which
benefited from a mixture of the VIKOR, AHP, and
BWM methods. The best realization was used as Tl
to reproduce 35 realizations over a deeper depth
within the region of interest. Finally, several
statistical criteria in the realizations were compared
with those in T1 (Figure 1).

2. Methodology

The following sub-sections describe concisely the
MPS algorithm, AHP-BMW weighting approach,
and VIKOR methodology, respectively.

2.1. SNESIM algorithm

The SNESIM algorithm, as introduced by Strebelle
(2000) [9], solves the problem of two-point
geostatistics by keeping the flexibility of the pixel-
based techniques [26], where the probability
functions are extracted from a TI. For the sake of
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being as a pixel-based technique for simulation of
complex geological phenomena, it outperforms the
reproduced conditional data by scanning each

addition, the number of iterations is controlled by
the probability rules to estimate a variable value at
the desired simulated point [26 and 38].

considered pattern in input Tl [26 and 37]. In
End
Y
Start - -
Optimum selection of
1 simulated dykes model
Fy
Producing the TT using the v
geological map es
Separating the drill holes in pest Mo, Removing the realization
the shallow regions realization

I

T

Simulating the dykes in the
shallow area AHP- BWM- VIKOR
l method
Defining the statistical T
criteria Simulating the dvkes in the
l deeper region
AHP- BWM- VIEOE
method Simulating the dykes in the
l deeper region
Best Yes Selecting the realization as a
- - —_— - .
realization TI for the next simulation
l No
Removing the realization

Figure 1. A flowchart illustrating the procedure according to the main purpose of this work.

In a sequential simulation approach, obtaining the
cumulative probability density function (CPDF)
plays an important role [26 and 39]. The point that
should be noted is that CPDF of variogram-based
geostatistics is obtained by the relationship
between two points at each moment, whereas it is
derived from the relationship between n points at a
moment in MPS [15].

Ay as a binary indicator variable of an occurrence
for state s, at location u, is defined by the
following equation [15, 26, and 38]:

1 if S(w) = sy

A = {0 if not (1)
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where D is denoted as a binary random variable
connected to the occurrence of state d,,, which is
formed with n conditional data [15, 26, and 38]
such that:

A {1 if S(ug) = SkpVa=1,..,n
1o if not

The main purpose is to calculate the conditional
probability value of D occurrence (s, at
location u), assuming that the event d,, happens in
a D proximity. The conditional probability value is
obtained through ordinary kriging (with n+1
order statistics) in association with A, and event D
[26]:

)
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Prob{A, = 1|D = 1}

= E{4,} + A[1 — E(D)] 3

where D = 1 represents the occurrence of D, and
E{D} = Prob{D = 1} denotes the probability
value of the event occurrence. Therefore, the
weight value (4) can be calculated as [15]:

AVar{D} = Cov{A, D} (4)
Where:
Cov{Ay, D} = E{Ay, D} — E{A,JE{D} (%)
Equation (4) can be re-written as [15]:
_ E{Ay D}~ E{AJE(D) ©)
E{D}(1 - E{D})
So:
E{A, D} — E{A,JE{D}
Prob{A, = 1|D = 1} = E{A,} + EDYA —ED)
_ E{A.,D} _Prob{A, =1|D =1} (7

~ E{D} ~  Prob{D=1}

According to Equation (7), it is a Bayesian relation.
Tl is scanned in the later stage. The numerator is
obtained by counting the number of iterations of
events in TI, and the denominator is associated
with a central cell value S(u) equal to s, (cx and ¢)
[15]. Finally, it is expected that the deduction value
is similar to that of the target function of TI. Thus
we have Equation (8).
p(w; s l(n)) = Prob{4, = 1|D = 1}
= Prob{S(u) = s¢|(n)}

_ (dy)

)

(8)

2.2. AHP-BWM approach

The AHP method, proposed by Saaty (1977) [40],
is a strong technique by capability of ranking
several alternatives in a MCDM problem. One of
the major features of this method is its flexibility
for doing sensitivity analysis on the criteria and
sub-criteria [41]. In addition, it is on the basis of
constructing  pairwise  comparison  matrices
(PCMs) [42]. However, the main shortcoming is
pertaining to the need for constructing several
PCMs, leading to a huge number of pairwise
comparisons. In order to tackle such a deficiency,
Rezaie (2015) [36] has proposed BWM, in which
the best and worst criteria are first chosen before
estimating the weights of a number of
criteria/factors. Then two pairwise comparison
vectors (among the best/worst criteria and other
criteria) are performed. The final stage of BWM is
to formulate and solve a max-min problem for
calculating the weights of different criteria [26 and
43-44]. Not only the BWM method reduces the
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applied information (PCMs) but also this approach
produces the results more valid than the other
MCDM approaches [45].

