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 The uncertainty-based mine evaluation and optimization have been regarded as a 
critical issue. However, it has received less attention in the underground mines than in 
the open-pit mines due to the diversity of the underground mining methods, and the 
underground mining parameters' complexity. The grade and commodity price 
uncertainties play essential roles in mining projects. Mine planning by not 
incorporating these uncertainties is accompanied by risks. The evaluation and risk 
assessment of the mine plans is possible through evaluating the mineable reserve in 
the presence of such uncertainties. In the present work, we evaluate the effects of grade 
and commodity price uncertainties on the underground mining stope optimization and 
the resultant mineable reserve. In this regard, the stope boundary is studied both 
deterministically and stochastically in the presence of the grade and price 
uncertainties. For this purpose, in this work, we implement the conditional simulation 
in order to generate equally probable ore reserve models. Furthermore, we optimize 
the stope boundary using the floating-stope algorithm in each realization. Several 
decision support criteria including the 'mineable reserve,' 'metal-content,' 'profit,' and 
'value-at-risk' are defined to assist the decision-maker in uncertain conditions. Finally, 
a procedure is defined in order to consider two types of uncertainty sources 
simultaneously in underground mining. It will guide the decision-maker toward the 
most appropriate stope boundary that best fits the mining company's requirements. The 
procedure is implemented in a bauxite mine, and the optimal stope boundary is 
determined concerning the different criteria.  

Keywords 
Underground mining evaluation 
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Grade uncertainty 
Commodity price uncertainty 
Risk analysis 

1. Introduction 
The mining methods are divided into the surface 

and underground methods. Generally, the use of 
these methods depends on the depth of the mineral. 
Underground mining is appropriate for deep 
deposits in environmentally sensitive areas [1]. 
Optimization is considered essential for both the 
surface and underground mine design and 
production scheduling [2]. 

A proper stope design plays a significant role in 
the profit and safety of the operation. It requires 
several data including the ore model and some 
geotechnical data. An ore model is usually 
obtained by estimation or simulation using the 
geostatistical tools. The geotechnical condition 

controls the hanging wall and footwall angles, 
stope dimensions, in situ stress tensor, rock 
strength, and local geological structures. Deciding 
the stope's size and location will affect the 
maximum profit. The number of algorithms in the 
pit limit optimization exceeds the number in the 
underground methods. The true optimum solution 
is guaranteed for optimizing the pit limit, and 
several computer packages are available for the 
industry. However, only a small number of 
algorithms have been developed for optimizing the 
ultimate stope boundaries in underground mining 
[3]. 
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Various approaches have been suggested for the 
stope optimization [3-5]. Dynamic programming 
[6] and the branch and bound technique [7] have 
been utilized in order to optimize a stope in 2D 
problems. Also, regarding the stope optimization in 
3D problems, the mathematical morphology tools 
[8, 9], floating-stope [10], maximum value 
neighborhood method [11], and octree division 
[12] have been implemented. Further, Manchuk 
and Deutsch (2008) have presented a simulated 
annealing-based algorithm [13], and Bai et al. 
(2013) have developed a stope optimizer based on 
graph theory [14]. 

The risk is an important issue for mine 
evaluation, and it is available in all facets of mining 
and is categorized into the technical, financial, and 
environmental factors. All the uncertainty sources 
should be considered in the feasibility study of 
mining projects. The geological uncertainty is 
regarded as one of the main technical uncertainties 
in mining, known as a primary risk source. It is 
recognized as a significant factor in mining 
failures. In some research works, the geological 
uncertainty modeling has been obtained using 
conditional simulation [15, 16]. The economic 
uncertainties are significant in mining, and 
commodity price uncertainty is the primary 
uncertainty source along with the mining 
operations [17]. The unpredictability of the raw 
mineral prices is considerably more severe than 
that of the other industrial products. For example, 
as illustrated in Figure 1, the aluminum price has 
been highly volatile during 2000-20. Therefore, the 
price uncertainty plays a significant role in 
achieving the production plan's monetary goals 
[18]. The researchers have recently studied the 
economic uncertainties such as a combination of 
the commodity price and operational cost 
uncertainties [17] or the commodity price 
uncertainty and exchange rate uncertainty [19]. 

