[1]. Mousavi, A., Sayadi, A.R., and Fathianpour, N. (2016). A comparative study of kriging and simulation-based methods in classifying ore and waste blocks. Arabian Journal of Geosciences, 9(17): p. 691-700.
[2]. Bakhtavar, E., Abdollahisharif, J., and Aminzadeh, A. (2017). A stochastic mathematical model for determination of transition time in the non-simultaneous case of surface and underground mining. Journal of the Southern African Institute of Mining and Metallurgy, 117 (12): p. 1145-1153.
[3]. Lerchs, H. and Grossmann, I. (1965). Optimum design of open pit mines. Transaction on CIM, LX VIII: p. 17-24.
[4]. Mousavi, A., (2015). Optimisation of open pit mine block sequencing. Queensland University of Technology: Australia.
[5]. Zhao, Y. and Kim, Y.C. (1992). A new optimum pit limit design algorithm, in Proceedings of 23rd APCOP. Society for Mining, Metallurgy and Exploration: Littleton, Colorado. p. 423-434.
[6]. Khalokakaie, R., Dowd, P.A., and Fowell, R.J. (2000). Lerchs–Grossmann algorithm with variable slope angles. Mining Technology, 109 (2): p. 77-85.
[7]. Giannini, L., (1990). Optimum design of open pit mines. Curtin University of Technology: Perth. p. 166.
[8]. Underwood, R. and Tolwinski, B. (1998). A mathematical programming viewpoint for solving the ultimate pit problem. European Journal of Operational Research, 107 (1): p. 96-107.
[9]. Hochbaum, D.S. and Chen, A. (2000). Performance analysis and best implementations of old and new algorithms for the open pit mining problem. Operation research, 48 (6): p. 894-914.
[10]. Koenigsberg, E., (1982). The Optimum Contours of an Open Pit Mine: an Application of Dynamic Programming, in Applications of Computers and Operations Research in the Mineral Industry (17th APCOM). New York. p. 274-287.
[11]. Erarslan, K. and Celebi, N. (2001). A simulative model for optimum open pit design. CIM BULLETIN, 94(1055): p. 59-68.
[12]. Najafi, M., Rafiee, R., and Jalali, S.M.E. (2020). Open pit limit optimization using dijkstra’s algorithm. International Journal of Mining and Geo-Engineering, 54 (1): p. 39-43.
[13]. Pana, M.T., (1965). The simulation approach to open pit design, in Proceedings of the 5th APCOM Tucson, AZ. p. 139-144.
[14]. Wright, A. (1999). A simple algorithm for optimum pit limits design, in Proceedings of the 28rd APCOM, Dagdelen, K., et al., Editors. Colorado School of Mines: Golden, Colorado. p. 367-374.
[15]. Achireko, P., (1998). Application of modified conditional simulation and artificial neural networks to open pit optimization. Dalhousie University: Nova Scotia.
[16]. Frimpon, S. and Achireko, P. (1997). The MCS/MFNN algorithm for open pit optimization. International Journal of Surface Mining, Reclamation and Environment, 11 (1): p. 45-52.
[17]. Sayadi, A.R., Fathianpour, N., and Mousavi, A.A. (2011). Open pit optimization in 3D using a new artificial neural network. Archives of Mining Sciences, 56 (3): p. 389–403.
[18]. Espejo, N., Nancel-Penard, P., and Morales, N. (2020). A methodology for automatic ramp design in open pit mines. Journal of Mining Engineering and Research, 1 (2).
[19]. Bakhtavar, E., Shahriar, K., and Mirhassani, A. (2012). Optimization of the transition from open-pit to underground operation in combined mining using (0-1) integer programming. Journal of the Southern African Institute of Mining and Metallurgy, 112 (12): p. 1059-1064.
[20]. Mergani, H., Osanloo, M., and Parichehp, M., (2019). Ultimate Pit Limit Determination Considering Mining Royalty in Open-Pit Copper Mines, in International Symposium on Mine Planning & Equipment Selection. Springer. p. 346-358.
[21]. Hay, E., Nehring, M., Knights, P., and Kizil, M. (2019). Ultimate pit limit determination for semi mobile in-pit crushing and conveying system: a case study. International Journal of Mining, Reclamation and Environment: p. 1-21.
[22]. Hay, E., Nehring, M., Knights, P., and Kizil, M.S. (2019). Ultimate pit limit determination for fully mobile in-pit crushing and conveying systems. International Journal of Mining and Mineral Engineering, 10 (2-4): p. 111-130.
[23]. Meyer, M. (1969). Applying linear programming to the design of ultimate pit limits. Management Science, 16(2): p. B-121-B-135.
[24]. Johnson, T.B. and Sharp, W.R., (1971). A Three-dimensional dynamic programming method for optimal ultimate open pit design. Vol. 7553. Bureau of Mines, US Department of the Interior.
[25]. Frimpong, S. and Achireko, P.K. (1998). Conditional LAS stochastic simulation of regionalized variables in random fields. Computational Geosciences, 2 (1): p. 37-45.
[26]. Erarslan, K. and Celebi, N. (2001). A simulative model for optimum open pit design. CIM Bulletin, 94: p. 59–68.
[27]. Frimpong, S., Szymanski, J., and Narsing, A. (2002). A computational intelligent algorithm for surface mine layouts optimization. Simulation, 78(10): p. 600-611.
[28]. Elahi, E., Kakaie, R., and Yusefi, A. (2012). A new algorithm for optimum open pit design: Floating cone method III. Journal of Mining and environment, 2 (2): p. 118-125.
[29]. Wright, A., (1990). Open pit mine design model: introduction with Fortran 77 programs. Clausthal-Zellerfeld: Trans Tech Publications.
[30]. Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. (1993). Network flows : theory, algorithms, and applications. Prentice Hall.
[31]. Cherkassky, B.V. and Goldberg, A.V. (1995). On implementing push-relabel method for the maximum flow problem, in International Conference on Integer Programming and Combinatorial Optimization. Springer. p. 157-171.
[32]. Goldberg, A.V. (2009). Two-level push-relabel algorithm for the maximum flow problem, in International Conference on Algorithmic Applications in Management. Springer. p. 212-225.
[33]. Espinoza, D., Goycoolea, M., Moreno, E., and Newman, A. (2013). MineLib: a library of open pit mining problems. Annals of operations research, 206 (1): p. 93-114.