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Keywords Abstract
The exploration methods are divided into the direct and indirect categories. Among these,
IP/RS attributes the indirect geophysical methods are more time- and cost-effective compared with the

direct methods. The target of the geophysical investigations is to obtain an accurate image
from the underground features. The Induced polarization (IP) is one of the common
methods used for metal sulfide ore detection. Since metal ores are scattered in the host
rock in the Zarshouran mine area, IP is considered as a major exploration method. Parallel
to IP, the resistivity data gathering and processing are done to get a more accurate
interpretation. In this work, we try to integrate the IP/RS geophysical attributes with
borehole grade analyses and geological information using the cuckoo search machine-
learning algorithm in order to estimate the silver grade values. The results obtained show
that it is possible to estimate the grade values from the geophysical data accurately,
especially in the areas without drilling data. This reduces the costs and time of the
exploration and ore reserves estimation. Comparing the results of the intelligent inversion
with the numerical methods, as the major tools to invert the geophysical data to the ore
model, demonstrate a superior correlation between the results.
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Numerical methods

1. Introduction

The geophysical methods are widely used in
underground deposit explorations. These methods
provide time- and cost-effective valuable

estimation in geology and mining engineering. In
order to do this, ANN is trained to find the pattern
between the input (coordinate and geophysical

information from the underground layers without
drilling (Selley et al., 2005). Among the different
geophysical methods, the induced polarization and
resistivity methods are the best for exploration of
the Carlin sulfide gold deposits (Yuval, 1995;
Hasani Pak & Shoja-at, 2000). Douglas has used
the induced polarization and resistivity data to
identify the depth of the mineralization (Douglas et
al., 1999).

On the other hand, the non-linearity and noise
reduction are the most significant characteristics of
the artificial neural networks (ANNS). One of the
usages of these networks, especially when they are
supervised (as machine-learning tools), is ore grade
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attributes) and the output (grade) data. Different
parameters influence the grade distribution, some
of which are not considered in the mathematical
models. Almost in all the grade estimation
methods, the most considerable item is the distance
to the known grade; hence, many other factors such
as geology, rock mechanics, and ore shape and type
should be considered. These parameters can be
regarded as the geophysical, geochemical, and
other data formats. Knowing the best places for
exploration boreholes, which can be concluded
from an accurate grade model, leads us to reduce
the costs of drilling and predict the shape and the
status of the ore body. In order to find this model,
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it is necessary to integrate the different above-
mentioned data formats. Without integrating and
processing the data, it is impossible to find the
optimum places for drilling (Porwal, 2006). The
machine-learning algorithms are powerful tools to
integrate different data and extract the pattern
between the input and output values (Bishop,
1995).

Singer and Kouda have used ANNSs to estimate the
distance from ore veins (Singer & Kouda, 1997).
They have also utilized the probability artificial
neural networks for the ore vein classification. In
1999, they made a comparison between the
potential maps produced from ANNs and the
weight of evidence methods (Singer & Kouda,
1999). The results obtained showed fewer error
values for the test data in the ANN model (2%)
compared to the 23% error in the weight of the
evidence method. Brown et al. (2000 & 2003) have
integrated GIS and ANN to produce the 1:100,000
ore potential map. They applied multi-layer
perceptron (MLP) artificial neural networks with a
68% accuracy in map production. The most
important weak point of MLPs is the influence of
the small numbers of the input data on the accuracy
of the model, which can be seen in this work.
Hosseinali and Alesheikh have used MLPs to
weigh different data layers and produce the copper
potential map (Hosseinali & Alesheikh, 2008). The
most significant part of their work was to use
ANNSs in order to find the shape of the ore body.
Harris and Pan have employed the probability and
regression ANNS to detect the ore veins (Harris &
Pan, 1999). The results of their work demonstrated
a better accuracy in the vein location prediction
using the probability networks. Some scientists
have used the integration of ANNs and other
methods for a potential map production such as the
integration of ANNs and remote sensing (Sanchez
etal., 2003). Others have integrated ANNSs with the
probability rules (Skabar, 2005).