 
Figure 1. Fluctuations in aluminum price ($/t) 

during 2000-20 [20]. 

In designing the underground mines, evaluation 
and optimization have had less applications than 
the open-pit mines due to the diversity of the 
underground mining methods. All these 
approaches have failed to consider the uncertainty, 
and accordingly, have assumed the inputs as 
certain. A limited number of studies have reported 
integrating simulated ore bodies and grade risk 
models through the conventional optimizers. In this 
regard, some geological risk-based approaches 
have been introduced for optimizing the stope 
layout [21, 22], paving the way for developing a 
risk-based underground mine design. Recently, a 
method has been introduced for evaluating the 
block-cave mine production scheduling in the 
presence of delays from hang-ups and grade 
uncertainty [23]. More recently, two significant 
studies have been conducted in order to investigate 
the uncertainty in the underground mines. In one of 
them, the sequential Gaussian conditional 
simulation has been applied to design an 
underground mine of Iran under the grade 
uncertainty [24]. In the other one, the dilution risk 
in underground metal mines has been investigated 
[25]. However, the current studies have focused 
more on the grade uncertainty. Thus, the present 
work aimed to evaluate the effects of the grade and 
price uncertainties simultaneously on the stope 
optimization and underground mine evaluation. 

2. Materials and methods 

In this work, the floating-stope algorithm as the 
stope boundary optimizer and the conditional 
simulation as the probable reserve generator were 
applied. The floating-stope is a technique to 
determine the optimal boundary for the mineable 
reserve. The floating-stope approach's general 
concept was raised in 1995 as a heuristic approach, 
compared to the moving cone method for the pit 
limit optimization. Floating stope is taken from 
floating a minimum stope size through the ore body 
in order to evaluate the stope grades for any stope 
position. Accordingly, two envelopes are created 
from this process including the maximum envelope 
as the union of all possible economic stope 
positions and the minimum envelope as the union 
of all the best grade stope positions for every ore 
block in the ore body. The envelopes provide a 
limit for the final stope positions, and it is 
recommended that the minimum envelope be the 
best option for further analysis. This algorithm is 
an underground boundary optimizer available in a 
commercial software [26]. 



Shenavar et al Journal of Mining & Environment, Vol. 12, No. 2, 2021 
 

387 

The geological uncertainty modeling is obtained 
through using conditional simulation. It generates 
detailed models for an orebody that considers the 
orebody's spatial and statistical specifications. 
Based on the conditional simulation, the simulated 
models can be developed at very tight-spaced 
geographical positions by covering the whole ore 
body, in addition to the sampled section. The 
simulated models regenerate the real variability 
(histogram) and spatial continuity (variogram) of 
interest attributes. They are used as a measure of 
uncertainty and variability related to the evaluation 
[27].  

3. Model construction 
In this work, the Underground Stope Boundary 

(USB) is evaluated in 2 different conditions. First, 
USB is evaluated in the deterministic conditions, 
and then it is studied in the presence of grade and 
price uncertainties. These uncertainties will 
influence the total income of the mine. However, it 
should be noted that the grade uncertainty is an 
intrinsic uncertainty, while the price is an extrinsic 
uncertainty and parametric analysis is the industry 
standard for price deviations. Moreover, decision-
making in the deterministic conditions is somehow 
straight forward. However, several criteria are 
defined to assist the decision-maker in uncertain 
situations. For this purpose, “mineable reserve,” 
“metal-content,” “profit,” and “value-at-risk” were 
considered as the decision support criteria. For the 
sake of comparison, the stope boundary and the 
resulting mineable reserve is evaluated in 3 distinct 
conditions. Section 3.1 explains the steps of 
deterministic stope boundary optimization. Section 
3.2 explains the stope boundary optimization in the 
presence of the grade uncertainty. Finally, Section 
3.3 explains the stope boundary optimization in the 
presence of the price uncertainty. 