Here, a hybrid AHP-BWM method is implemented
by depicting the decision problem as a linear
hierarchy based upon the AHP method. Then the
weights of different factors in different levels of
this hierarchy are determined via BWM. The
following steps are required for running the hybrid
AHP-BWM method [36 and 43-47]:

Step 1. Determining a linear hierarchy structure of
the decision problem (designing a decision tree).

Step 2. Defining the best and worst criteria at each
level.

Step 3. Ateach level of the hierarchy, constructing
the first pairwise comparison vector as the
preference degrees of the best criterion over all the
other criteria. The elements of the pairwise
comparison vector must be scaled at an interval
from 1 to 9. This best-to-others vector can be
written as:

AB = (aBl, ago, ., aBn),

where ag,, represents the preference degree of the
best criterion (B) than the criterion j, and agp is
equal to one.

Step 4. At each level of the hierarchy, constructing the
second pairwise comparison vector as the preference
degrees of all criteria over the worst criterion. The
elements of the pairwise comparison vector must be at a
similar scale. This others-to-worst vector can be written
as:

Ay = (1w, azw, ---:anw)Ta

where a;y, represents the preference degree of the

criterion j than the worst criterion (W), and ayyy, is
equal to one.

Step 5. Calculating the optimal weights
includes (W', Wy, ..., W) The pairs 2 = ap;
]

and % = a;,, are formed for determination of the

optimal weights. After this stage, in order to satisfy
the explained conditions for each j, the maximum

absolute differences |~2 — ag;

J
should be minimized for each j. Thus the optimal
weights can be obtained by reviewing the

following non-linear programming model:

[ - g,
) WW JW

W
and |—’ —a; |
Ww Jw

Wp

— — aB.
] j

Wj

min max; {
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s.t.

w; = 0, for all

(9)

Also the non-linear model (Equation 9) is changed
to a linear model, as follows:
min &
s.t.
|WB - aBjo| <¢ forallj

|w; — ajuwi| <&, forallj (10)

J

w; = 0, for all

The optimal weights and £* values are obtained by
solving the above model.

Step 6. Calculating the consistency ratio (CR) by
means of the &* value and consistency index (ClI).
It is clear that a higher value of &* represents a
higher value of CR since ag; X ajy = agy

and agy, € {1, 2,...,9}, the maximum value for &
can be calculated. According to Cl in Table 1 and
Equation (11), CR can be inferred by:
é’*
CR = 11
Consistency Index (11

Based on the CR value, the values equal to or lesser
than 0.1 represent a reliable result.

Table 1. Cl table for using the BWM method.

Apw 1 2 3

4

5 6 7 8 9

CI (maxg) 000 044 1.00

1.63

230 3.00 373 447 5.23

2.3. VIKOR methodology

Opricovic and Tzeng (2004) [34] have introduced
the first version of the VIKOR technique as a
powerful tool to select the best alternative in
MCDM problems. According to its formulation,
different alternatives under various criteria and
sub-criteria are compared by an ideal solution on
the basis of a distance measure [48-51]. As a
prominent approach, it can be utilized in
compromise ranking problems [52]. An integrated
function, so-called Le-metric, is used to generate
the compromise ranking [35]. The alternatives and
criteria are defined as A4, ...,A, and Cy, ..., Cpp,
respectively, where a;; represents the score of the
ith alternative based on the jth criterion function.
Based on the Lp-metric, expansion of the VIKOR
method can be defined as:

m p
Lpj = {Z[wi(fﬁ — /(i = fOP

i=1 (12)
wherel<P<wandi=1,..,m
wherel < P<owandi=1,..,m
In the conventional formulation, L;; =S; =
rr; [Wl(fl al])/(fi+ _fi_)] and Looj = R' =
maxl{w‘jgf‘ ”)} are subsequently calculated [29],

where w; is the weight of the jth criterion. As
mentioned, this weight was extracted by
implementing the AHP-BMW in this work. L;;
provides the information for maximum group
utility, while Leoj is the information of minimum
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opposite individual effect. The VIKOR algorithm
can be summarized in the following steps [35]:
Step 1. Calculating the positive ideal solution (f;*)
and negative ideal solution (f;”) alternative values
for each criterion (i = 1, ..., m) by the following
equations:

If it is a benefit mode problem

fit = max;{a;;}, fio = min{a;}
If it is a cost mode problem.

fit = minj{a;;}, fio = max;{a;;}

(13)

Step 2. Calculating the S; and R; values by the
aforementioned equations (j = 1,2, ..., J).

Step 3. Determining the Q; (j = 1,2, ...,]) value:

S;—S R—R+
0-(25)ron(2E)

The parameters in Equation (14) are equal to St =
mini{S;}, S~ = max;{S;}, R* = miny{R;}, R~ =
max;{R;} , and y represents the weight of the
strategy of ‘‘the majority of criteria’’ (or ‘‘the
maximum group utility’”). y is generally assumed
equal to 0.5. Also Q; denotes the weight of VIKOR
for the jth alternative.

