[1] Haldar, S.K. (2013). Mineral Exploration: Principles and Applications, Elsevier, 372 p.
[2] Galuszka, A. (2007). A review of geochemical background concepts and an example using data from Poland. Environmental Geology 52(5): 861-870.
[3] Wellmer, F.W. (1998). Statistical Evaluations in Exploration for Mineral Deposits, Springer-Verlag Berlin Heidelberg, 379 p.
[4] Chork, C.Y. (1990). Unmasking multivariate anomalous observations in exploration geochemical data from sheeted-vein tin mineralization near Emmaville, N.S.W., Journal of Geochemical Exploration 37 (2): 205-223.
[5] Geranian, H., Mokhtari, A.R. and Cohen, D.R. (2013). A comparison of fractal methods and probability plots in identifying and mapping soil metal contamination near an active mining area. Iran, Science of the Total Environment 463-464: 845–854.
[6] Wang, J. and Zuo, R. (2016). An extended local gap statistic for identifying geochemical anomalies, Journal of Geochemical Exploration 164: 86–93.
[7] Ghavami-Riabia, R., Seyedrahimi-Niaraqa, M.M., Khalokakaiea, R. and Hazarehb, M.R. (2010). U-spatial statistic data modeled on a probability diagram for investigation of mineralization phases and exploration of shear zone gold deposits. Journal of Geochemical Exploration 104 (1–2): 27–33.
[8] Cheng, Q., Xu, Y. and Grunsky, E. (2000). Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation. Natural Resources Research 9: 43–52.
[9] Cheng, Q., Agterberg, F.P. and Bonham-Carter, G.F. (1996). A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration 56 (3): 183-195.
[10] Daya, A.A. (2015). Comparative study of C–A, C–P, and N–S fractal methods for separating geochemical anomalies from background: A case study of Kamoshgaran region, northwest of Iran. Journal of Geochemical Exploration 150: 52–63.
[11] Jimenez-Espinosa, R., Sousa, A.J. and Chica-Olmo, M. (1993). Identification of geochemical anomalies using principal component analysis and factorial kriging analysis. Journal of Geochemical Exploration 46: 245-256.
[12] Cao, M., and Lu, L. (2015). Application of the multivariate canonical trend surface method to the identification of geochemical combination anomalies. Journal of Geochemical Exploration 153 (1): 1–10.
[13] Meng, H.D., Song, Y.C., Son, F.Y. and Shen, H.T. (2011). Research and application of cluster and association analysis in geochemical data processing. Computational Geosciences 15: 87–98.
[14] Zaremotlagh, S., Hezarkhani, A. and Sadeghi, M. (2016). Detecting homogenous clusters using whole-rock chemical compositions and REE patterns: A graph-based geochemical approach. Journal of Geochemical Exploration 170: 94–106.
[15] Collyer, P.L. and Merriam, D.F. (1973). An application of cluster analysis in mineral exploration. Mathematical Geosciences 5 (3): 213–223.
[16] Roy, A. (1981). Application of cluster analysis in the interpretation of geochemical data from the Sargipalli lead-zinc mine area, Sundergarh district, Orissa (India). Journal of Geochemical Exploration 14: 245–264.
[17] Ellefsen, K.J. and Smith, D.B. (2016). Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model. Applied Geochemistry 75: 200–210.
[18] Morrison, J.M., Goldhaber, M.B., Ellefsen, K.J. and Mills, C.T. (2011). Cluster analysis of a regional-scale soil geochemical dataset in northern California. Applied Geochemistry 26: S105–S107.
[19] Fatehi, M. and Asadi, H.H. (2017). Application of semi-supervised fuzzy c-means method in clustering multivariate geochemical data, a case study from the Dalli Cu-Au porphyry deposit in central Iran. Ore Geology Reviews 81: 245–255.
[20] Ellefsen, K.J., Smith, D.B. and Horton, J.D. (2014). A modified procedure for mixture-model clustering of regional geochemical data. Applied Geochemistry 51: 315-326.
[21] Aggarwal, C.C. and Reddy, C.K. (2013). Data Clustering: Algorithms and Applications. CRC Press, 652 p.
[22] Han, J., Kamber, M. and Pei, J. (2011). Data mining: concepts and techniques, 3rd Edition. Morgan Kaufmann, 744 p.
