[1]. Baykasoğlu, A., Güllü, H., Çanakçı, H. and Özbakır, L. (2008). Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl 35 (1):111-123.
[2]. Ceryan, N., Okkan, U. and Kesimal, A. (2012). Application of generalized regression neural networks in predicting the unconfined compressive strength of carbonate rocks. Rock Mech Rock Eng 45 (6):1055-1072.
[3]. Kahraman, S. and Yeken, T. (2010). Electrical resistivity measurement to predict uniaxial compressive and tensile strength of igneous rocks. B Mater Sci 33 (6):731-735.
[4]. Singh, V. and Singh, D. and Singh, T. (2001). Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int J Rock Mech Min Sci 38 (2):269-284.
[5]. Cai, M. (2010). Practical estimates of tensile strength and Hoek–Brown strength parameter m i of brittle rocks. Rock Mech Rock Eng 43 (2):167-184.
[6]. Karakus, M. (2011). Function identification for the intrinsic strength and elastic properties of granitic rocks via genetic programming (GP). Comput Geosci 37 (9):1318-1323.
[7]. Chen, G., Jia, Z. and Ke, J. (1997). Probabilistic analysis of underground excavation stability. Int J Rock Mech Min Sci 34 (3-4):51. e51-51. e16.
[8]. Heidari, M., Khanlari, G., Torabi Kaveh, M. and Kargarian, S. (2012). Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing. Rock Mech Rock Eng 45 (2):265-273.
[9]. Abolhosseini, H., Hashemi, M. and Ajalloeian, R. (2020). Evaluation of geotechnical parameters affecting the penetration rate of TBM using neural network (case study). Arab J Geosci 13 (4):183.
[10]. Iphar, M., Yavuz, M. and Ak, H. (2008). Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system. Environ Geol 56 (1):97-107.
[11]. Sezer, E.A., Nefeslioglu, H.A. and Gokceoglu, C. (2014). An assessment on producing synthetic samples by fuzzy C-means for limited number of data in prediction models. Appl Soft Comput 24:126-134.
[12]. Fattahi, H. (2016). Adaptive neuro fuzzy inference system based on fuzzy C–means clustering algorithm, a technique for estimation of TBM peneteration rate. Int J Optim Civil Eng 6 (2):159-171.
[13]. Fattahi, H .(2016). Indirect estimation of deformation modulus of an in situ rock mass: an ANFIS model based on grid partitioning, fuzzy c-means clustering and subtractive clustering. J Geosci 20 (5):681–690.
[14]. Karimpouli, S. and Fattahi, H. (2018), Estimation of P-and S-wave impedances using Bayesian inversion and adaptive neuro-fuzzy inference system from a carbonate reservoir in Iran. Neural Comput Appl 29 (11):1059-1072.
[15]. Fattahi, H. and Karimpouli, S. (2016). Prediction of porosity and water saturation using pre-stack seismic attributes: a comparison of Bayesian inversion and computational intelligence methods. Computat Geosci 20 (5):1075-1094.
[16]. Jang, J-S .(1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE T Syst Man Cyb 23 (3):665-685.
[17]. Weiling C, Lee J Fuzzy Logic for the Applications to Complex Systems. In: Proceedings of the International Joint Conference of CFSA/IFIS/SOFT on Fuzzy Theory and Applications. Singapore et al.: World Scientific, 1995.
[18]. Chiu, S.L. (1994). Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2 (3):267-278
[19]. Bezdek, J.C. (1973). Fuzzy mathematics in pattern classification. Cornell university, Ithaca.
[20]. Ghobadi, M.H., Mousavi, S., Heidari, M. and Rafie, B. (2015). The Prediction of the Tensile Strength of Sandstones from their petrographical properties using regression analysis and artificial neural network. Geopersia 5 (2):177-187.
[21]. Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S. and Hanachi, J. (2014). Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs. J Pet Sci Eng 122:643-656.
[22]. Jayalakshmi, T. and Santhakumaran, A. (2011). Statistical normalization and back propagation for classification. International Journal of Computer Theory and Engineering 3 (1):1793-8201.
[23]. Fattahi, H. (2016). Application of improved support vector regression model for prediction of deformation modulus of a rock mass. Eng Comput 32 (4):567-580.
[24]. Fattahi, H. (2017). Applying soft computing methods to predict the uniaxial compressive strength of rocks from schmidt hammer rebound values. Computat Geosci 21 (4):665-681. doi:10.1007/s10596-017-9642-3.
[25]. Fattahi, H. and Bazdar, H. (2017). Applying improved artificial neural network models to evaluate drilling rate index. Tunn Undergr Sp Tech 70:114-124.
[26]. Karimpouli, S. and Fattahi, H .(2018). Estimation of P-and S-wave impedances using Bayesian inversion and adaptive neuro-fuzzy inference system from a carbonate reservoir in Iran. Neural Comput Appl 29 (11):1059–1072.