Step 4. Based on theS;, R;, and Q; values,
alternatives are sorted in a decreasing order.

(14)
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Step 5. Selecting the best alternative, the best
compromise solution can be selected by satisfying
these two conditions:

1. Acceptable advantage:
Q(A®) - Q(a™) 2 D

where:

(15)

1 .
DQ=— (DQ=025if n<4)

and based on the Q value, A and A@ are the
alternatives with the first and second positions,
respectively. In addition, n denotes the number of
the available alternatives.

2. Acceptable stability in decision-making.
According to this condition, the alternative A
should be located in the best rank at the S, R, and
Q criteria. If the first condition is not satisfied
and Q(A™M) — @(4W) < DQ, then
AW A@ A0 gre selected as the same
compromise solution. If the second condition is not
satisfied, the alternatives A and A are selected
as the same compromise solution.

3. Case study

The region of interest is located in the NW Iran at
the East-Azerbaijan Province (Figure 2). The
Sungun porphyry copper system occurs over the
Sahand-Bazman volcanic and plutonic belt (or the
Urumia-Dokhtar Magmatic Assemblages,
UDMA). The field survey and petrology studies
identify several stocks in the Sungun system,
which causes a hydrothermal alteration system
[53]. Diorite/granodiorite to quartz monzonite
rocks have dominated this copper system [54, 55].
The tonnage of the Sungun porphyry deposit is
more than 500 Mt sulfide reserve at an average
grade of 0.76% copper and 0.01% molybdenum.
The mineralized portions of the Sungun deposit
occurred mostly in stock units with depletion in
dyke intrusions [53]. The important stocks in
association with porphyry copper mineralization
include porphyry stock | (quartz monzonite) and Il
(quartz monzonite to granodiorite/diorite) [56].
Note that there are four types of dykes in the
region, which typically comprise quartz monzonite
to granodiorite/diorite [56]. These dykes have cut
the Cu mineralization at several phases leading to
sectors with a depleted content of Cu ore.

I:' Plio-Quaternary lava and pyroclastic rocks
dykes with propvlitic alteration
(Sungun porphyry

limestone and sandstone

l:‘Quaxtz diorite to granodiorite post-mineralization

Altered monzonite to quartz monzonite porphyry
Metamorphosed Cretaceous carbonate, marly

Diorite to quartz diorite late-mineralization dykes

Geological and alteration map of Sungun mine

with medum phylic & weak propylitic

alterations
Skarn mineralization and metasomatic

;13 Propylitic alteration -
, 7 Faults
Ph\]llc alteration
Potassnc alteration River
—
~ —

[V, i3 f
P rsian Gulf ,

Alborz Mountains 5 Makran
13"
[ Sanandaj-Sirjan zone - Central Iran
i P Lut block 1| Zagros fold belt
e Eastern Iran @ Kopet Dagh
it Sahand-Bazman belt
29
SYMBOLS
Study ®
Hz Fault —
Thrust Fault >

Figure 2. Location and geology map of the Sungun porphyry copper deposit.
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The general trend of dykes is NW-SE (parallel to
the UDMA tectonic unit), and their thickness
changes from a few centimeters to several tens of
meters (Figure 3). Among different dyke patterns
in Sungun, DK1 has the most frequencies, where
its constituents change from quartz diorite to quartz

monzonite. Based on the isotope, mineralogy, and
alteration studies, the DK1 unit is divided into the
three types of DK1a, DK1b, and DK1c. Roughly
speaking, the average grade of copper is very low
and below the economic cut-off value in the DK1.

7600
7800
8000
8200
8400]

5800

5600

5400

5200

5000

4800

4600

4400

4200

8800

9000
9200

N

<

&
LEGEND
P Diorite Porphyry Dyke
Y
a Diorite Porphyry Dyke

Om 100m 200m

Scale 1:2000

The Sungun deposit was sampled by the vertical,
horizontal, and steep drill holes in the detailed
exploration phase. The drilled holes were designed
in a regular network at an interval of 100 m. All the
collected and analyzed samples was 41520 for
grade and geological features. In order to satisfy
the stationarity conditions, those portions of the
Sungun system obeying such conditions were
simulated (Figure 4). According to Figure 3, DK1a
and DK1b have dominated the studied region.
Therefore, they were used for simulation of the
dykes. To sequentially simulate the dykes of
shallow area, the DK1 map of the Sungun porphyry
copper deposit (prepared from surface geological
map) can be used as a TI to run the first step of
MPS. After extracting DK1a and DK1b, Tl was
projected on the topography map (Figure 5). The
proportion and variance of Tl and actual data need
to be compared as well to check TI
representativeness. Table 2 shows that the main
statistics of T1 is similar to that obtained with the
hard data.