3.1. Stope optimization without considering 
uncertainty 

The floating-stope is a heuristic size optimization 
algorithm to determine the optimal (boundary) 
limit of an ore reserve for the aim of underground 
mining [28]. The general concept of floating-stope, 
raised in 1995, is similar to the moving cone 
algorithm for the pit limit optimization. The 
floating-stope is taken from floating a minimum 
stope size through the ore body in order to evaluate 
the stope grades for any stope position. Therefore, 
three factors are required for the implementation of 
the floating-stope. For this purpose, based on the 
economic estimations, a cut-off grade is calculated 

in order to determine whether a block is an ore or a 
waste. This process also requires an initial stope 
shape or geometry determined based on the 
required minimum stope dimension. 

Additionally, a target grade (referred to as head 
grade) is specified in order to evaluate the 
generated stopes. In each iteration, the algorithm 
generates several stope options for a given ore 
block, and checks for the average grade of material 
inside each stope. If the average grade of blocks 
inside the stope is equal or greater than the head 
grade, they are flagged as the mineable blocks. 
Finally, the mineable blocks' union will generate 
the underground mine limits (referred to as the 
mine envelope). The algorithm follows two 
strategies for the determination of mine envelopes. 
The first one is called the 'inner envelope' or 
'minimum envelope,' and it is constructed by 
adding the blocks having a grade more than the cut-
off grade. The second envelope, called the 'outer 
envelope' or 'maximum envelope,' is built 
concerning all the possible stope union for each ore 
block. Accordingly, two envelopes are created 
from this process including the maximum 
envelope, as the union of all the possible economic 
stopes, and the minimum envelope, as the union of 
all best grade stope positions for every ore block in 
the ore body. These envelopes provide a limit for 
the final stope positions, and it is recommended 
that the final stope design fits the minimum 
envelope as close as possible. In order to determine 
the stope boundary deterministically, the following 
steps are required: 

Step 1: Reserve estimation using the exploration 
data. 

Step 2: Stope optimization using the floating-stope 
algorithm. 

Step 3: Determine the minable reserve (Equation 1). 

푅 = 푅 푥
∈

 (1) 

where 푅  is the mineable reserve, 푅  is the 
tonnage of reserve in block i (defined in step 1), B 
is the set of blocks in the block model, and 푥  is a 
decision variable (defined in step 2) that 
determines whether block i should be mined 
(assumes the value 1) or not (assumes the value 0). 

Step 4: Determination of the metal-content 
(Equation 2). 

푀 = 푅 푔 푥
∈

 (2) 

where 푀 is the metal content and 푔  is the grade 
of block i (defined in step 1). 
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Step 5: Determination of profit of the optimized 
stopes (Equation 3). 

푃 = (푣푅 푔 푟 − 푐)푥
∈

 (3) 

where 푃 is the profit, v is the metal price, r is the 
metal recovery, and 푐 is the metal extraction cost. 

3.2. Stope optimization by considering grade 
uncertainty 

In this section, the grade uncertainty and its effect 
on the stope boundary is evaluated. For this 
purpose, the geological uncertainty modeling is 
obtained using the conditional simulation. The 
simulated models regenerate the real variability 
(histogram) and the spatial continuity (variogram) 
of the attributes of interest. They are used in order 
to solve the uncertainty and variability related to 
the evaluation [29, 30]. The following steps are 
required to determine the stope boundary in the 
presence of the grade uncertainty.  

Step 1: Generate the equally probable reserve model 
realization by applying the conditional simulation 
technique. In this step, a number of reserve 
realizations will be generated, and they are stored 
in set E. 

Step 2: Optimize the stope using the floating-stope 
algorithm in each realization. In this step, a 
number of n stope boundaries will be determined. 
These boundaries are referred to as the scenarios 
that we are going to select the best one, and they 
are treated in set S. 

Step 3: Evaluate each scenario with respect to the 
available reserve realizations in E, and determine 
the minable reserve in each scenario. Then select 
the scenario with the maximum expected minable 
reserve (Eqs. 4 and 5). 

