
 
 

Journal of Mining and Environment (JME), Vol. 12, No. 2, 2021, 397-411 

 Corresponding author: alimoradi@eng.ikiu.ac.ir (A. Alimoradi). 
 

Shahrood 
University of 
Technology 

Iranian Society 
of Mining 

Engineering 
(IRSME) 

 
 

Journal of Mining and Environment (JME) 
 

journal homepage: www.jme.shahroodut.ac.ir 
 

 
 
Optimizing Extreme Learning Machine Algorithm using Particle Swarm 
Optimization to Estimate Iron Ore Grade 
 
Mahdi Fathi, Andisheh Alimoradi*, and Hamidreza Hemati Ahooi 

Department of Mining Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran 
 

Article Info  Abstract 

Received 12 December 2020 
Received in Revised form 20 
March 2021 
Accepted 23 March 2021 
Published online 23 March 2021 
 
 
 
 
DOI:10.22044/jme.2021.10368.1984 

 Scientific uncertainties make the grade estimation very complicated and important 
in the metallic ore deposits. This paper introduces a new hybrid method for estimating 
the iron ore grade using a combination of two artificial intelligence methods; it is based 
on the single layer-extreme learning machine and the particle swarm optimization 
approaches, and is designed based on the location of the boreholes, depth of the 
boreholes, and drill hole information from an orebody, and applied for the ore grade 
estimation on the basis of a block model. In this work, the two algorithms of 
optimization clustering and neural networks are used for the iron grade estimation in 
the Choghart iron ore north anomaly in the central Iran. The results of the training and 
testing the algorithms indicate a significant ability of the optimized neural network 
system in the ore grade estimation.  
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1. Introduction 
The geologists and mine exploration engineers 

always have a challenge in estimating the ore grade, 
especially in the metallic deposits. The reason is 
perhaps the dependence of the exploration and 
extraction projects on the exact amount of ore grade 
in order to model the reserve amount and design the 
mining activities. Often due to the surface and 
underground faults and complex geological 
structures, the simulation of deposits is associated 
with certain problems. It should be noted that 
simulation is one of the most important and difficult 
processes in geoscience [1]. In general, it can be 
found that the traditional or geometric methods 
suffer from over-simplifying, unlike the 
geostatistical methods that are complicated in the 

evaluation process. Selecting one of these methods is 
usually a choice between the speed and accuracy or 
between the low cost and attention to the deposit 
details [2]. 

The artificial intelligence-based methods can 
overcome this problem using more traditional 
methods with a more realistic strategy since these 
methods are capable of understanding the hidden 
relationships between the different input and output 
variables in complex and non-linear situations [2, 3]. 
As one of the widely used sub-branches of artificial 
intelligence and one of the general branches of 
artificial neural networks, machine learning has been 
organized and developed in order to understand the 
patterns in the surface and deep explorations [4]. 
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(a) 

 

(b) 

Figure 1. A) Artificial neural network fundamentals, B) Artificial neural network architecture [5]. 

Many researchers have employed different 
artificial neural networks for grade estimation in the 
recent years. For example, a Radial Basis Function 
(RBF) network has been used successfully for grade 
estimation in an iron deposit in England, and the 
results obtained have been compared with the 
geostatistical models [4]. In another case, a Four-
Level Perceptron network (4L-MLP) has been used 
on the modified magnetic data in order to estimate 
the iron grade [6]. Badel has compared one of the 
newer kriging methods called the median indicator 
kriging with the artificial neural networks for grade 
estimation in an iron ore deposit [7]. The grade 
estimation results of a Choqart iron ore deposit 
obtained from a back-propagation neural network 
have been compared with the results of a Support 
Vector Machine (SVM) [8]. In another research 
work, the artificial neural networks and geo-statistics 