Table 2. Statistical parameters of Tl and hard data.

Proportion Variance
TI 0.338 0.224
Hard data 0.321 0.221
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Figure 3. DK1 map of the Sungun porphyry copper deposit.
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Figure 4. (a) Top view and (b) 3D view of drilled
holes in the Sungun porphyry copper deposit for
those regions with stationarity conditions.
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Figure 5. Training image extracted from the DK1 map for modelling the dykes of shallow region.

4. Optimum selection of simulated dyke model

The primary input of the SNESIM algorithm is the
simulation grid. A block model of the desired area
was produced with the grid size of 10 x 10 x10 m.
At the first step, T1 derived from the DK1 map was
inserted as an important input. The search radius
was fixed with a constant value for all directions.
In this case, it can be clearly seen that the SNESIM
algorithm is capable of identifying the conditional
data patterns [57]. In this work, the continuity of
the dykes was reduced by means of the anisotropy
search pattern. Based on the trial-and-error
method, the range of the search pattern was
assumed to be 150 m. The number of data in the
search pattern is a main factor of the SNESIM
algorithm. In addition to the importance of this
factor in controlling the reproduced patterns, this
factor has the highest impact on the computational
efficiency of the algorithm. Taking the runtime of
the algorithm and reproducing the large-scale
structures into account, the number of data in the
search pattern was about 140. The simulation could
be performed by the conditional or non-conditional
data. Because of the high reality of modeling in the
conditional simulation, this type of simulation was
used here for the hard data collected by drilling.
According to the research work by Liu (2006) [57],
the simulated facies may not satisfy the directional
parameters and stationarity conditions, and
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therefore, zoning trick can tackle such a problem in
this work.

4.1. Shallow region simulation

Taking TI of the DK1 map, and the lithology data
from the drilled holes in the shallow regions of the
Sungun into consideration, simulation of DK1a and
DK1b was carried out through running the
SNESIM algorithm. After the first step, the
optimum simulated realization was searched for
generating a Tl input for implementing simulation
at deeper portions in the second step. Various
statistical criteria such as single-point statistics,

two-point  statistics, multiple-point statistics,
connectivity reproduction, and high order
covariance  reproduction  (Cumulants) are

incorporated in a MCDM problem to choose the
best realization of simulation.

The single-point characteristics of different
realizations for selection of the best simulated
output were used as the proportion and variance
criteria, where Tl was used to compare all the
simulation results. The proportion and variance
obtained from all realizations are plotted in
Figures. 6a and 6b, respectively. They represent a
little difference between the single-point statistical
parameters of the simulation in all realizations and
those derived from T, enhancing the advantage of
the SNESIM algorithm in considering the
servosystem factor.
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Figure 6. Graphical comparison of the single-point statistics parameters of the T1 and SNESIM realizations (a)
proportion, and (b) variance.

When there are differences between the proportion
of the target function for hard data and the T1 map,
the servosystem factor must be used for the
SNESIM algorithm [15]. The difference between
the proportion of the target function and the
simulation can be reduced by means of the
servosystem factor. This correction must be done
by the servosystem factor at each step of the
simulation process. Let us assume that P(A4) and
Pc(A) are the target function of hard data and
moment target function of TI, respectively. The
correction function is represented by the following
equation:

0.4

Target Function

067

P"*¥(A|B) = P(A|B) + u(P(4) — Pc(4))  (16)
where p can be calculated as:

_ 17

n=1— A€[01] (17)

It is clear that a higher value of A coincides with a
higher correction. Figure 7 indicates the sensitivity
of the target function versus the servosystem factor
(1), meanwhile the final correction value is equal
to 0.87.

0.77

Servosystem Factor

Figure 7. The linear variation of the target function versus the servosystem factor.
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Based on the proportion and variance of TI, a
guantitative comparison of the single-point
statistics parameters of the SNESIM realizations
was done by the following equations:

Ap = pup — pry (18)

(19)

where ug and oy are the proportion and variance of
the realizations, respectively. Also ur; and o, are
the proportion and variance of T, respectively. It
is clear that a lower value of Ay and Ao represents
a more appropriate realization.

