[1]. Khandouzi, G.H., Mollashahi, M. and Moosakhani, M. (2019). Numerical simulation of crack propagation behavior of a semi-cylindrical specimen under dynamic loading. Frattura ed Integrità Strutturale. 50:29-37; DOI: 10.3221/IGF-ESIS.50.04.
[2]. Saghafi, H.A., Ayatollahi, M.R. and Sistani, M. (2010). A modified MTS criterion (MMTS) for mixed mode fracture toughness assessment of brittle materials. Material science and engineering: A. 527:5624-30.
[3]. Chen, C.S. Pan, E. and Amadei, B. (1998). Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. International journal of rock mechanics & mining sciences. 35:195-218.
[4]. Khandouzi, G.H., Mirmohhamadlou, A. and Memarian, H. (2014). Dynamic fracture behavior of cubic and core specimen under impact load. Rock engineering and rock mechanic. 149-54. DOI: 10.1201/b16955-22.
[5]. Franklin, J.A. and Atkinson, B.K. (1988). Suggested methods for determining the fracture toughness of rock. Int J Rock Mech Min Sci goe-mechanics Abstract. 25 (2):71–96.
[6]. Fowell, R.J., Xu, C. and Chen, J.F. (1995). Suggested method for determining mode-I fracture toughness using cracked chevron-notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min Sci goe-mechanics Abstract. 32 (1):57–64.
[7]. Chunan. T. and Xiaohe, X. (1990). A new method for measuring dynamic fracture toughness of rock, engineering fracture mechanics. International journal of fracture Mechanics. Vol. 35, NO. 4/S, pp. 783-791.
[8]. Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011). Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar. Engineering Fracture Mechanics. 78:2455–69.
[9]. Wang. Q.Z., Zhang, S. and Xie, H.P. (2009). Rock Dynamic Fracture Toughness Tested with Holed-cracked Flattened Brazilian Discs. Proceedings of the International Congress and Exposition, Orlando, Florida USA. 50:877-85.
[10]. Nikita, F. Morozov., Yuri, V. petrov., Vladimir, I. Smirnov. (2009). Dynamic Fracture of Rocks. 7th EUROMECH Solid Mechanics Conference. Lisbon, Portugal. September 7th-11th.
[11]. Chen, R. Xia, K., Dai, F., Lu, F. and Luo, S.N. (2009). Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Engineering Fracture Mechanics. 76:1268–76.
[12]. Dai. F., Chen, R., Iqbal, M.J. and Xia, K. (2010). Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters. International Journal of Rock Mechanics & Mining Sciences. 47: 606–13.
[13]. Yao. W. and Xia, K. (2019). Dynamic notched semi-circle bend (NSCB) method for measuring fracture properties of rocks: Fundamentals and applications. Journal of rock mechanics and geotechnical engineering. 11: 1066-1093.
[14]. Shi. X., Yao. W., Liu. D., Xia. K., Tang. T. and Shi. Y. (2019). Experimental study of the dynamic fracture toughness of anisotropic black shale using notched semi-circular bend specimens. Engineering fracture mechanics. 205: 136-151.
[15]. Liu. X.R., Yang. S.Q., Huang. Y.H. and Chen. J.L. (2019). Experimental study on the strength and fracture mechanism of sandstone containing elliptical holes and fissures under uniaxial compression. Engineering fracture mechanics. 205: 205-217.
[16]. Omer, Y.B., ozkan, o. and Atban, R.A. (2017). The effect of nanosilica on charpy impact behavior of glass/epoxy fibr rienfoced composite laminate. Periodical of engineering and natural science, 5: 322-327.
[17]. Abrate, S. (2011). Impact engineering of composite structures. Springer Wien New York, Printed in Italy. ISBN 978-3-7091-0522-1.
[18]. Lorriot, T., Martin, E., Quenisset, J.M. and Rebiere, J.P. (1998). Dynamic analysis of instrumented CHARPY impact tests using specimen deflection measurement and mass-spring models. International Journal of Fracture. (91):299-309.
[19]. Jiang, F. and Vecchio, K.S. (2009). Hopkinson Bar Loaded Fracture Experimental Technique: A Critical Review of Dynamic Fracture Toughness Tests. Applied Mechanics. DOI: 10.1115/1.3124647.
[20]. Chunhuan, G., Fengchun, J., Ruitang, L. and Yang Y. (2011). Size effect on the contact state between fracture specimen and supports in Hopkinson bar loaded fracture test. Int JFract.169:77–84.
[21]. Sheikh, A. K., Arif, A.F.M. and Qamar. S.Z. (2002). Determination of fracture toughness of tool steels. The 6th Saudi Engineering Conference, KFUPM, Dhahran. 5:169.
[22]. Zhang, B.Q. and Zhao, J. (2014). A review of dynamic experimental techniques and mechanical behavior of rock materials. Rock mechanic and rock engineering. (47):1411-78.
[23]. Manhan, M.P. and Stonesifer, R.B. (2007). Studied toward optimum instrumented striker designs. European structure integrity society. (30):221-8.
[24]. Knapp, J., Altmann, E., Niemann, J. and Warner, K.D. (1998). Measurement of shock events by means of strain gauges and accelerometers. Measurement Elsevier. (24):87-96.
[25]. Lou, J., Ying, K., He, P. and Bai, J. (2005). Properties of Savitzky–Golay digital differentiators. Digital Signal Processing. (18):122-36.
[26]. Ouchterlony, F. (1981). Extension of compliance and stress intensity formulas for the single edge cracked round bar in bending. ASTM STP 678. 166-182.
[27]. Saouma, V.E. (2000). Lecture Notes in fracture mechanics. CVEN.6831, University of Colorado, Boulder. CO:80309-0428, 2000.