have been integrated using ANNMG in order to 
optimize the mineral reserve evaluation in the SW 
Sierra Leone [9]. Nezamolhosseini has applied a 
multi-layer perceptron (MLP) neural network in 
order to estimate the storage of the Chaghart mine 
using the exploratory boreholes data [10]. In the last 
article, the comparison between the Local Linear 
Radial Basis Function using Skewed Gaussian 
activation (LLRBF-SG) and older neural networks 
such as Differential Evolution (DE), Cuckoo Search 
(CS), Covariance Matrix Adaptation Evolution 
(CMAE), Artificial Bee Colony (ABC), Improved 
Artificial Bee Colony (IABC) were used in order to 
estimate the phosphate grade in Bafgh's Esfordi [11]. 
All of these research works have illustrated that 
artificial neural networks can be used as a reliable 
approach to obtain the most accurate grade 
estimations. 
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Figure 2. Types of artificial neural networks in terms of layers and neurons position.  

The feed-forward neural networks have a superior 
performance in approximating the complex non-
linear relationships and providing the models that 
cannot be easily predicted by the classical parametric 
techniques. The extreme learning machine is a feed-
forward neural network that has hidden neurons in 
one or more layers for classification, regression 
analysis, derivatives, Laplace transform comparison, 
and training of characteristics [11]. 

Machine learning is a science that makes a 
computer information plan for a particular subject to 
identify. The aim of machine learning in the artificial 
neural network is to find the effective efficiency in 

the information model by increasing the data in the 
network process. The range of research works that is 
used in machine learning in earth sciences is very 
wide and complex. Theoretically, the researchers are 
determined to find or create the new network 
learning methods that can improve the quality of 
learning for a research work, and on the other hand, 
some researchers have tried to apply the deep 
learning methods to new issues and identify their 
strengths and weaknesses. However, this spectrum is 
continuous, and most of the research works on both 
methods [12]. 
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Figure 3. Types of machine learning and their applications in artificial neural networks [13]. 

The extreme learning machine, as the main 
modeling tool in this work, is easy to use with the 
capability to reduce the training errors and make a 
generalized result. This method runs extremely fast, 
and all the characteristics differentiate it from the 
other popular SLFN learning algorithms [14].  

 
Figure 4. Extreme learning machine and neuron 

formation in its layers [14]. 

Most metaheuristics are characterized as follow: 

 They are used as the strategies to guide the search 
process. 

 They explore the search space to find the near-
optimal solutions. 

 They are simple local to complex learning 
procedures. 

 They are approximate and non-deterministic 
estimators. 

 They are not problem-specific [15]. 

Particle swarm optimization (PSO) is an iterative 
metaheuristic optimization method that can solve the 
problems that can be answered in a multi-
dimensional space. The particles are assigned to an 
initial velocity per unit of time, and also the 
maximum and minimum communication channels 
between these particles are considered. Then these 
particles are motion-based in the general response 
space, and the evaluations based on a specified 
competency criterion are calculated for all particles 
with a constant speed after each repeating interval. 
Over time, some particles are accelerated towards 
other particles that are more attestable to the 
competency criterion and are placed in the equal 
communication group, and the search environment is 
in the best response [16]. 
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Figure 5. PSO after N-iteration [15]. 

2. Choghart Iron Deposit 
Located 12 km NE of the city of Bafgh in Iran, the 

Choghart mine is one of the biggest iron mines in 
Iran. The main orebody at Choghart is in the form of 
a roughly vertical, discordant, pipe-shaped body 
plunging 73°NNW, and has been explored to a depth 

of 600 m. The orebody is roughly vertical, pipe-
shaped, and asymmetric. Different types of volcanic 
(intrusive and extrusive alkali rhyolites) and 
metamorphous rocks occur in the vicinity of the 
deposit. Synite, pyroxenite, gabbro, granite, and 
alkali rhyolites are the major components of the 
volcanic rocks in the Choghart deposit. 

 
Figure 6. Satellite photo illustrating location of the drilling points.  
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Figure 7. 85 boreholes in the north Choghart anomaly. The blue ones are the validation boreholes that are not used 

in the learning model. 

 
Figure 8. A) Central Iran's position towards Zagros and Alborz, B) Landscaping map of central Iran blocks. The 

Choghart mine location is illustrated by a yellow star [17]. 