Many studies have been done to integrate the
geophysical data wusing the artificial neural
networks such as processing the ground-
penetrating radar (GPR) data (Poulton & El-Fouly,
1991). Polton and Steinburg have integrated the
electromagnetic data using ANNs (Poulton et al.,
1992). Spichak and Popoa have made progress on
the magnetotelluric data via optimizing the ANN
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algorithm (Spichak & Popova, 2000). Some
research works have been done to gain data on
inversion resistivity using ANNs (El-Qady &
Ushijima, 2001; Calderdn-Macias et al., 2001;
Singh et al., 2005). Alimoradi et al. have used a
probability supervised neural network to integrate
the magnetic geophysical data in order to estimate
the depth of dikes (Alimoradi et al., 2011). In this
work, the geophysical data obtained from 17
profiles in the Zarshouran gold mine was integrated
using the new supervised Levenberg-Marquardt-
based backpropagation algorithm trained with the
cuckoo search (Nazri et al., 2013) to estimate the
values of silver grade in the areas without drilling
data. We considered 75 data points obtained from
six boreholes that were on the geophysical profiles.
The input data were the X, Y, and Z coordinates
and the IP and RS values. The output data was the
silver grade values from logs. Finally, the grade
distribution from the machine-learning algorithm
was modeled and compared with the geophysical
models of the profiles using the Res2Dinv
software.

2. Methodology

2.1. Site Geology

The Zarshouran gold deposit is located in the
north-western region of Iran. Figure 1 shows the
geographical location of this deposit. The gold
mineralization in the Zarshouran area is similar to
the disseminated epithermal deposits in
sedimentary rocks, especially carbonates (Carlin-
type), and can be seen in two different shapes:

e Very fine-grained particles, which have been
disseminated in the deposit with high values of
arsenic and sulfide;

e Forming an organic gold-carbon complex with
the organic carbon in the Zarshouran unit,
showing a high grade of gold.

Mineralization can be seen as veins in the silicified
zones in Zarshouran carbonaceous limestone with
regular veinlets or massive in the middle part of
Zarshouran. The minerals associated with gold in
the Zarshouran deposit are orpiment, realgar,
stibnite, sphalerite, galena, cinnabar, and copper.
Gang minerals are also quartz, fluorine, barite, and
calcite.
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Figure 1. Geographical location of Zarshouran deposit.

2.2. Data Acquisition and Preparation

The geophysical surveys (IP/RS) were carried out
in the Yeganli area in the south-western region of
the main open-pit of the Zarshouran gold deposit to
find new deposits in the studied area. Figure 2
presents the location of the Yeganli area with the
geophysical profiles on it. Since the mineralization
trend in this area is north west-south east, the
profiles are designed perpendicular to this trend. In

order to cover the Yeganli area, a rectangle with a
dimension of 1650 m*760 m was considered. All
profiles were performed in this rectangle.
Seventeen profiles with a distance of about 100 m
and the survey point spacing of 30 m on each
profile were carried out. Figure 3 illustrates the
name and the number of geophysical profiles. The
IP/RS array used in this work was pole-dipole with
222 surveyed points on each profile.
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Figure 3 shows the coordination of all profiles.
There are four electrodes in the pole-dipole array.
The current will be transmitted into the earth via A
and B electrodes, and the potential differences will
be received by M and N. M and N, which are close
to each other, are the potential dipoles, and A and
B, which are in the physical extreme, are the
current dipoles.
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Figure 3. Coordination of all profiles.
3. Levenberg-Marquardt Cuckoo Search
(CSLM) Machine-Learning Algorithm
Yang and Deb have introduced a metaheuristic
algorithm based on the cuckoo search in 2010
(Yang and Deb, 2010). This algorithm simulates
the parasitic behavior of a kind of bird called
cuckoo. The cuckoo lays its eggs in other bird’s
nests. Most of the time, the host bird cannot
recognize the cuckoo’s eggs from its eggs;
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however, if the parasite egg can be recognized, the
host bird will throw it away or leave the nest to
build another one. Some cuckoos are so
professional that they find a nest with eggs exactly
similar to theirs. This reduces the probability of
their eggs being thrown away or the nest being
abandoned and also increases the probability of
their chicks staying alive. The CS algorithm
follows three basic rules. These rules are as follow
(Nazri et al., 2013):

e Each cuckoo lays an egg and leaves it
randomly in a nest.

e  The best nest with the best eggs introduces the
next generation.

e  The number of host nests is fixed and the
cuckoo’s egg can be recognized by the host bird with
the probability of Pa [0.1].

If the cuckoo’s egg is detected by the host bird, it
will be thrown away or the host bird will leave the
nest. This situation can be approximated by the
partial probability of Pa from n nests. Reducing this
probability to zero means a 100% success of the
cuckoo in saving its eggs and requires the true
selection of the nests.