푅 = 퐸푉 푅 푥
∈∈

 (4) 

푍 = 푀푎푥 (푅  ∀ 푠 ∈ 푆) (5) 

where 푍  is the best scenario with respect to the 
goal of maximum expected minable reserve, 퐸푉( ) 
refers to the expected value, 푅  is the expected 
mineable reserve of scenario s, 푥  is the decision 
variable that determines whether block i should be 
mined or not under scenario s, 푅  is the tonnage of 
reserve in block i within the realization e, S is the 
set of stope scenarios, and E is the set of available 
reserve realizations. 

Step 4: Determine the metal content for each 
scenario, and select the scenario with respect to 
different strategies (Eqs. 6-9), 

푀 = 푅 푔 푥
∈

 (6) 

푍 = 푀푎푥 (푀푎푥{푀  ,∀ 푒 ∈ 퐸} ∀ 푠 ∈ 푆) (7) 
푍 = 푀푎푥 (푀푖푛{푀  ,∀ 푒 ∈ 퐸} ∀ 푠 ∈ 푆) (8) 
푍 = 푀푎푥 (퐴푣푒{푀  ,∀ 푒 ∈ 퐸} ∀ 푠 ∈ 푆) (9) 
where 푀  is the metal content of scenario s, 푍  is 

the best scenario with respect to the goal of 
maximum metal-content.  푍  that can be calculated 
with respect to different strategies (Eqs. 7-9), 푔  is 
the grade of block i in simulation e, and E is the set 
of reserve realizations.  

According to Eqs. 7-9, 푍  can be calculated 
concerning different strategies. The Max-Max 
strategy (Equation 7) yields the ‘best of the best’ 
outcome. It is often referred to as an aggressive or 
optimistic strategy. The Max-Min strategy 
(Equation 8) yields the ‘best of the worst’ outcome. 
It is also referred to as a pessimistic or conservative 
strategy. The Max-Ave strategy (Equation 9) yields 
the ‘best of the average’ outcome. Decision-
making in the uncertain condition is somehow a 
subjective task, and each decision-maker may 
choose a strategy based on his risk-taking behavior. 

Step 5: Determine the project profit in each scenario, 
and select the scenario with the maximum profit 
(Eqs. 10-13). 

푃 = (푣푅 푔 푟 − 푐)푥
∈

 (10) 

푍 = 푀푎푥 (푀푎푥{푃  ,∀ 푒 ∈ 퐸} ∀ 푠 ∈ 푆) (11) 

푍 = 푀푎푥 (푀푖푛{푃  ,∀ 푒 ∈ 퐸} ∀ 푠 ∈ 푆) (12) 

푍 = 푀푎푥 (퐴푣푒{푃  ,∀ 푒 ∈ 퐸} ∀ 푠 ∈ 푆) (13) 

where 푃  is the profit of scenario s and 푍  is the 
best scenario with respect to the goal of maximum 
profit. 푍  can be calculated with respect to different 
strategies similar to the metal-content (Eqs. 11-13), 
and each decision-maker may choose a strategy 
based on his/her risk-taking behavior, v is the metal 
price, r is the metal recovery that is assumed to be 
constant, and 푐 is the metal extraction cost. 

Step 6: Determine the Value-at-Risk (VaR) for 
profit, and select the lowest risk scenario 
(Equation 14). 

푉푎푅∝(푃) = 푖푛푓{푃′|푃푟(푃 > 푃′) >∝} (14) 

where ∝ ∈ (0,1) is the confidence level, VaRα(P) 
is the value at risk of P (i.e. profit) at a confidence 
level of α, Pr() is the probability, and inf(A) refers 
to the greatest number that is less than or equal to 
all elements of set A. 
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VaR is a well-known risk management tool, 
which measures the worst expected damage in the 
normal conditions, and it is computed for a 
particular time period at a certain confidence level. 
By definition, VaR(q) finds the amount one can 
lose over a pre-set horizon with a probability of q% 
[30]. 

