Document Type : Original Research Paper


Department of Mining Engineering, University of Gonabad, Gonabad, Iran


Over the past two decades, the frequency domain (FD) of the geochemical data has been studied by some researchers. Metal zoning is one of the challenging subjects in the mining exploration, where a new scenario has been proposed for solving this problem in FD. Three mineralization areas including the Dalli (Cu-Au), Zafarghand (Cu-Mo), and Tanurcheh (Au-Cu) mineralization areas are selected for this investigation. After transferring the surface geochemical data to FD, the geochemical signals obtained are filtered using the wavenumber-based filters. The high and moderate frequency signals are removed, and the residual signals are interpreted by the statistical method of principal component analysis (PCA). In order to discriminate the deep metal ore deposits, the principal factors of elemental power spectrum extracted by PCA are depicted in a novel diagram (PC1 vs. PC2). This approach indicates that the geochemical data in the Dalli and Zafarghand deep ore deposits have similar frequency behaviors. The Au, Mo, and Cu elements in these two areas are discriminated from the Au, Mo, and Cu mineralization elements of the Tanurcheh area as a deep non-mineralization zone in this diagram. This new criterion used for distinguishing the buried ore deposits and deep non-mineralization zones is properly confirmed by the exploratory deep drilled boreholes. The geochemical anomaly filtering demonstrates that the strong signatures of deep mineralization are associated with the low frequency geochemical signals at the surface, and the buried mineralization areas with weak surface anomaly can be identified using the geochemical FD data.