Since variogram is a tool for checking the two-
point statistics, we compared the omni-directional
variogram model of Tl and each realization as a

Ao = Or — O7p

0.35
03

0.25

criterion in selection of the best simulated result.
The omni-directional variogram obtained from the
five realizations (as representatives of all) and Tl
are all shown in Figure 8a. This process must be
plotted for all realizations. In order to a
guantitatively compare the variogram models, the
Gamma—Gamma plots were used [17], where the
correlation coefficients between TI and all
realizations are obtained by the Gamma-Gamma
plots. Note that a higher correlation coefficient
corresponds to a more suitable realization. The
Gamma-Gamma plot of the realization #30 versus
Tl is shown in Figure 8b. Such plots must be
calculated for all realizations. Based on the highest
slope of the linear curve fitted between TI and
realization #30 (0.802), this realization generated
the most suitable one.
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Figure 8. Omni-directional variogram of five realizations and T1 for shallow region (a) and Gamma-Gamma plot
of the realization #30 versus TI (b).
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The T1 and SNESIM realizations were compared
through multi-point statistics using the Peredo and
Ortiz method (2011) [58], where all realization
must be scanned after selecting a search pattern in
1D, 2D or 3D. Then the clustering of the extracted
patterns is done to locate all similar patterns in
different clusters. The frequency of similar patterns
is saved as the important factor. The reproduced
patterns of the SNESIM realizations and TI were
compared through plotting the frequency chart of
patterns on the SNESIM realizations and TI.
Assuming a 5 x 5 network due to the original TI,
the obtained result from the realization #30 versus
T1was shown in Figure 9. Based on the fitted linear
curve for the first and third quarter, the optimum
realization can be introduced via this criterion.

10°

101}
1072 L - -
103k

104}

SNESIM Realization Frequencies

10

102 101 10°

Training Image Frequencies

Figure 9. Frequency chart of reproduced patterns
on the realization #30 and T1.
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Since the main purpose of this work was to
reproduce the dyke connectivity, this feature of the
dykes can be a suitable criterion in the optimum
selection of a realization among all the generated
geological models. Generally speaking, n-point
probability of connection in a particular direction
is calculated by the following equation [59]:

E nl[u 4 (= Dhiz]b = o) 20)
j=1

It is clear that increasing the number of points
causes the reduction of the probability value of
connectivity reproduction. For one point, the
probability value is equal to the proportion of the
target function. The selected direction for
calculation of probability of connection is 135,
which is parallel to the trend of the dykes. The
probability value of connectivity reproduction
obtained from the five realizations (as
representatives) and Tl are plotted in Figure 10.
Considering the probability value of connectivity
reproduction of TI, quantitative comparison of the
probability value of connectivity reproduction of
the SNESIM realizations is calculated by:

16

H = § ‘prealizationi - (pTraining Image;

i=1

(21)

where i denotes the number of points. A lower
value of H corresponds to a more suitable
realization.

Training Image
Sim 30
Sim 33
—>Sim 4
—Sim 15
Sim 12

10

Points number

12

14

16

Figure 10. Probability value of connectivity reproduction of the SNESIM realizations and T1.

Cumulants  were  firstly introduced by
Dimitrakopoulos et al. (2010) [60] for modeling of
geological phenomena. De laco and Maggio (2011)
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[61] did a comparison between the sequential
indicator simulation (SIS) realizations and the
SNESIM realizations by higher order Cumulants.
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Let us assume that (Q,J, P) and (R™, S(R™)) are a
probability space and measurable space (in the
probability space), respectively. Also assume that
Z(x) as a random field satisfies the stationarity
conditions, and its mean is equal to zero in the R™
space. The r-order momentum of Z; = Z(x;) is

mll Jin

in-1 in—g

LSO @

J1=0  jn-1=0jp=
X C;

1= J1rwin—1=Jn-1in=Jn ]1 wJn

calculated by the following equation [60]: ACISO [55];
T S Y i o 1 751 R

where E{.} represents the expectation operation
and j2 is equal to -1. ¢(w) denotes the first
characteristic function. The characteristic function
can be written as [60]:

P(w) = E[e/*%] = j +mefwu dF,(w) (23)

The r-order Cumulants can be calculated through
the r-order differential of the second characteristic
function, which is equal toy(w) = In(¢(w)).
Thus it can be [60]:

J1=0  jp-1=0jp=
xmll —Jiewin-1=Jn-1in— J'nCJ'p-.-.]'n
Now, assume that Z,, is a variable with zero mean.
The r-order momentum can be calculated as [60]:
Mom[Z(x),Z(x + hy), ..., Z(x + hy_1)]
=E[Z(xX)Z(x + hy) ... Z(x (27)
+ hr_1)]
In this space, the momentum value is associated
with the distance vectors (hq, hy, h3). Therefore,
the r-order Cumulant can also be calculated as
[60]:

1 d" CZlhy, hy, oo hyp_q]
Cum[Ziﬁ lZl] war [lp( )] (24) — Cum[Z(x)Z(x (28)
+hy) o Z(x + h,_
Let us assume that E; ; =E(X;,..,X,) and 1) -2 2
Cj,...j. = Cum(Xy, .., Xp) are a n-order In order to calculate the Cumulant value, the
1rewn [

momentum and n-order Cumulant, respectively.
Equation (25) represents a relationship between
momentum and Cumulant [60].

distance vectors must be determined. Therefore,
each spatial template can be defined using the
following equation as [60]:

T:j‘lhz""'h" (hy, hy, by, aq, a5 .0ap)
={x,x+h,x+hy,..,x (29)
+ h,}

Finally, the 3-order Cumulant is computed [60]:

Nhy,hy

- hq,h
CcTs = z Z(xk)Z(xk+h1)Z(Xk+h2), Xic: Xiewhy ' Xkt hy €T, 1.2 (30)

Nn, n,

Similarly, 4-order Cumulant is inferred as [60, 61]:

CTh1 hz.h3
1 Nhy,hphs
=5 z Z(xk)Z(xk+h1)Z(xk+h2)Z(xk+h3)
Nnynons =4
1 [ /Nhyhyhs Nhq,hphs ]
2 Z(xk)Z(xk+h1) Z Z(xk+h2)Z(xk+h3)
(Nhlrhzrhs) | k=1 k=1 ] (31)
1 [ /Nhyhyhs Nhy,hphs ]
- Z Z(xx)Z(Xe+n,) Z Z(xk4n, )Z(Xksn,)
(Nh1.h2.h3) | k=1 k=1 |
1 [ /Nhyhohs Nhy,hphs ]
- Z Z(x)Z (Xp4n,) Z Z(xpsn, )Z(Xk4n,)
(Nh1.h2.h3) | k=1 k=1 |
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In this work, Cumulants were used as a criterion to
select the best realization. According to the spatial
structure of the dykes (Figure 11 and Table 3), the
calculation of Cumulants is divided into two
groups (Figure 12):
1. The 3-order Cumulant in the three directions:
{315, 45}, {135, 135}, and {315, 135}.

0.25

0.2

Variogram

0.1

0.05 ¥

0 100 200

2. The 4-order Cumulant in the two directions: {315,

135, 45}, and {135, 135, 135}.
We compared two Cumulants comprising the
former from TI (as a criterion) and the later from
each realization. For a quantitative comparison of
the Cumulants of T1 and the SNESIM realizations,
the mean squared error (MSE) and correlation
methods were used for each realization (Table 4).

—— Azth=315, dip=67.5
Azth=135, dip=22.5
Azth=45, dip=0

300 400 500 600

Distance (m)
Figure 11. Experimental variogram of hard data in 3D.

Table 3. Characteristics of experimental variogram of hard data in 3D.

Azimuth Dip Range (m)
1 315 67.5 180
2 135 225 78
3 45 0 54
Nugget effect 0.04 Sill 0.13
Third Order Cumulant

a- {315, 45}

b- {135, 135}

b- {315, 135}

Fourth Order Cumulant

d- {315, 135, 45}

e {135, 135, 135}

Figure 12. The considered patterns for calculation of Cumulants based on the spatial structure of the dykes.
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Table 4. MSE and correlation results of Cumulants using considered patterns (for part of the realizations).

Considered pattern Realization number Mean squared error Correlation

30 127x107 0.884

33 122x107 0.892

{315, 45} 4 174x107 0.812
15 191x107 0.798

12 184x107 0.807

30 101x107 0.905

33 124x107 0.871

{135, 135} 4 201x107 0.852
15 182x107 0.861

12 214x107 0.804

30 175%x107 0.854

33 192x107 0.814

{315, 135} 4 214x107 0.801
15 222x107 0.794

12 241x107 0.781

30 99x10°® 0.942

33 117x107 0.898

{315, 135, 45} 4 104x107 0.903
15 127x107 0.891

12 131x107 0.884

30 109x107 0.912

33 116x107 0.901

{135, 135, 135} 4 193x107 0.802
15 142x107 0.821

12 125x107 0.867

After checking the important criteria for the
selection of the best realization, the BWM method
was used to assign the criteria weight. The
hierarchy structure of the main criteria and sub-
criteria was designed in a decision tree shown in
Figure 13. Based on the experts’ judgment, the best
and worst criteria were first determined, and then
steps of the BWM method were followed. Finally,

solving a linear model (Equation 10) through the
GAMS software, the £* value and criteria weight at
each part of hierarchy structure were calculated
(Table 5). According to the consistency ratio, we
concluded that the implemented linear model
produced a consistent result.

Selection of Best Realization

Single-point statistics Two-point statistics

JIUWELIE A
uop.todorg

Multiple-point
statistics

Connectivity

Cumulants reproduction

Fourth order Third order

{SET ‘se1 ‘seT}

{er g1 ST}
{sg1 518}
{sgT e}
{s¥ “ste}

Figure 13. Hierarchy structure of the effective criteria for the selection of the best SNESIM realization.
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Table 5. The optimal weight of each effective criterion from the BWM method.