B 

A 



Fathi et al Journal of Mining & Environment, Vol. 12, No. 2, 2021 
 

403 

3. Methodology 

In this section, the background surveys and 
observations about the borehole datasets are 
presented first. Then the hybrid neural network and 
how it works in order to estimate the ore grade is 
introduced. 

3.1. Data preparation 
After combining the assay, collar, and survey data 

from the raw data, the results obtained were 
composited into the 3-m samples. This was 
conducted in order to equalize the length of the 
samples, and also to minimize the distances of the 
drilling data. The total data number was 9067. 

For two reasons the samples were composite in 3 
m: The first reason was that most of the samples were 
approximately 3 m long, and therefore, the samples 
were less changed. The second reason was that the 
grade was also estimated for 1- and 2-m composites 
but the 3-m results were better than those for the 2-m 
ones. 

3.2. Data statistical studies 

The statistical studies on the composite data 
showed that there were many changes in the dataset 
both in depth and in different speculations. The mean 

value of this data was 9.15, the variance was 138.253, 
and the standard deviation (SD) was 11.75. Such 
variance and standard deviation indicate a high data 
distribution compared to the average. In the 
probability statistics, the symmetry indicates the 
asymmetry of the probability distribution. If the data 
is symmetric compared to the average, the density 
will be zero, where our density is positive and has a 
small amount of about 1. In the probability statistics, 
stretching describes the level of highness and flatness 
in a possible distribution. Table 1 illustrates the 
statistical parameters of the data. 

Table 1. Statistical parameters of the studied data. 
Parameter Grade value 

Mean 9.14184 
Median 1.47400 
Mode 0.000 
Std. deviation 11.758083 
Variance 138.253 
Skewness 1.327 
Std. error of skewness 0.026 
Kurtosis 1.568 
Std. error of kurtosis 0.051 
Range 69.033 
Minimum 0.000 
Maximum 69.033 

 

 
Figure 9. Iron ore grade histogram. 
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3.3. Data normalization 

Since the network can find the hidden patterns in a 
large dataset, the input and output parameters of this 
composited data should be placed in an equal size. 
For this purpose, the composite dataset should be 
placed in the normalized domain [0, 1]; in order to 
place the numbers estimated by the network in the 
position of analogy with the real outputs, the 
following fixed formula should be used: 

= ݓ݁݊ܺ ݈݀݋ܺ)  − ܺ݉݁ܽ݊) ∗  (݀ݐݏܺ/1)

where Xmean is the average of each column of 
data, Xstd is the standard deviation of each 
column of data, and Xold and Xnew are the 
normal and converted values of each data, 
respectively.  

3.4. Extreme learning machine (ELM) algorithm 

As a single hidden layer feedforward neural network, 
ELMs were extended in order to the generalize 
SLFNs. There is no need in tuning the hidden layer 
in ELMs. The output function is as follow: 

௅݂(ݔ) =  ෍ߚ௜

௅

௜ୀଵ

ℎ௜(ݔ) = ℎ(ݔ)ߚ 

where β = [β1, ..., βL]T is the output weights in the 
hidden layer of L nodes, and h(x) = [h1(x), . . ., hL(x)] 
is the output vector of the hidden layer; h(x) transfers 
the data from the input space to the hidden-layer 
feature space, And therefore, h(x) is a feature 
mapping. The decision function of ELM for the 
classification applications should be: 

௅݂(ݔ) =  (ߚ(ݔ)ℎ)݊݃݅ݏ 

Opposite to the traditional learning techniques, 
ELM makes both the training error and the norm of 
output weights as small as possible. According to the 
Bartlett’s theory, the smaller the norms of the 
weights are, the better generalization performance 
the networks tend to have.  

Minimize: ‖Hβ − T‖ଶ and ‖β‖ 

Here, H is the hidden-layer output matrix. 

