[1]. Stott, M.B., Sutton, D.C., Watling, H.R. Franzmann, P.D. (2003). Comparative Leaching of Chalcopyrite by Selected Acidophilic Bacteria and Archaea. Geomicrobiol J. 20 (3): 215–230.
[2]. Vilcáez, J., Suto, K. and Inoue, C. (2008). Bioleaching of chalcopyrite with thermophiles. International Journal of Mineral Processing. 88 (1-2): 37-44.
[3]. Manafi, Z., Abdollahi, H. and Tuovinen, O.H. (2013). Shake flask and column bioleaching of a pyritic porphyry copper sulphide ore. International Journal of Mineral Processing. 119: 16-20.
[4]. Abdollahi, H., Shafaei, S.Z., Noaparast, M., Manafi, Z., Niemelä, S.I. and Tuovinen, O.H. (2014). Mesophilic and thermophilic bioleaching of copper from a chalcopyrite-containing molybdenite concentrate. International Journal of Mineral Processing. 128: 25-32.
[5]. Lotfalian, M., Ranjbar, M., Fazaelipoor, M.H., Schaffie, M. and Manafi, Z. (2015). Continuous bioleaching of chalcopyritic concentrate at high pulp density. Geomicrobiology Journal. 32 (1): 42-50.
[6]. Lotfalian, M., Schaffie, M., Darezereshki, E., Manafi, Z. and Ranjbar, M. (2012). Column bioleaching of low-grade chalcopyritic ore using moderate thermophile bacteria. Geomicrobiology Journal. 29 (8): 697-703.
[7]. Ahmadi, A., Schaffie, M., Manafi, Z. and Ranjbar, M. (2010). Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometallurgy. 104 (1): 99-105.
[8]. Panda, S., Akcil, A., Pradhan, N. and Deveci, H. (2015). Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresour Technol. 196: 694–706.
[9]. Konishi, Y., Asai, S., Tokushige, M. and Suzuki, T. (1999). Kinetics of the bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi. Biotechnology Progress. 15 (4): 681-688.
[10]. Castro, C., Urbieta, M.S., Cazón, J.P. and Donati, E.R. (2019). Metal biorecovery and bioremediation: whether or not thermophilic are better than mesophilic microorganisms. Bioresource technology.
[11]. Norris, P.R., Burton, N.P. and Clark, D.A. (2013). Mineral sulfide concentrate leaching in high temperature bioreactors. Miner Eng. 48:10–19.
[12]. Zhu, W., Xia, J., Yang, Y., Nie, Z., Peng, A. and Liu, H. (2013). Thermophilic archaeal community succession and function change associated with the leaching rate in bioleaching of chalcopyrite. Bioresour Technol. 133: 405–413.
[13]. Brierley, C.L. and Brierley, J.A. (1973). A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Canadian Journal of microbiology. 19 (2): 183-188.
[14]. Zillig, W., Stetter, K.O., Wunderl, S., Schulz, W., Priess, H. and Scholz, I. (1980). The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Archives of Microbiology. 125 (3): 259-269.
[15]. Segerer, A., Neuner, A., Kristjansson, J.K. and Stetter, K.O. (1986). Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. International Journal of Systematic and Evolutionary Microbiology. 36 (4): 559-564.
[16]. Vilcáez, J., Suto, K. and Inoue, C. (2008). Response of thermophiles to the simultaneous addition of sulfur and ferric ion to enhance the bioleaching of chalcopyrite. Minerals Engineering. 21 (15): 1063-1074.
[17]. Sand, W., Gehrke, T., Jozsa, P.G. and Schippers, A. (2001). (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy. 59 (2-3): 159-175.
[18]. Liang, Y.T., Han, J.W., Ai, C.B. and Qin, W.Q. (2018). Adsorption and leaching behaviors of chalcopyrite by two extreme thermophilic archaea. Transactions of Nonferrous Metals Society of China. 28 (12): 2538-2544.
[19] Mahmoud, A., Cézac, P., Hoadley, A.F., Contamine, F. and d'Hugues, P. (2017). A review of sulfide minerals microbially assisted leaching in stirred tank reactors. International Biodeterioration & Biodegradation. 119: 118-146.
[20]. Zhao, H., Zhang, Y., Zhang, X., Qian, L., Sun, M., Yang, Y. and Qiu, G. (2019). The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview. Minerals Engineering. 136: 140-154.
[21]. Esmailbagi, M. R., Schaffie, M., Kamyabi, A. and Ranjbar, M. (2018). Microbial assisted galvanic leaching of chalcopyrite concentrate in continuously stirred bioreactors. Hydrometallurgy. 180: 139-143.
[22]. Jafari, M., Abdollahi, H., Shafaei, S. Z., Gharabaghi, M., Jafari, H., Akcil, A. and Panda, S. (2019). Acidophilic bioleaching: a review on the process and effect of organic–inorganic reagents and materials on its efficiency. Mineral Processing and Extractive Metallurgy Review. 40 (2): 87-107.
[23]. Karamanev, D.G., Nikolov, L.N. and Mamatarkova, V. (2002). Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Miner Eng. 15 (5): 341–346.
[24]. Johnson, D.B., Kanao, T. and Hedrich, S. (2012). Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects. Front Microbiol. 3: 96.
[25]. Bonnefoy, V., Holmes, D.S. (2012). Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol. 14 (7): 1597–1611.
[26]. Bishop, J.L. and Murad, E. (2005). The visible and infrared spectral properties of jarosite and alunite. Am Mineral. 90 (7): 1100-1107.
[27]. Klauber, C. (2008). A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. Int J Miner Process. 86: 1–17
[28]. Vargas, T., Davis-Belmar, C.S. and Cárcamo, C. (2014). Biological and chemical control in copper bioleaching processes: When inoculation would be of any benefit? Hydrometallurgy. 150: 290–298.
[29]. Zhu, W., Xia, J., Yang, Y., Nie, Z., Zheng, L. and Ma, C. (2011). Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite. Bioresour Technol. 102 (4): 3877–3882.
[30]. Valdebenito-Rolack, E., Ruiz-Tagle, N., Abarzúa, L., Aroca, G. and Urrutia, H. (2017). Characterization of a hyperthermophilic sulphur-oxidizing biofilm produced by archaea isolated from a hot spring. Electron J Biotechnol. 25: 58–63.