Criteria w; Sub-criteria w; Sub-criteria | w} Final weight

Single-point statistics Prop_ortion 0.500 0.047
0.094 Variance 0.500 0.047
Two-point statistics 0.210 0.210
Multiple-point statistics 0.216 0.216
Connectivity 0.228 0.228
{315, 45} 0.294 0.034
Third order 0.453 {135, 135} 0.412 0.047
Cumulants 0.252 {315, 135} 0.294 0.034
{315, 135, 45} 0.500 0.0685
Fourthorder | 0547 135935 1357 | 0.500 0.0685

& 0.134

C.R. 0.027

To rank 35 realizations obtained from the SNESIM
algorithm, a decision matrix must be constructed
for 35 alternatives and 16 criteria. The main
purpose of this process is to select the best
realization as a TI for simulation of dykes in the

deeper region (procedure shown in Figure 1). After
making the decision matrix, this matrix must be
normalized. In order to produce the homogeneous
criteria  (by positive nature), the linear
normalization method must be used as [62, 63],

ai]- . .
ny=———i=L..mj=1..,n
maxi{ai]’}
n: = i) = % = i
ij — u 1) 1 - 1
ax; a—ij /(1) a:
Min,; . Y
ij

if it is a benefit mode problem

(32)

if it is a cost mode problem

where a;; represents the element value of
alternative i in criterion j. Based on the steps of the
VIKOR method, the values of normal matrix for
each criterion are multiplied by criterion weight in
order to calculate the weighted normal matrix.
According to the application of the linear
normalization method, the ideal solution of each
criterion is equal to the maximum value in its

[
0 200 m

column. Finally, the S, R, and Q values were
calculated, and the best realization was selected
based on the calculated values. The part of results
obtained by the VIKOR method is shown in Table
6, while realization #30 was selected as the best one
(Figure 14). Therefore, this realization was used as
Tl in the simulation of deeper portions in the
Sungun porphyry-Cu deposit.

7 A

DEK1-a and DK1-b

Non Dyke and DK1-¢

Figure 14. A 3D view of the best realization #30 by implementing the SNESIM algorithm in the shallow portions
of the Sungun porphyry-Cu deposit.
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Table 6. The final results obtained by the VIKOR method for shallow portions of the Sungun deposit.

Realization number S R Q Rating
30 0.088 0.418 0.293 1
33 0.033 0.541 0.299 2
4 0.073 0.506 0.322 3
15 0.299 0.172 0.388 4
8 0.384 0.086 0.432 5
5 0.006 0.893 0.450 6
11 0.389 0.143 0.467 7
1 0.089 0.811 0.496 8
10 0.488 0.016 0.505 9
2 0.060 0.933 0.528 10
26 0.330 0.463 0.570 11
25 0.270 0.597 0.575 12
7 0.314 0.540 0.592 13
6 0.379 0.729 0.758 14
19 0.312 0.957 0.804 15
28 0.321 0.950 0.810 16
13 0.740 0.111 0.819 17
21 0.710 0.208 0.837 18
34 0.381 0.982 0.889 19
23 0.828 0.080 0.894 20
14 0.746 0.295 0.920 21
17 0.666 0.478 0.929 22
18 0.527 0.764 0.931 23
12 0.524 0.774 0.932 24
22 0.430 0.989 0.944 25
24 0.597 0.652 0.947 26
29 0.634 0.599 0.957 27
3 0.669 0.949 1.175 28
16 0.847 0.609 1.186 29
35 0.742 0.857 1.203 30
32 0.815 0.730 1.215 31
9 0.960 0.446 1.221 32
27 0.766 0.911 1.256 33
20 0.838 0.936 1.345 34
31 0.910 0.867 1.385 35

4.2. Deep region simulation

According to the defined parameters for the
simulation of the dykes in the shallow region (first
step, Figure 1), the SNESIM realizations of the
deeper region were conducted based on the
optimum realization (TI) of the shallow region.
Similar to the previous section, the criteria
evaluation for selection of the best realization were
investigated as well. They were generated for
single-point statistics (Figures. 15a and 15b), two-
point statistics (Figures. 15¢ and 15d), multiple-
point statistics (Figure 15e), connectivity
reproduction (Figure 15f), and high order
covariance reproduction (Table 7).

Similar to the previous section, the realizations
obtained from the SNESIM algorithm in the deep
region were sorted based on Table 4 and decision
matrix. The results obtained by the VIKOR method
is shown in Table 8, where realization #22 is
selected as the best one (Figure 16). The
connectivity of dykes is reproduced using this
hybrid method. Based on the result obtained by this
method, the dykes of the Sungun system are
generally located along the stretch of NW-SE trend
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parallel to the UDMA structural zone in Iran. The
DK1 map of the area under study proves that the
general trend of dykes has happened in the NW-SE
direction (Figure 3).