3.3. Stope optimization considering both grade 
and prices uncertainties 

In this section, the combined effect of the price 
and grade uncertainties on the stope boundary is 
evaluated. For this purpose, the geological 
uncertainty is obtained using the conditional 
simulation. There are various methods available for 
generating the price scenarios such as the 
bootstrapping, geometric Brownian motion, and 
mean reverting. In this work, the bootstrapping 
method was applied in order to model the price 
variations. Bootstrapping is a kind of sampling 
method. In order to predict the future prices by 
bootstrapping, the individual returns should be 
calculated for each period. The main advantage of 
this method is that it does not require any 
assumptions about the distribution of returns. 
According to bootstrapping the price forecasts, the 
minimum and maximum values of price were 
considered during the last years. These prices were 
used in order to evaluate the ore reserve value. 

Step 1: Generate the price scenarios. Put the price 
scenarios in set K. 

Step 2: Calculate the expected profit of each 
scenario considering the price variations (Equation 15). 

푃 = 퐸푉 (푣 푅 푔 푟 − 푐)푥
∈∈∈

  (15) 

where 푃  is the expected profit of scenario s in the 
case of different price and ore reserve realizations, 
and K is the set of prices. 

Step 3: Inspection of different scenarios in different 
price ranges (Equation 16). 

푍 = 푀푎푥(푃  , 푠 ∈ 푆) (16) 

Step 4: Determine VaR of the profit, and select the 
lowest risk scenario (Equation 17). 

푉푎푅∝(푃 ) = 푖푛푓{푃′|푃푟(푃 > 푃′) >∝} (17) 

4. Results and discussion 
A flow diagram of the presented underground 

mine evaluation model is introduced in this section 
for a better understanding. It was used for the 
Golbini bauxite mine of Iran. In the flow diagram 
presented in Figure 2, an attempt was made in order 
to summarize the mineable reserves assessment 
process in the presence of the mentioned 
uncertainties. This mine is planned to operate using 
the “cut and fill” mining method. According to the 
initial assessments, the local mining cost is about 
$28.5 per ton of bauxite ore, and the selling price 
is $300  per ton of alumina. Approximately 3 tons 
of bauxite are required to produce 1 ton of alumina, 
and to produce 1 ton of aluminum, 2 tons of 
alumina is required. In this section, the stope 
optimization and minable reserve evaluation are 
conducted according to the steps explained in 
Section 2. 
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Figure 2. A flow diagram of the presented underground mine evaluation model. 

4.1. Golbini mine stope optimization without 
considering uncertainty 

Step 1: The geologic model is generated on the basis 
of exploratory boreholes, and the grades are 
estimated by the Kriging method. According to the 
model, the mine reserve is estimated at about 3.5 
Mt with average grade of Al2O3 at 46.3% and SiO2 
at 12.8%. Figure 3 shows the block model of the 
deposit. The silica content is far below the 
maximum acceptable level, and therefore, its 
deviations and its effects on the mine design are 
not considered here. 

Step 2: Using the floating-stope algorithm, the 
optimal stope layout is determined for the deposit 
(Figure 4). In this case, the minimum stope 

dimension is 10 × 5× 1 cubic meter, the cut-off 
grade of Al2O3 is 40%, and the head grade is 
assumed to be 45% according to the run of mine 
requirements.  

Step 3: Based on the resulting stope layout, and 
using Equation 1, the mineable reserve within the 
stope boundary is 1.5 Mt. 

Step 4: Using Equation 2, the metal-content and the 
average grade are calculated. The metal contained 
within the stope boundary is about 720,000 tons.  

Step 5: Using Equation 3 and based on the estimated 
mineable reserve, the metal-content, the bauxite 
ore price, and the mining costs, the profit of the 
operation is about 8.9 M$. 

Stage 3 

Stope optimization considering both grade and prices uncertainties 

Step 1: Price scenario generation. 

Step 2: Calculate the expected profits (Eq. 15). 

Step 3: Rank the results respecting the expected profits (Eq. 16). 

Step 4: VaR calculation (Eq. 17). Lowest risk scenario 
selection 

Profitable scenario selection 

Stage 1 
Stage 2 

Stope optimization without considering uncertainty 

Stope optimization by considering grade uncertainty 

Step 1: Reserve estimation. 

Step 2: Stope optimization using floating-stope algorithm. 