A flow diagram of CSLM is illustrated in Figure 4.
The cuckoo search is a metaheuristic algorithm
initiated by an initial random population. In this
algorithm, the weights are selected by the first part
of the diagram, and the network is trained by these
weights through the second part. The strength of
this algorithm is its capability in reducing errors
and increasing the accuracy and speed of the
network compared to other backpropagation
training algorithms.
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Figure 4. CSLM algorithm (Nazri et al., 2013).

Two different sets of data are necessary to prepare
the network, i.e. input and output. The input data is
the X, Y, and Z coordinates and the values of IP
and RS, which can be obtained from the
geophysical surveys as explained before. The
output data is the grades of the silver in boreholes
located on the geophysical profiles. The total
number of data is 75 data points from the boreholes
and geophysical surveys. The architecture of the
network is shown in Figure 5.

Since the main objective of this work was grade
estimation, the machine-learning (ML) method
was selected based on the following reasons
(Alimoradi, 2008):

e  Machine-learning tools are very powerful in
pattern recognition.

Network

\ Artificial
Neural Assay

Figure 5. Architecture of neural network.
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e They are suitable in cases with input-output
data.

MLs are computational models based on the human
understanding of the cortical structure of the brain
and cognition. Algorithmically, MLs are parallel
adaptive systems; therefore, they require training.
Back-propagation is a powerful method of
supervised learning developed after the seminal
work by Paul Werbos and David E. Rumelhart in
the 1970s and 80s (Demuth & Beale, 2002). The
details of various methods of ML design and
training are beyond the scope of this paper and are
explained elsewhere (e.g. see Hagan et al., 1996).
In this work, we successfully developed and
implemented a network with three hidden layers of
14, 12, and 8 nodes, respectively. The network
architecture is shown in Figure 6.

8 nodes
12 nodes —

14 nodes -

5nodes

)

sessene
sess s senee |

Input Layer

Hidden Layers

Figure 6. Our proposed network with three hidden

layers. The input layer has five nodes, the next
three hidden layers (intermediate layers) have 14,
12, and 8 nodes, respectively. The output layer is a
single node.
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4. Results and Discussion

We checked the CSLM results with 11 different
traditional algorithms for training the input data in
multi-layer perceptron artificial neural networks.
All these algorithms were used in this work to

determine the best-suited one. The results of each
algorithm are presented in Table 1 as the average
of 100 different random iterations for the best-
evaluated structure.

Table 1. Results for different training algorithms.

No Algorithm  Neurons in each hidden layer RMSyain  RMSiest
1 TraincsIm 14128 0.048 0.077
2 Trainlm 14128 0.073 0.092
3 Traingdx 789 0.090 0.100
4 Trainrp 2122 0.986 0.215
5 Traincgf 789 0.133 0.168
6 Traincgp 101112 0.108 0.117
7 Traincgb 1215 0.096 0.240
8 Trainscg 1214 16 0.078 0.080
9 Trainbfg 2021 22 0.098 0.223
10 Trainoss 810 0.145 0.134
11 Traingd 88 0.350 0.380
12 Traingdm 121314 0.123 0.173

Columns 4 and 5 in Table 1 are the average values and:

of root mean square (RMS) error for the train and '

test data in each training algorithm. According to n

the values of the RMS error, the best-fitted Z E, @)

algorithm is the Cuckoo Search Levenberg- Epain = =

Marquardt (TrainCSLM) with the minimum values
of RMS for the train and test data. The reduction in
the network error increases the reliability of the
network predictions. CS, as an optimization engine
for the BP algorithms, searches for a hybrid model
to find the best learning parameters. Since the
results of the machine-learning methods were not
unique, the best model was run in 20 iterations to
check the stability of the model. The RMS results
presented in Table 1 are the average values for 20
iterations.

The other training algorithms such as the one-step
secant and Fletcher-Powell conjugate gradient
were also used; however, they were discarded due
to their high tolerance for the test errors and low
reliability in our application (Demuth & Beale,
2002; Alimoradi, 2006). With a network of only
one or two hidden layers, over-training was often
observed. Over-training happens when the
network is highly trained but its predictions appear
erroneous for the test data. This can be the
consequence of the complexity of the problem
investigated here and modeled in our neural
network. Table 2 illustrates the minimum and
maximum error values for the TraincsIm algorithm.
The absolute training error Eain is calculated as
follows:

Ev=[rn-plE=p - P By = -p| (1)
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In Equation 1, r is the real grade value, p is the
predicted grade value from the network, and n is
the number of training data. Eis: iS the same as
Etrain; however, it is calculated from the test data.
RMSirain is the mean square error of the training
data and is obtained from Equation 3:

~ \/Ef +EZ+--+E?
Jn

RMSieq is calculated as RMSirain for the test data.