When applying the proposed approach and
simulating the dyke structures, there is an interest
to know about the accuracy and quality of the best
simulation model. To this end, the single-point and
two-point statistics of dyke in the best realization
#22 are compared with those in the hard data. Table
9 shows that the proportion and variance of
realization #22 are similar to those obtained with
the hard data. Since variogram is a tool for
checking the two-point statistics, the variogram
models of the best realization #22 in the major,
minor, vertical, and omni directions are compared
with those in the hard data (Figure 17). It can be
seen that the variogram parameters of realization
#22 are close to hard data.

Table 9. Statistical parameters of Tl and hard data.

Proportion Variance
Realization #22 0.339 0.225
Hard data 0.321 0.221
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Figure 15. Graphical comparison of the single-point statistics parameters of the Tl and SNESIM realizations, (a)
proportion, (b) variance. Omni-directional variogram of five realizations and T1I for deep region (c), Gamma-
Gamma plot of the realization #22 than TI (d), frequency chart of reproduced patterns on the realization #22

and T1 (e), and probability value of connectivity reproduction of the SNESIM realizations and T1 (f).

Table 7. MSE and correlation results of Cumulants using the considered patterns (for part of the realizations).

Considered pattern Realization number  Mean squared error Correlation

22 145%107 0.901

32 162x107 0.854

{315, 45} 6 193x107 0.794

3 177x107 0.824

11 201x107 0.781

22 112x107 0.937

32 125%107 0.921

{135, 135} 6 137x107 0.915
3 142x107 0.894

11 164x107 0.842

22 157x107 0.854

32 191x107 0.789

{315, 135} 6 172x107 0.801
3 207x107 0.741

11 224x107 0.724

22 201x108 0.872

32 217x10°® 0.856

{315, 135, 45} 6 231x10°® 0.839
3 234x10° 0.834

11 300x10° 0.712

22 146x10® 0.894

32 174x10° 0.841

{135, 135, 135} 6 197x10® 0.812
3 212x10°® 0.794

11 315x10° 0.723
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Table 8. Final results obtained by the VIKOR method for deeper portions of the Sungun deposit.

Realization .
number S R Q Rating
22 0.018 0.138 0.059 1
32 0.077 0.147 0.124 2
6 0.065 0.247 0.165 3
3 0.048 0.373 0.214 4
11 0.096 0.293 0.221 5
21 0.082 0.327 0.225 6
18 0.245 0.243 0.346 7
13 0.091 0.681 0.422 8
14 0.461 0.056 0.467 9
2 0.337 0.301 0.471 10
16 0.409 0.208 0.494 11
26 0.386 0.253 0.495 12
25 0.120 0.881 0.557 13
33 0.537 0.111 0.574 14
27 0.536 0.184 0.612 15
1 0.142 0.949 0.616 16
4 0.328 0.595 0.618 17
30 0.390 0.494 0.627 18
35 0.364 0.688 0.703 19
34 0.508 0.522 0.762 20
7 0.799 0.051 0.809 21
15 0.879 0.066 0.898 22
28 0.425 0.969 0.915 23
5 0.579 0.707 0.933 24
17 0.800 0.386 0.987 25
8 0.991 0.027 0.992 26
12 0.666 0.657 0.995 27
20 0.651 0.750 1.029 28
10 0.763 0.556 1.040 29
31 0.690 0.802 1.096 30
29 0.760 0.835 1.185 31
19 0.722 0.946 1.205 32
23 0.985 0.622 1.301 33
24 0.865 0.953 1.355 34
9 0.999 0.720 1.368 35

A
/\

§

DK1-a and DK1-b

S

Non Dyke and DK1-¢

[ -
0 200 m

Figure 16. A 3D view of the best realization #22 through running the SNESIM method at the deeper portions of
the Sungun deposit.
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Figure 17. Variogram models of the best realization #22 and hard data, (a) Omni-directional, (b) Azimuth
315 and dip 67.5, (c) Azimuth 135 and dip 22.5, and (d) Azimuth 45 and dip 0.

5. Conclusions

This work was an attempt to model dyke structures
of Sungun using a multi-step SNESIM algorithm.
To this end, the MCDM and MPS approaches were
used in a combined form. In the first step, a training
image was constructed from the surface geological
map to simulate an upper portion of the Sungun
porphyry-Cu deposit. After simulation of shallow
depth, several statistical criteria of realizations and
Tl were compared as well to select a new TI.
Various statistical criteria such as single-point
statistics, two-point statistics, multiple-point
statistics, connectivity reproduction, and high order
covariance  reproduction (Cumulants) were
incorporated in a MCDM problem to choose the
best realization of simulation. Then the weight of
statistical criteria was incorporated through a novel
AHP-BMW approach to differentiate their
importance in the final decision-making. In the
next step, the VIKOR method was used to select
the best realization of shallow depth results. The
best realization was used as TI to generalize dyke
simulation in the deeper portion of the studied
region. Finally, Similar to the previous section, the
realizations obtained from SNESIM algorithm in
the deep region were sorted based on the several
statistical criteria and AHP-BMW results.
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