Step 3: Calculate minable reserve (Eq. 1). 

Step 4: Calculate metal content (Eq. 2). 

Step 5: Calculate stopes profit (Eq. 3). 

Step 1: Apply conditional simulation to generate several grade 
realizations 

Step 2: Stope optimization in each realization. 

Step 3: Calculate minable reserve in each scenario.  

Step 4: Calculate metal content for each scenario (Eqs. 6-9) 

Step 5: Calculate profit (Eqs. 10-13). 

Step6: calculate VaR of each scenario (Eq. 14) Lowest risk scenario 

Profitable scenario selection 

Max metal content scenario 
selection 

Biggest reserve selection 

This stage will result in 
a base case for the sake 

of comparison 
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Figure 3. Block model of the deposit. 

 
Figure 4. Deterministic stope layout.  

4.2. Golbini mine stope optimization 
considering grade uncertainty  

Step 1: The block model consists of 266,937 blocks 
with the dimensions of 1 × 1 × 1 cubic meter. Using 
the conditional simulation, and the exploration 
boreholes, 10 simulated reserves were generated. 
Table 1 shows the average grade of each scenario. 

Step 2: In this step, the optimal stope layout was 
determined for each one of the generated block 
models using the floating-stope algorithm 
assuming that the minimum stope dimension was 

10 × 5 × 1 cubic meter and Al2O3 cutoff grade was 
40%. Also the head grade was assumed to be 45% 
according to the run of mine requirements. 

Step 3: Using Equation 4, the mineable reserve of 
each scenario and their average grade (Table 1) 
were calculated based on the results of the optimal 
stope layout. If the goal was to maximize the 
amount of mineable reserve, then according to 
Equation 5, the 4th scenario (i.e. mine 4) was 
founded as the optimum one, where the amount of 
mineable reserve was the maximum compared to 
the other scenarios.  
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Table 1. Average grade of generated scenarios. 

Label Grade variation Average 
grade (%) Stope boundary Mineable 

reserve (kt) 
Mine flow Ave. 

grade (%) 

Mine 1 

 

47.07 

 

1,543 47.51 

Mine 2 

 

46.92 

 

1,586 47.50 

Mine 3 

 

47.07 

 

1,568 47.53 

Mine 4 

 

46.90 

 

1,590 47.50 

Mine 5 

 

46.98 

 

1,560 47.52 

Mine 6 

 

46.94 

 

1,581 47.52 

Mine 7 

 

46.97 

 

1,556 47.50 

Mine 8 

 

47.01 

 

1,555 47.52 

Mine 9 

 

47.03 

 

1,552 47.51 

Mine 10 

 

46.88 

 

1,586 47.51 

 
Step 4: In this step, using Eqs. 6-9 and based on the 

tonnage and average grade of each scenario, the 
metal-content of each scenario was calculated. 
According to Figure 5, in all the three modes of 
Max-Min, Max-Max, and Max-Ave. the 4th 
scenario (i.e. mine 4) was the best option. Thus if 
the goal is to maximize the amount of metal-
content, again the 4th scenario will be the optimal 
option. 

Step 5: According to Eqs. 10-13 and the sale figures, 
the profit of each scenario was calculated (Figure 
6). Using this figure, the most profitable scenario 
could be selected, and accordingly, the most 
profitable minable reserve could be estimated. 
Considering Figure 6, in the modes of Max-Min 
and Max-Ave, the 4th scenario (i.e. mine 4), and 
in the mode of Max-Max, the 6th (i.e. mine 6) 

scenario is the best option. The 6th scenario is the 
most optimistic option but due to the high variance 
of profit in the 6th scenario, selecting this option 
is risky. Thus if the goal is to maximize the profit 
of the mineable reserve, the 4th scenario is again 
the optimal scenario. 

Step 6: In this step, VaR of the profit was 
determined, and the lowest risk scenario was 
selected. According to the simulation results and 
Equation 14, VaR (10%) of each scenario was 
calculated (Table 2). The results obtained show 
that the 4th scenario (i.e. mine 4) is the low-risk 
option. This means that by completing the 4th 
scenario, the probability of achieving a profit of 
10.765 M$ is 90%, which is the maximum 
achievable profit compared to the others. 
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Figure 5. Metal-content of each scenario. 