[23] Brauer, S. (2014). A Probabilistic Expectation Maximization Algorithm for Multivariate Laplacian Mixtures. MS Thesis of Paderborn University, 78 p.
[24] Fan, J. (2019). OPE-HCA: an optimal probabilistic estimation approach for hierarchical clustering algorithm. Neural Computing and Applications 31: 2095-2105.
[25] Krishnapuram, R. and Keller, J.M. (1993). A Possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems 1 (2): 98–110.
[26] Xie, Z., Wang, S. and Chung, F.L. (2008). An enhanced possibilistic C-Means clustering algorithm EPCM. Soft Computing 12: 593–611.
[27] Salgado, P. and Igrejas, G. (2007). Probabilistic Clustering Algorithms for Fuzzy Rules Decomposition. IFAC Proceedings Volumes 40 (21): 115-120.
[28] Celeux, G. and Diebolt, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational Statistics Quarterly 2: 73–82.
[29] Quost, B. and Denœux, T. (2016). Clustering and classification of fuzzy data using the fuzzy EM algorithm. Fuzzy Sets and System 286 (1): 134-156.
[30] González, M., Minuesa, C. and Puerto, I. (2016). Maximum likelihood estimation and expectation–maximization algorithm for controlled branching processes. Computational Statistics & Data Analysis 93: 209-227.
[31] Hu, T. and Sung, S.Y. (2006). A hybrid EM approach to spatial clustering. Computational Statistics & Data Analysis 50: 1188–1205.
[32] Kriegel, H.P. and Pfeifle, M. (2005). Density-based clustering of uncertain data. In Proc. of KDD2005, New York, NY, USA, 672–677.
[33] Xu, H. and Li, G. (2008). Density-Based Probabilistic Clustering of Uncertain Data. International Conference on Computer Science and Software Engineering (CSSE 2008), Wuhan, China, 474-477.
[34] Zhang, X., Liu, H., Zhang, X. and Liu, X. (2014). Novel Density-Based Clustering Algorithms for Uncertain Data. Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec, Canada, 2191- 2197.
[35] Beckmann, N., Kriegel, H.P., Schneider, R. and Seeger, B. (1990). The R*-tree: an efficient and robust access method for points and rectangles. Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, 322-331.
[36] Erdem, A. and Gűndem, T.I. (2014). M-FDBSCAN: A multicore density-based uncertain data clustering algorithm. Turkish Journal of Electrical Engineering & Computer Sciences 22: 143 – 154.
[37] Halkidi, M., Batistakis, Y. and Vazirgiannis, M. (2002). Clustering validity methods: Part I. ACM SIGMOD Record 31(2): 40-45.
[38] Rendón, E., Abundez, I., Arizmendi, A. and Quiroz, E.M. (2011). Internal versus External cluster validation indexes. International Journal of Computers and Communications 5 (1): 27-34.
[39] Halkidi, M., Batistakis, Y. and Vazirgiannis, M. (2002). Clustering validity checking methods: Part II. ACM SIGMOD Record 31 (3).
[40] Gurrutxaga, I., Albisua, I., Arbelaitz, O., Martın, J.I., Muguerza, J., Pérez, J.M. and Perona, I. (2010). SEP/COP: An efficient method to find the best partition in hierarchical clustering based on a new cluster validity index. Pattern Recognition 43: 3364–3373.
[41] Liu, Y., Li, Z., Xiong, H., Gao, X. and Wu, J. (2010). Understanding of Internal Clustering Validation Measures. IEEE International Conference on Data Mining, 911-916.
[42] Bröcker, M., Fotoohi Rad, G., Abbaslu, F. and Rodionov, N. (2014). Geochronology of high-grade metamorphic rocks from the Anjul area Lut block, eastern Iran. Journal of Asian Earth Sciences 82: 151–162.
[43] Mirnejad, H., Blourian, G.H., Kheirkhah, M., Akrami, M.A. and Tutti, F. (2008). Garnet bearing rhyolite from Deh-Salm area, Lut block, Eastern Iran: anatexis of deep crustal rocks. Mineral. Petrol. 94: 259–269.
[44] Asadi, S. and Kolahdani, S. (2014). Tectono-magmatic evolution of the Lut block, eastern Iran: A model for spatial localization of porphyry Cu mineralization. Journal of Novel Applied Sciences 3: 1058-1069.