[1]. Sifuzzaman M., Islam M. R, and Ali M.Z., 2009. Application of wavelet transform and its advantages compared to Fourier transform.
[2]. Cheng Q., Xu Y., Grunsky E., 1999. Intergrated spatial and spectrum analysis for geochemical anomaly separation. In: Proc. Intern. Assoc. for Math. Geology Meeting, S. J. Lippard, A. Naess, and R. Sinding-Larsen eds., Trondheim, Norway, 1: 87-92.
[3]. Cheng Q., Xu Y., and Grunsky E., 2000. Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation, Natural Resources Research, Vol. 9, No. 1.
[4]. Parsa, M., Maghsoudi, A., Yousefi, M., and Sadeghi, M., 2017. Multifractal analysis of stream sediment geochemical data: Implications for hydrothermal nickel prospection in an arid terrain, eastern Iran. Journal of Geochemical Exploration, 181, pp. 305-317.
[5]. Roshanravan B., Tabatabaei S.H., Kreuzer O., Moini H., and Parsa M., 2020. Structural and non-structural statistical methods: implications for delineating geochemical anomalies. Applied Earth Science. 129 (3): pp. 111-121.
[6]. Koohzadi F., Afzal P., Jahani D., and Pourkermani M., 2020. Geochemical exploration for Li in regional scale utilizing Staged Factor Analysis (SFA) and Spectrum-Area (S-A) fractal model in north central Iran. Iranian Journal of Earth Sciences (In press).
[7]. Cao L., Cheng Q., 2012. Quantification of anisotropic scale invariance of geochemical anomalies associated with Sn-Cu mineralization in Gejiu, Yunan Province, China, Geochemical Exploration 122: 47–54.
[8]. Saljoughi B.S., Hezarkhani A, 2019. Identification of geochemical anomalies associated with Cu mineralization by applying spectrum-area multi-fractal and wavelet neural network methods in Shahr-e-Babak mining area, Kerman, Iran. Journal of Mining and Environment. 10 (1): 49-73.
[9]. Zuo R., Carranza E.J.M, and Cheng Q., 2012. Fractal/multifractal modelling of geochemical exploration data. Journal of Geochemical Exploration 122, 1-3.
[10]. Zuo R., Xia Q., Zhang D., 2013. A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas. Applied Geochemistry 33, 165-172.
[11]. Zuo R., Wang J., 2015. Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration.
[12]. Ghezelbash R., Maghsoudi A., and Daviran M., 2019. Combination of multifractal geostatistical interpolation and spectrum–area (S–A) fractal model for Cu–Au geochemical prospects in Feizabad district, NE Iran. Arabian Journal of Geosciences. 12 (5): 152.
[13]. Maghsoudi A., Yousefi M., and Carranza E.J.M., 2017. Multifractal interpolation and spectrum–area fractal modelling of stream sediment geochemical data: implications for mapping exploration targets. Journal of African Earth Sciences, 128, 5-15.
[14]. Zuo R., 2011. Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration. 111 (1-2): 13-22.
[15]. Wang H., Zuo R., 2015. A comparative study of trend surface analysis and spectrum–area multifractal model to identify geochemical anomalies. Journal of Geochemical Exploration. 155: 84-90.
[16]. Afzal P., Fadakar Alghalandis Y., Moarefvand P., Rashidnejad Omran N., and Asadi Haroni, H., 2012. Application of power-spectrum-volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran, Journal of Geochemical Exploration 112, 131–138.
[17]. Khalili H., Afzal, P., 2018. Application of spectrum-volume fractal modeling for detection of mineralized zones. Journal of Mining and Environment 9: 371-378.
[18]. Shahi H., Ghavami Riabi R., Kamkar Ruhani A., and Asadi Haroni H., 2015. Prediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit. Journal of Mining and Environment. 6 (2): pp. 225-236.
[19]. Shahi H., Ghavami. R, Rouhani A.K., 2016. Detection of deep and blind mineral deposits using new proposed frequency coefficients method in frequency domain of geochemical data. Journal of Geochemical Exploration.
[20]. Mahdiyanfar H., 2019. Detection of Mo geochemical anomaly in the depth using a new scenario based on the spectrum–area fractal analysis. Journal of Mining and Environment, DOI: 10.22044/JME.2019.7944.1662.
[21]. Johnson R.A., Wichern D.W., 2002. Applied multivariate statistical analysis (Vol. 5, No. 8). Upper Saddle River, NJ: Prentice hall.
[22]. Parsa M., Maghsoudi A., Carranza E.J.M., and Yousefi M., 2017. Enhancement and mapping of weak multivariate stream sediment geochemical anomalies in Ahar Area, NW Iran. Natural Resources Research. 26 (4): pp. 443-455.
[23]. Lisitsin V., 2015. Spatial data analysis of mineral deposit point patterns: Applications to exploration targeting. Ore Geology Reviews, 71, pp. 861-881.
[24]. Parsa M., Maghsoudi A., and Yousefi M., 2018. Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran. Ore Geology Reviews, 92, pp. 97-112.
[25]. Jolliffe I.T. and Cadima, J., 2016. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374 (2065): p. 20150202.
[26]. Naik G.R. ed., 2017. Advances in Principal Component Analysis: Research and Development. Springer.
[27]. Cios K.J., Swiniarski R.W., Pedrycz W., and Kurgan L.A., 2007. The knowledge discovery process. Data Mining. Springer, US, pp. 9–24.
[28]. Dobrin M.B., Savit C. H., 1988. Geophysical propecting: McGraw-Hill Book Co., New York, 867 p.
[29] Shahi H., Ghavami R., Kamkar Rouhani A., and Asadi-Haroni H., 2014. Identification of mineralization features and deep geochemical anomalies using a new FT-PCA approach, journal of Geopersia, 4 (2): 101-110.
[30]. Darabi-Golestan F., Ghavami-Riabi R., and Asadi-Harooni H., 2013. Alteration, zoning model, and mineralogical structure considering lithogeochemical investigation in Northern Dalli Cu–Au porphyry. Arabian Journal of Geosciences, 6 (12): 4821-4831.
[31]. Asadi Haroni H., 2008. First Stage Drilling Report on Dalli Porphyry Cu-Au Prospect, Central Province of Iran, Technical Report.
[32]. Asadi Haroni H., 2013. Preliminary Exploration at Zafarghand Porphyry Copper Property, Central Iran.
[33]. Farzamian M., Rouhani A.K., Yarmohammadi A., Shahi H., Sabokbar H.F., and Ziaiie M., 2016. A weighted fuzzy aggregation GIS model in the integration of geophysical data with geochemical and geological data for Pb–Zn exploration in Takab area, NW Iran. Arabian Journal of Geosciences, 9 (2): 104.
[34]. Karimpour M., 2004. Geological report of Tanurcheh mineralization area, Zarmehr Company.
[35]. Cheng Q., 2014. Vertical distribution of elements in regolith over mineral deposits and implications for mapping geochemical weak anomalies in covered areas. Geochemistry: Exploration, Environment, Analysis, 14 (3): 277-289.
[36]. Cohen D.R., Kelley D.L., Anand R., and Coker W.B., 2010. Major advances in exploration geochemistry, 1998–2007. Geochemistry: Exploration, Environment, Analysis, 10 (1): 3-16.
[37]. Cheng Q., 2012. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55–70.
[38]. Lin J., Kang L., Liu C., Ren T., Zhou H., Yao Y., and Zhang M., 2019. The frequency-domain airborne electromagnetic method with a grounded electrical source. Geophysics, 84 (4): 1-43.