 
Figure 6. Profit of each scenario. 

 

Table 2. VaR (10%) of profit for scenarios 
($1000). 

Mine VaR (10%) 
Mine 1 10480 
Mine 2 10750 
Mine 3 10604 
Mine 4 10765 
Mine 5 10556 
Mine 6 10731 
Mine 7 10508 
Mine 8 10538 
Mine 9 10514 

Mine 10 10762 
 
4.3. Golbini mine stope optimization 
considering both grade and prices uncertainties 

Step 1: Here, the minimum and maximum values of 
the bauxite price were considered during the past 
three years. The minimum price minus 20% and 
the maximum price plus 20% were considered for 
the minimum and maximum price range of the 
scenarios, and then the price scenarios were 
generated between these two values. 

Step 2: According to Equation 15, using the bauxite 
price scenarios and the local mining cost (28.5 $/t), 
the profit of each scenario was calculated. The 
results obtained are given in Table 3. 

Step 3: According to the results obtained and using 
Equation 16, the best scenario with respect to 
maximization of profit in variable prices can be 
selected. As shown in Table 3, from price 65 up to 
84 the best scenario is Mine 1, from price 84 up to 
87 the best scenario is Mine 3, from the price 88 
up to 89, the best scenario is mine 6, and from 
above the price 89, the best scenario is mine 4. It 
should be noted that the project is unfeasible if the 
price is lower than 86 $/t. 

Step 4: In this step, in order to evaluate the profit of 
the candidate stope boundaries, more price 
scenarios are generated. In this work, the mine-life 
is 3 years; therefore, the price forecasts are 
generated with respect to the price variations in the 
previous three years. In this step, the bootstrapping 
method is applied for this purpose. The main 
advantage of the bootstrapping method is that it 
does not require any assumptions about the 
distribution of the returns. Assuming a given set of 
(yearly or monthly) price data, the yearly or 
monthly returns are calculated. The return is equal 
to the natural logarithm of the division of two 
consecutive prices (Equation 18). 

1

ln t

t

S
S




 
  

 
 (18) 

where   is the return, and 
1,t tS S 
 are the mineral 

price in periods t and t-1.  

Using the historical price data, and applying the 
bootstrapping method, 50 price scenarios are 
generated. After that, the average of the generated 
prices in each scenario is calculated. Then each 
stope's profit is simulated using the price scenarios, 
and then VaR of the profit is determined. 
According to the simulation results and Equation 
17, VaR (10%) of each scenario is calculated and 
presented in Table 4. Based on the results obtained, 
the 4th scenario (i.e. mine 4) is the low-risk option 
in this work. It means that by completing the 4th 
scenario, the probability of achieving a profit of 
10.501 M$ in variable prices is 90%, which is the 
maximum achievable profit compared to the 
others. 
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Table 3. Simulation result of profit ($1000); the optimal scenarios for variable prices are colored. 

Price Mine1 Mine 2 Mine 3 Mine 4 Mine 5 Mine 6 Mine 7 Mine 8 Mine 9 Mine 10 
65 -10625 -10927 -10785 -10955 -10740 -10880 -10716 -10702 -10681 -10920 
…           
84 -870 -902 -870 -903 -875 -886 -883 -872 -872 -897 
85 -357 -374 -348 -374 -356 -360 -365 -354 -356 -369 
86 156 152 172 154 162 165 151 162 159 158 
87 669 680 694 683 681 691 669 679 676 685 
88 1182 1208 1216 1212 1200 1217 1186 1197 1192 1213 
89 1696 1735 1738 1741 1720 1743 1704 1714 1708 1740 
90 2209 2263 2260 2270 2239 2269 2221 2232 2224 2268 
…           

142 28905 29700 29394 29780 29237 29621 29132 29135 29069 29701 
 
Table 4. VaR (10%) of profit for scenarios in 

variable prices ($1000). 
Mine VaR (10%) 

