Document Type : Original Research Paper


1 Mining Department, University of Sistan and Baluchestan, Zahedan, Iran

2 School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran


In this research work, the bio-leaching of Co and Ni from an iron-rich laterite ore is assessed using the acidophilic heterotrophic (Delftia acidovorans)and autotrophic (Acidithiobacillus ferrooxidans) bacteria. The metabolic products of the acidophilic bacteria play an important role in bio-leaching. The results obtained from the indirect bio-leaching indicate the highest nickel recoveries of up to 83.65% and 80.18%, respectively, by the supernatants of Acidithiobacillus ferrooxidans and Delftia acidovorans, both measured at 90 °C for 3 h with a stirring speed of 370 rpm and S/L of 0.1, while the corresponding cobalt recovery rates have reached 86.93% and 83.94%, respectively. The iron dissolution rates in these conditions for the two studied bacteria are 64.34% and 54.41%, respectively. The nickel and cobalt extractions by the indirect bio-leaching of Delftia acidovorans are, respectively, 29.84% and 23.75% higher than those for the direct bio-leaching, performed at 30 °C and 150 rpm of an incubator shaker for 30 days. For the indirect bio-leaching, the chemical control has a larger influence on the dissolution rate of the iron-rich laterite compared to the diffusion control. The activation energies of nickel and cobalt in the chemical control model are 40.07 and 39.08 kJ/mol, respectively.


[1]. Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R.N., and Sukla, L.B. (2007). Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains. Hydrometallurgy, 85: 1–8.
[2]. Watling, H.R. (2008). The bioleaching of nickel-copper sulfides. Hydrometallurgy, 91: 70–88.
[3]. Ilyas, S., Ranjan Srivastava, R., Kim, H., Ilyas, N., and Sattar, R. (2020). Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process. Separation and Purification Technology, 232: 115971.
[4]. Johnson, D.B. (2012). Reductive dissolution of minerals and selective recovery of metals using acidophilic iron- and sulfate-reducing acidophiles. Hydrometallurgy, 127-128: 172–177.
[5]. du Plessis, C.A., Slabbert, W., Hallberg, K.B., and Johnson, D.B. (2011). Ferredox: A biohydrometallurgical processing concept for limonitic nickel laterites. Hydrometallurgy, 109: 221–229.
[6]. Simate, G.S. and Ndlovu, S. (2008). Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: Identifying influential factors using statistical design of experiments. International Journal of Mineral Processing, 88: 31–36.
[7]. Rastegar, S.O., Mousavi, S.M., and Shojaosadati, S.A. (2014). Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans. Bioresource Technology, 167: 61–68.

[8]. Johnson, D.B. and Falagan, C. (2016). Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile. International Journal of Systematic and Evolutionary Microbiology, 66 (1): 206–211.

[9]. Chang, J.H., Hocheng, H., Chang, H.Y., and Shih, A. (2008). Metal removal rate of Thiobacillus thiooxidans without pre-secreted metabolite. Journal of Materials Processing Technology, 201: 560–564.
[10]. Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., and Blowes, D.W. (2000). Negative pH and extremely acidic mine waters from Iron Mountain, California. Environmental Science & Technology, 34 (2): 254–258.
[11]. Johnson, D.B. and Hallberg, K.B. (2003). The microbiology of acidic mine waters. Research in Microbiology, 154 (7): 466–473.
[12]. Hallberg, K.B., Grail, B.M., du Plessis, C.A., and Johnson, D.B. (2011). Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites. Minerals Engineering, 24: 620–624.
[13]. Golyshina, O.V., Pivovarova, T.A., Karavaiko, G.I., Kondrateva, T.F., and Moore, E.R. (2000). Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. International Journal of Systematic and Evolutionary Microbiology, 50 (3): 997–1006.
[14]. Wu, A., Zhang, Y., Zheng, C., Dai, Y., Liu, Y., Zeng, J., Gu, G., and Liu, J. (2008). Purification and enzymatic characteristics of cysteine desulfurase, IscS, in Acidithiobacillus ferrooxidans ATCC 23270. Transactions of Non-ferrous Metals Society of China, 18: 1450-1457.
[15]. Simate, G.S., Ndlovu, S., and Gericke, M. (2009). Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: process optimization using response surface methodology and central composite rotatable design. Hydrometallurgy, 98: 241–246.
[16]. Gray, N.F. (1996). A substrate classification index for the visual assessment of the impact of acid mine drainage in lotic systems. Water Research, 30 (6): 1551–1554.
[17]. Williams, K.P. and Kelly, D.P. (2013). Proposal for a new class within the phylum Proteobacteria, Acidithiobacillia classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria. International Journal of Systematic and Evolutionary Microbiology, 63 (8): 2901–2906.
[18]. Marrero, J., Coto, O., Goldmann, S., Graupner, T., and Schippers, A. (2015). Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions using Acidithiobacillus Species. Environmental Science & Technology, 49: 6674−6682.
[19]. Sahu, S., Kavuri, N., and Kundu, M. (2011). Dissolution kinetics of nickel laterite ore using different secondary metabolic acids. Brazilian Journal of Chemical Engineering, 28 (2): 251–258.
[20]. Behera, S.K., Panda, S.K., Pradhan, N., Sukla, L.B., and Mishra, B.K. (2012). Extraction of nickel by microbial reduction of lateritic chromite overburden of Sukinda, India. Bioresource Technology, 125: 17–22.
[21]. Mubarok, M.Z., Kusuma, H., Minwal, W.P., and Chaerun, S.K. (2013). Effects of several parameters on nickel extraction from laterite ore by direct bioelaching using Aspergillus niger and acid rock drainage from coal mine as an organic substrate. Advanced Materials Research, 825: 356–359.
[22]. Jang, H.C. and Valix, M. (2017). Overcoming the bacteriostatic effects of heavy metals on acidithiobacillus thiooxidans for direct bioleaching of saprolitic Ni laterite ores. Hydrometallurgy, 168: 21–25.
[23]. Hosseini Nasab, M., Noaparast, M., Abdollahi, H., and Amoozegar, M.A. (2020). Indirect bioleaching of Co and Ni from iron-rich laterite ore using metabolic carboxylic acids generated by P. putida, P. koreensis, P. bilaji, and A. niger. Hydrometallurgy, 193: 105309.
[24]. Nogami, Y., Maeda, T., Negishi, A., and Sugio, T. (1997). Inhibition of Sulfur Oxidizing Activity by Nickel Ion in Thiobacillus thiooxidans NB1–3 Isolated from the Corroded Concrete. Bioscience, Biotechnology, and Biochemistry, 61 (8): 1373-1375.
[25]. Natarajan, K.A. and Twasaki, T. (1983). Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulphides. Separation Science Technology, 18: 1095.
[26]. Toni, D.B.J. and Bridge, A.M. (2000). Reductive Dissolution of Ferric Iron Minerals by Acidiphilium SJH. Geomicrobiology Journal, 17 (3): 193–206.
[27]. Coto, O., Galizia, F., Hernandez, I., Marrero, J., and Donati, E. (2008). Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids. Hydrometallurgy, 94: 18–22.
[28]. Morel, M.A., Iriarte, A., