[1]. Handy, R.L. (1985). The Arch in Soil Arching, J. Geotech. Eng., 111 (3): 302–318
[2]. Janssen, H.A. (1895). Versuche uber getreidedruck in Silozellen, Zeitschrift des Vereins Dtsch. Ingenieure, 35:1045–1049.
[3]. Terzaghi, K. (1943). Theoretical soil mechanics. John Wiley & Sons, New York., Theor. soil Mech. John Wiley Sons, New York.
[4]. Wang, W.L. and Yen, B.C. (1974). Soil arching in slopes, J. Geotech. Eng.
[5]. Bosscher, P.J. and Gray, D.H. (1986). Soil Arching in Sandy Slopes, J. Geotech. Eng., 112 (6): 626–645.
[6]. Pipatpongsa, T., Khosravi, M.H., and Takemura, J. (2013). Physical modeling of arch action in undercut slopes with actual engineering practice to Mae Moh open-pit mine of Thailand, in Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE18), 1: 943–946.
[7]. Zhou, J., Qin, C., Pan, Q., and Wang, C. (2019). Kinematic analysis of geosynthetics-reinforced steep slopes with curved sloping surfaces and under earthquake regions, J. Cent. South Univ., 26 (7): 1755–1768.
[8]. Zhang, R., Long, M., Lan, T., Zheng, J., and Geoff, C. (2020). Stability analysis method of geogrid reinforced expansive soil slopes and its engineering application, J. Cent. South Univ., 27 (7): 1965–1980.
[9]. Hedayat, A., Haeri, H., Hinton, J., Masoumi, H., and Spagnoli, G. (2018). Geophysical signatures of shear-induced damage and frictional processes on rock joints, J. Geophys. Res. Solid Earth, 123 (2): 1143-1160.
[10]. Sarfarazi, V., Haeri, H., and Khaloo, A. (2016). The effect of non-persistent joints on sliding direction of rock slopes, Comput. Concr., 17 (6): 723–737.
[11]. Sun, S.W., Zhu, B.Z., and Wang, J.C. (2013). Design method for stabilization of earth slopes with micropiles, Soils Found., 53 (4): 487–497.
[12]. Chen, C.Y. and Martin, G.R. (2002). Soil-Structure interaction for landslide stabilizing piles, Comput. Geotech., 29 (5): 363–386.
[13]. Hosseinian, S. and Seifabad, M.C. (2013). Optimization the Distance between Piles in Supporting Structure Using Soil Arching Effect, 3 (6): 386–391.
[14]. Li, C., Wu, J., Tang, H., Wang, J., Chen, F., and Liang, D. (2015). A novel optimal plane arrangement of stabilizing piles based on soil arching effect and stability limit for 3D colluvial landslides, Eng. Geol., 195: 236–247.
[15]. Ausilio, E., Conte, E., and Dente, G. (2001). Stability analysis of slopes reinforced with piles, Comput. Geotech., 28 (8): 591–611.
[16]. Kourkoulis, R., Gelagoti, F., Anastasopoulos, I., and Gazetas, G. (2011). Slope Stabilizing Piles and Pile-Groups: Parametric Study and Design Insights, J. Geotech. Geoenvironmental Eng., 137 (7): 663–677.
[17]. Kourkoulis, R., Gelagoti, F., Anastasopoulos, I., and Gazetas, G. (2011). Hybrid method for analysis and design of slope stabilizing piles, J. Geotech. Geoenvironmental Eng., 138 (1): 1–14.
[18]. Pipatpongsa, T., Khosravi, M.H., Doncommul, P., and Mavong, N. (2009). Excavation problems in Mae Moh lignite open-pit mine of Thailand, in Proceedings of Geo-Kanto2009, 12: 459–464.
[19]. Khosravi, M.H., Pipatpongsa, T., Takahashi, A., and Takemura, J. (2011). Arch action over an excavated pit on a stable scarp investigated by physical model tests, Soils Found., 51 (4): 723–735.
[20]. Khosravi, M.H., Takemura, J., Pipatpongsa, T., and Amini, M. (2016). In-flight excavation of slopes with potential failure planes, J. Geotech. Geoenvironmental Eng., 142 (5): 601-611.
[21]. Khosravi, M.H., Tang, L., Pipatpongsa, T., Takemura, J., and Doncommul, P. (2012). Performance of counterweight balance on stability of undercut slope evaluated by physical modeling, Int. J. Geotech. Eng., 6 (2): 193–205.
[22]. Sarfaraz, H., Khosravi, M.H., Pipatpongsa, T., and Bakhshandeh Amnieh, H. (2020). Application of Artificial Neural Network for Stability Analysis of Undercut Slopes, Int. J. Min. Geo-Engineering, In-press.
[23]. Terzaghi, K. (1950). Mechanism of landslides, Appl. Geol. to Eng. Pract. Geol. Soc., 83–123.
[24]. Khosravi, M.H., Sarfaraz, H., Esmailvandi, M., and Pipatpongsa, T. (2017). A Numerical Analysis on the Performance of Counterweight Balance on the Stability of Undercut Slopes, Int. J. Min. Geo-Engineering, 51 (1): 63–69.
[25]. Inc, I.G. (2015). FLAC3D: Fast Lagrangian Analysis of Continua in 3 Dimension.
[26]. Myer, R.H. and Montgomery, D.C. (2002). Response surface methodology: process and product optimization using designed experiment. Taylor & Francis.
[27]. Montgomery, D.C. (2017). Design and analysis of experiments. John wiley & sons.
[28]. Anderson, M.J. and Whitcomb P.J. (2004). Optimizing processes using response surface methods for design of experiments., CRC Pres.