[45] Mazhari, S.A. and Safari, M. (2013). High-K Calc-alkaline Plutonism in Zouzan, NE of Lut Block, Eastern Iran: An Evidence for Arc Related Magmatism in Cenozoic. Journal Geological Society of India 81: 698-708.
[46] Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Yang, H.M., Chu, C. H., Lee, H.Y. and Lo, C.H. (2012). Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut-Sistan region, eastern Iran. Chemical Geology 306–307: 40–53.
[47] Mahmoudi, S., Masoudi, F., Corfu, F. and Mehrabi, B. (2010). Magmatic and metamorphic history of the Deh-Salm metamorphic Complex, Eastern Lut block, (Eastern Iran), from U–Pb geochronology. Int. J. Earth Sci. 99: 1153–1165.
[48] Malekzadeh Shafaroudi, A. and Karimpour, M.H. (2015). Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead–zinc (–copper) deposit, Eastern Iran. Journal of African Earth Sciences 107: 1–14.
[49] Arjmandzadeh, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Medina, J.M. and Homan, S.M. (2011). Two-sided asymmetric subduction; implications for ectonomagmatic and metallogenic evolution of the Lut Block, eastern Iran. Journal of Economic Geology 3 (1): 1-14.
[50] Wilmsen, M., Fürsich, F.T. and Majidifard, M.R. (2013). The Shah Kuh Formation, a latest Barremian e Early Aptian carbonate platform of Central Iran (Khur area, Yazd Block). Cretaceous Research 39: 183-194.
[51] Arjmandzadeh, R. and Santos, J.F. (2014). Sr-Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu-Mo porphyry mineralizing intrusive from Lut Block, estern Iran. Int J Earth Sci (Geo Rundsch) 103: 123-140.
[52] Arjmandzadeh, R., Karimpour, M.H., Mazaheri, S.A., Santos, J.F., Medina, J.M. and Homam, S.M. (2011b). Sr-Nd isotope geochemistry and petrogenesis of Chah-Shaljami granitoids (Lut Block, Eastern Iran). Journal of Asian Earth Science 41: 283-296.
[53] Eshraghi, H., Rastad, E. and Motevali, K. (2010). Auriferous sulfides from Hired gold mineralization, South Birjand, Lut Block, Iran. J Miner Petrol Sci 105: 167-174.
[54] Ghorban, M. (2013). The economic geology of Iran: Mineral Deposits and Natural Resources, Springer Publication, Netherlands, 569p.
[55] Pirajno, F. (2009). Hydrothermal Processes and Mineral Systems, Springer Publication, Australia, 1273 p.
[56] White, W.M. (2013). Geochemistry, Wiley-Blackwell Publications, 668 p.
[57] Santoa, A.P., Jacobsenb, S.B. and Baker, J. (2004). Evolution and genesis of calc-alkaline magmas at Filicudi Volcano, Aeolian Arc (Southern Tyrrhenian Sea, Italy). Lithos 72: 73– 96.
[58] Hawkes, H.E. and Webb, J.S. (1962). Geochemistry in Mineral Exploration. New York: Harper & Row, 415p.
[59] Clark, R.N., Swayze, G.A., Gallagher, A.J., King, T.V.V. and Calvin, W.M. (1993). The U. S. Geological Survey, Digital Spectral Library Version 1: 0.2 to 3.0 μm. U.S. Geological Survey, Open File Report 93-592.
[60] Kruse, F., Lefkoff, A., Boardman, J., Heidebrecht, K., Shapiro, A., Barloon, P. and Goetz, A. (1993). The spectralimage processing system (SIPS) - interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment,44: 145-163.
[61] Nabavi, M.H. (1976). An introduction to geology of Iran. Geological Survey of Iran Publication, Tehran, Iran, 110 p. (in Persian).
[62] Stӧcklin, J. (1968). Structural history and tectonics of Iran; a review. The American Association of Petroleum Geologists, Bulletin 52 (7): 1229-1258.
[63] Thompson, M. and Howarth, R.J. (1976). Duplicate analysis in geochemical practice. Part 1: Theoretical approach and estimation of analytical reproducibility. Analyst 101: 690–698.
[64] Zhou, S., Zhou, K., Wang, J., Yang, G. and Wang, S. (2017). Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies. Frontiers of Earth Science 12 (3): 491–505.