Mine 1 10196 
Mine 2 10472 
Mine 3 10378 
Mine 4 10501 
Mine 5 10316 
Mine 6 10452 
Mine 7 10273 
Mine 8 10281 
Mine 9 10256 

Mine 10 10475 
 
5. Conclusions 

The optimization of the stope boundary and 
minable reserve determination is an essential issue 
in the underground mine design and planning. 
Mining is inherited with uncertainty. The grade and 
price uncertainties are considered as the main 
sources of uncertainty. These uncertainties will 
affect the amount of mineable reserve and the 
operation's profitability. In this work, in order to 
evaluate the underground mining projects, a risk-
based procedure was developed to determine the 
optimum stope layout in the presence of the grade 
and price uncertainties. For this purpose, several 
reserve realizations and various price scenarios 
were generated in order to evaluate the effect of the 
price uncertainty. By applying the procedure, 
different designs were regarded as the candidate 
stope boundaries. Several decision support criteria 
were defined in order to assist the decision-maker 
in uncertain conditions. The results obtained 
indicated that the mineable reserve evaluation 
depended on the decision-maker’s strategy. The 
procedure presented in this paper uses two types of 
uncertainties simultaneously in underground 
mining. It will guide the decision-maker toward the 
most appropriate stope boundary that best fits the 
mining company's requirements. The procedure 
was implemented in a bauxite mine. According to 

the VaR results, the 4th scenario (i.e. mine 4) is 
recommended as the optimal stope boundary. This 
scenario has the lowest risk compared to the other 
scenarios, and the total profit is increased by 18% 
compared to the deterministic stope boundary. 
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  چکیده:

ین امر ا لیدلو کمتر از معادن روباز مورد توجه قرار گرفته است  ینیرزمیدر معادن ز که است یدن مسئله مهمامع قطعیت دربر عدم  یمبتن يساز نهیو به یابیارز
کنند. به هاي معدنی بازي میآنها است. عدم قطعیت عیار و قیمت نقش بسیار مهمی را در پروژه يپارامترها یدگیچیو پ ینیرزمیاستخراج ز يهاتنوع در روش

ها پروژه معدنی را با ریسک همراه خواهد کرد. ارزیابی ذخایر معدنی در حضور این تن این عدم قطعیتطوري که طراحی و برنامه ریزي معادن بدون در نظر گرف
اي هدر این تحقیق اثرات عدم قطعیت عیار و قیمت بر روي بهینه سازي کارگاهسازد. هاي معدنی را ممکن میها، ارزیابی و برآورد ریسک پروژهگونه عدم قطعیت

 یدفو تصا یقطع هاي استخراج معادن زیرزمینی به دو صورتمحدوده نهایی کارگاهراستا،  نیدر انی و ذخیره حاصل از آن، ارزیابی شده است. استخراج معادن زیرزمی
تصادفی براي  رهیذخ يهامدل دیبه منظور تول یشرط يساز هیشب تحقیق ابتدا نیمنظور، در ا نیا يبرا .شده استمطالعه  متیو ق عیار تیدر حضور عدم قطعو 

براي ذخایر شبیه سازي شده محاسبه شده شناور کارگاه  تمیبا استفاده از الگور هاي استخراج معدن زیرزمینیاستفاده سپس محدوده نهایی بهینه کارگاهمعدن 
وان به معیارهایی مانند ذخیره قابل تاند که از آن جمله میدر شرایط حضور عدم قطعیت، معیارهاي مختلفی براي کمک به تصمیم گیري استفاده شده .است

در استخراج  هاي عیار و قیمتتیدر نظر گرفتن عدم قطع يبرا ايشیوه معدنکاري، فلز محتوا، سود و ارزش در معرض ریسک اشاره کرد. نهایتاً در این تحقیق
این شیوه در یک معدن بوکسیت  کند.یم ییمعدن راهنما يازهایمتناسب با ن محدوده نهایی نیرا به سمت مناسب تر رندهیگ میتصم که شده است فیتعر ینیرزمیز

  استفاده و محدوده نهایی در آن با توجه به معیارهاي تصمیم گیري مختلف، بهینه سازي شده است.
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