RMS @)

train —

Table 2. Minimum and maximum error values for
Traincslm algorithm.

Etrain Etest RM Strain RM Stest
0.0285 0.0409 0.04 0.077
0.0408 0.0968 0.0866 0.170

As it can be seen in Table 2, RMS of the error in
training is less than 10%. For the test results, RMS
of the error varied between 7% and 17% for the 100
iterations performed. The reduction in the network
error increases the reliability of the network
predictions and requires the availability of
additional training data. Finally, the parameters of
the network are shown in Table 3. The results of
the training are presented in Figure 7.

In Figure 7, R is the correlation coefficient between
the real and predicted silver grade values. The
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correlation coefficient is close to 1.0, implying a
good network performance. Our data in the
Zarshouran (Yeganli) site has only silver grade

values. We used the above-mentioned neural
network to classify the test data. The results
obtained are shown in Figure 8.

Table 3. Parameters of the best network.

Parameter

Value

Network

Training algorithm

Number of hidden layers

Input layer neurons

Output layer neurons
First hidden layer neurons

Second hidden layer neurons

Third hidden layer neurons

Trainparam.Goal

Trainparam.Epochs

Trainparam.Show
Learning rate

Backpropagation
Traincslm
3
5
1
14
12
8
0.008
1000
100
0.9

Outputs vs. Targets, R=0.90918

Data Points

(o] 5
0.9F Best Linear Fit ,O
------- Y=T 5t
0.8}

Predicted

0.6 0.8 1
Real

04

Figure 7. Correlation coefficient for the train data.

During testing, a correlation coefficient greater
than 0.85 was generally obtained (as exhibited in
Figure 8). This shows that the silver grade values
in the test data are practically well-correlated with
the network predictions; therefore, it deemed
appropriate to be exceedingly meticulous with the
reliability of the computational tool that was
developed as a part of this work to perform the task
of classification. This is evident in Figure 9,
remarkably demonstrating the performance of the
trained network.

The real values of silver grade shown by plus mark
in Figure 9 could be easily predicted by the back-
propagation neural network by multiply mark.
Although there are many points with zero values,
the network can still predict the higher values
accurately.
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Figure 8. Correlation coefficient for the test data.
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Figure 9. Predicted results for the test data.



Alimoradi et al./ Journal of Mining & Environment, Vol. 11, No. 3, 2020

5. Evaluating Machine-Learning Method
Compared with Geophysical Models

Since our dataset was limited to 75 data, many of
which had data a silver grade of zero, it was

4065250 4065350 4065450

Proposed drilling point using
geophysical investigation (BH-1)

4065550 4065650

necessary to validate the ML results with the
geophysical profiles. To do this, the silver grades
estimated using ML were modeled for each profile
(as shown in Figure 10).

4065750

-1

Figure 10. Silver grade model from ML for profile 1.

5.1. Profile 1

This geophysical profile is the northernmost profile
of the area with a 720 m length. The distance
between the survey points is 30 m, and the depth of
the investigation is about 230 m. The Res2Dinv
software was used to make the inversion on the
surveyed geophysical data in this profile. Figure 11
shows the inverted model of profile 1. The upper
part illustrates the model of chargeability, and the
lower part is the resistivity model.

Generally, there are two potential zones in this
section according to the chargeability profile (two
zones with high chargeability values as red zones).
According to the geological pieces of evidence, the
geophysicists of the project assumed the right part
of this section as the priority of the next exploration
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activities and introduced a borehole to this part
(BH-1 in the chargeability section). The position of
the introduced BH-1 is specified by the red arrow
in the ML section (Figure 10). The exact position
of the anomalous zone is in the right hand of this
arrow. ML could predict both potential zones
accurately with a difference of 50 m to the center
of the right-hand anomaly. This difference can be
due to the lack of enough test data (core analysis)
in this part of the section to correlate them with the
predicted values by ML. The depth of both
anomalies is about 100 m, and the distance between
the anomalous zones is also about 200 m, which
can be estimated and modeled accurately by the
ML method.
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Figure 11. Inverted values of geophysical data using the Res2DInv software for profile 1.