H = ൥
h(xଵ)
∶

h(x୒)
൩ = ൥

hଵ(xଵ) … h୐(xଵ)
∶ ∶ ∶

hଵ(x୒) ∶ h୐(x୒)
൩ 

According to the ELM’s capability in the target 
function approximation, the classification problem 

for the proposed constrained-optimization-based 
ELM with a single-output node can be formulated as 
follows: 

Minimize L୔୰୧୫ୟ୪ି୉୐୑ =
1
2
‖β‖ ଶ + C

1
2
෍ξ୧

ଶ
୒

୧ୀଵ

 

subject to: h(x୧)β = t୧ − ξ୧   i = 1, … , N 

Based on the Karush–Kuhn–Tucker (KKT) 
theorem, the following optimization problem should 
be solved in order to train the ELM algorithm: 

Minimize Lୈ୳ୟ୪,୉୐୑ =
1
2
ଶ ‖ߚ‖ + C

1
2
෍ξ୧

ଶ
୒

୧ୀଵ

− 

෍α୧(h(x୧)β − t୧ + ξ୧)
୒

୧ୀଵ

 

In order to apply ELM as a multiclass algorithm, 
there should be multi-output nodes instead of a 
single-output node. For the original class label of p, 
the expected output vector of the m output nodes is 

t୧ = ൥0, … , 1⏞
୮

, … ,0൩
୘

 

Therefore, the classification problem for ELM with 
multi-output nodes can be formulated as follows: 

Minimize L୔୰୧୫ୟ୪ି୉୐୑ =
1
2
ଶ ‖ߚ‖ + C

1
2
෍ξ୧

ଶ
୒

୧ୀଵ

 

subject to: h(x୧)β = t୧୘ − ξ୧
୘   i = 1, … , N 

According to the KKT theorem, the following dual 
optimization problem should be solved in order to 
train ELM: 

஽௨௔௟ܮ ݁ݖ݅݉݅݊݅ܯ ,ா௅ெ =
1
2
ଶ ‖ߚ‖ + ܥ

1
2
෍ߦ௜

ଶ
ே

௜ୀଵ

− 

෍෍ߙ௜,௝

௠

௝ୀଵ

൫ℎ(ݔ௜)ߚ௝ − ௜ݐ ,௝ + ௜,௝൯ߦ
ே

௜ୀଵ

 

Different from the Support Vector Machine 
(SVM), the hidden-layer output vector is known in 
ELM. All the non-linear piecewise continuous 
functions such as sigmoid, hard-limit, Gaussian, and 
multi-quadric functions can be used as the hidden-
node output functions. 

Sigmoid and Gaussian are two major hidden layer 
output functions for ELM, and hard-limit and multi-
quadric are the most generalized ones.  
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3.5. Particle swarm optimization (PSO) 

PSO is a collective, anarchic (in the original sense 
of the term), iterative method with the emphasis on 
the cooperation in its historical version; it is partially 
random and without selection. Eberhard and 
Kennedy have introduced PSO as an optimization 
algorithm that derives its inspiration from the social 
behavior of the birds and fishes. PSO can be used in 
order to solve a wide range of optimization problems, 
from the non-linear continuous functions to the most 
complex engineering problems. 

In this work, the PSO algorithm was used, which 
could be described as follows. If the search space of 
optimization is considered as a D-dimensional space, 
then a D-dimensional vector (Xi) can be the 
representative of the ith particle of the swarm, Xi = 
(xi1, xi2, ...  xiD)T. Another D-dimensional vector can 
be considered as the velocity or position change 
vector for each particle, Vi = (vi1, vi2, ..., viD)T. The 
parameter g is defined as the best particle of the 
swarm index, and obviously, the superscripts will 
show the iteration number. After each iteration, the 
position of every particle is updated based on the 
particle best exploration, best exploration among all 
the swarms, and also the previous velocity vector of 
the particle using the following two equations: 

௜ௗ௡ାଵݒ = ௜ௗ௡ݒ + ௜ௗ௡݌)ଵ௡ݎܿ − ௜ௗ௡ݔ ) + ௚ௗ௡݌)ଶ௡ݎܿ − ௜ௗ௡ݔ ) 

௜ௗ௡ାଵݔ = ௜ௗݔ +  ௜ௗ௡ାଵݒ
In these equations, d = 1, 2, ..., D; i = 1, 2, ..., N, 

and N is the swarm size; a constant value that is 
called the acceleration constant is noted by c; r1 and 
r2 are the random numbers. A fitness or objective 
function that is suitable for the defined problem is 
used in order to evaluate the performance of each 
particle [16]. 