5.2. Profile 4
The length of this profile is 720 m with a 30-m

distance between the survey points, and the depth
of the investigation is about 190. Figures 13 and 14
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illustrate the inverted geophysical sections of
chargeability and resistivity and the estimated
silver grade section using the new machine-
learning tool.
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Figure 12. Inverted values of the geophysical data using Res2DInv software for profile 4.
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It can be concluded from the geophysical sections
(Figure 12) that there is a major anomaly in the
right-hand part of the profile. This anomaly is
about 120 m far from the end of the profile and has
a depth of 50 m. Figure 13 shows that ML is able
to predict the horizontal location of the anomaly
very accurately; however, the predicted depth is
about 25 m deeper than the actual depth. This also
can be due to the lower resolution of ML according
to the quality and lack of the core analysis data.

5.3. Profile 9

The length of this profile is 720 m with a 30-m
distance between the survey points, and the depth
of the investigation is about 190. Figures 15 and 16
illustrate inverted the geophysical sections of

p
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rofile 9

Profile 9

Chaldagh

chargeability and resistivity and the estimated
silver grade section using machine-learning. Figure
14 shows that the main anomaly of this section is
located in the middle part of the profile with a depth
of about 150 m. Borehole 3 was proposed in the
middle of the anomaly according to the Res2Dinv
model. Although ML has predicted the location of
the maximum grade (more than 13.5 ppm)
correctly, according to Figure 15, the shape of the
anomaly is extended into the end of the profile. The
chargeability section also shows the extension of
the anomaly to the end of the profile by increasing
the depth. Moreover, the resistivity section
confirms the existence of the anomaly in the right-
hand part of the section according to the lower
values of the resistivity in this part.

720

Unit Electrode Spacing=30.0 m

Unit Electrode Spacing=30.0 m

Figure 14. Inverted values of the geophysical data using the Res2DInv software for profile 9.
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Figure 15. Silver grade model from ANN and surfer for profile 9.

6. Conclusions

The measurement noise and the non-linear
relationship between the geophysical attributes and
ore grade quantities exert difficulties in performing
geophysical interpretation reliably. The IP/RS
method, as a geophysical-based nondestructive
method, is common in problems of predicting
potential zones in sulfide ores. Consequently, other
viable methods of prediction such as the one
proposed in this paper may be deemed necessary in
real cases. We successfully implemented and tested
an artificially intelligent computational agent (a
new cuckoo search-based machine-learning tool)
to consider the unknown non-linear relationships
between the system variables in our prediction
problem (foreseeing the ore grade). Our approach
uses the X, Y, and Z coordinates and the IP and RS
values as the input system variables. The network
seeks the relationship between these input
variables adaptively and strives to a desirable
output, which is, in our case, the real ore grade
values obtained from the direct sampling and
analyzing after borehole drilling.

We considered a real site to test our methodology.
The Yeganli area in the Zarshouran gold mine case
showed that the network could train itself very well
with the practically complete correlation between
the real ore grade values and the predicted ones (a
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correlation coefficient R close to one). As a
double-check, we compared the results of the
machine-learning technique with the numerical
modeling of the geophysical data performed by
Res2DInv. The Res2DInv numerical inversion
illustrates the best location for further drillings as
the targets of mineral deposits. The network also
exhibited a remarkable capability in estimating the
unknown zones by comparing the results of ML
prediction with the numerical models in three
geophysical profiles. The results obtained showed
that the network did predict these profiles reliably.
There were some disparities in some places
between the results of ML and Res2DInv
numerical models. We speculate the followings as
the possible reasons for this peculiarity:

e The locations of the drilled holes were not
exactly on the geophysical profiles.

e The data scattering of the outputs was limited,
and there was a specific skewness in data.

e The number of training data (80% of 75 data
points) is not sufficient for the network to
consider all the different possibilities of various
conditions.

e  The nature of the machine-learning tools is soft
computing, and numerical methods are hard.
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e Earth heterogeneity leads us to use the soft
computing tools to recognize the hidden pattern
better.

The remedy would be obtaining more drilling
samples from the profiles and finding the real ore
grade values, then augmenting the training of the
neural network with the new data and ore grade
values. It is also recommended to use the output
data with a suitable distribution of all ranges (if
possible) in other cases, specifically in
disseminated sulfide deposits, in which it has been
proven that there is a proper relationship between
IP/RS and the mineral grade values. We speculate
this would enhance the accuracy of the network
predictions considerably.
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