Shi has proposed using a parameter that is called 
the maximum velocity (Vmax), which would 
improve the precision of the algorithm. It can make 
the particle continue the search in the region based 
on this proposition. The above two relations were 

modified as the following equations in the later 
versions of PSO: 

v୧ୢ୬ାଵ = ϑ(wv୧ୢ୬ + cଵrଵ୬(p୧ୢ୬ − x୧ୢ୬ ) + cଶrଶ୬(p୥ୢ୬ − x୧ୢ୬ ) 

x୧ୢ
୬ାଵ = x୧ୢ + v୧ୢ

୬ାଵ 

where w is called the inertia weight, c1 and c2 are 
the constant values called the cognitive and social 
parameters, respectively, and ϑ is a constriction 
factor. PSO is extremely computationally 
inexpensive in terms of both the memory 
requirements and speed. It is also flexible to integrate 
with other optimization and soft-computing 
techniques to form hybrid tools. In addition to these 
advantages, it was never coded as the training 
algorithm of a neural network to be used for the grade 
estimation before. Thus the performance of this 
optimizer in these kinds of operations can be tested 
for the first time in this research work [18]. 

4. Grade Estimation by PSO-ELM Algorithm 
Applying the iterative metaheuristic algorithms to 

optimize the output of the single-layer extreme 
learning regression (ELM’s regression) is a work that 
affects the accuracy of the results and a better 
regression performance. For this purpose, the 
training and test processes are conducted once by the 
single-layer extreme learning machine, and then the 
whole process is conducted and the regression 
algorithm of the single-layer extreme learning 
machine and its inputs in PSO is used in order to 
identify the inputs and find the optimized values for 
them, and to familiarize them with the extreme 
learning machine’s regression. 

The cost function in the PSO algorithm is the 
average absolute error (MAE) of the grade estimated 
extreme learning machine with a real grade. In this 
work, the conversion function of the single-layer 
extreme learning machine was the Elliot symmetric 
sigmoid transfer function based on the sigmoid 
relationships [19]. 

The results of the hybrid algorithm for the 
anomaly grade estimation are in the following chart: 
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Figure 10. The R, RMSE, and MAE changes in different iterations for the hybrid algorithm training sector. 

 

 
Figure 11. The R, RMSE, and MAE changes in different iterations for the hybrid algorithm testing sector. 

The point-to-point validation method and the 
borehole-to-borehole validation method were 
used in order to investigate the ability of the 
hybrid algorithm in the grade estimation. In the 
point-to-point validation method, about 10% of 
the data was randomly set aside, and after 
learning the algorithm, they entered the network 

to be estimated by the algorithm and compared 
with the real values. The point-to-point 
validation result is shown in Figure 12. As 
shown, the optimized network was completely 
capable of simulating the trends and values of 
the grade change in a point-to-point validation 
case. 

79.364 79.45
85.23

89.12 89.45 89.91

22.267 22.387 20.154 19.325 19.935 18.251

18.191 17.911 16.542 15.975 13.724 11.638

I T E R A T I O N = 0I T E R A T I O N = 2 0I T E R A T I O N = 5 0I T E R A T I O N = 1 0 0I T E R A T I O N = 2 0 0I T E R A T I O N = 5 0 0

R RMSE MAE

75.7193 75.791 79.143 80.121 81.675 83.942

24.567 23.387 24.176 23.497 20.308 19.251

20.089 19.981 18.257 17.514 16.687 15.036

I T E R A T I O N = 0I T E R A T I O N = 2 0I T E R A T I O N = 5 0I T E R A T I O N = 1 0 0I T E R A T I O N = 2 0 0I T E R A T I O N = 5 0 0

R RMSE MAE



Fathi et al Journal of Mining & Environment, Vol. 12, No. 2, 2021 
 

407 

 
Figure 12. Comparison between the real and estimated grade values in a point-to-point validation case. 

In the borehole-to-borehole validation method, the 
borehole numbers 1-4 were set aside, and after 
learning the algorithm, they entered the network to 
be estimated by the algorithm and compared with the 

real values of the ore grade. Figures 13-16 illustrate 
the simulation results for the boreholes 1-4 (2 
boreholes in the central part of the grid and 2 others 
in the margins). 

 

 
Figure 15. Comparison between the real and estimated grade values in a borehole-to-borehole validation case 

(borehole 1). 

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

G
RA

D
E

Real Grade Estimated Grade

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

G
RA

D
E

Real Grade Estimated Grade



Fathi et al Journal of Mining & Environment, Vol. 12, No. 2, 2021 
 

408 

 
Figure 13. Comparison between the real and estimated grade values in a borehole-to-borehole validation case 

(borehole 2). 

 
Figure 14. Comparison between the real and estimated grade values in a borehole-to-borehole validation case 

(borehole 3). 
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Figure 16. Comparison between the real and estimated grade values in a borehole-to-borehole validation case 

(borehole 4). 

The results obtained indicate that the network 
could simulate the boreholes in the center of the grid 
(boreholes 2 and 3 according to Figure 7) better than 
the margin boreholes (boreholes 1 and 4). In the 
central boreholes, the network modeled the grade 
trend surprisingly but in the margin boreholes, we see 
some displacements in the grade values. It is due to 
the weak capability of the model in the extrapolation 
simulation. 

5. Conclusions 

Grade estimation is one of the most difficult steps 
in mine development and management. It is very 
hard and almost impossible to achieve a reliable 
grade estimation without proper methods and a 
valuable data; however, it gets even more complex 
when the lack of a proper data is the issue. 

The estimations reported in this work were 
conducted with the data that had no geological and 
lithological information. However, the proposed 
method could be one of the effective methods for 
estimating the iron ore grade. Estimations with the 
clustered data of six clusters based on the borehole 
intervals proved that more accurate results could be 
obtained for each cluster regardless of all the 
structural complexities of the iron ore. It should be 
noted that the single-layer ELM network optimized 
by the PSO algorithm had a superior performance 
compared to the main network without PSO 
optimization. Therefore, the PSO algorithm is one of 
the most appropriate algorithms to optimize a neural 

network for the grade estimation using statistically 
low data. One of the most important understandings 
from this experiment is that regular drilling, even if 
carried out in a small number of boreholes and even 
when the study case is very random, can play a major 
role in the accuracy of the grade estimation because 
it gives the simulator the ability to make an accurate 
estimate in smaller parts, and then integrate the 
results in order to achieve a good and relatively 
reliable estimate for the whole region. 

In the borehole-to-borehole modeling, there are 
some displacements in the grade estimation in 
margin boreholes due to the weak capability of the 
network to extrapolate the results. We recommend 
using other data such as the lithological data, which 
can make a logical relation between the grade data 
and the coordinate. This will probably lead us to 
make a better simulation of the margin boreholes. 
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  چکیده:

کند. این مقاله به معرفی یک روش تلفیقی با استفاده از دو تکنیک هوش عیار در کانسارهاي فلزي را همواره با مشکل مواجه میهاي علمی، عملیات تخمین عدم قطعیت
لفیقی تپردازد. این روش تلفیقی بر پایه ي ماشین یادگیري حدي تک لایه و بهینه ساز ازدحام ذرات استوار است. مبناي طراحی ماشین مصنوعی در تعیین عیار آهن می
باشد. روش مورد بحث در این مطالعه، در تخمین عیار آهن در آنومالی شمالی هاي اکتشافی، عمق آنها و اطلاعات موجود در آنها میمذکور، بر اساس موقعیت گمانه

  هاي عصبی بهینه شده در تخمین عیار است.شبکه چغارت در ایران مرکزي مورد استفاده قرار گرفته است. نتایج آموزش و آزمون این الگوریتم، بیانگر قابلیت مشهود

  تخمین عیار، هوش مصنوعی، بهینه ساز ازدحام ذرات، ماشین یادگیري حدي تک لایه، اطلاعات گمانه اکتشافی. کلمات کلیدي:
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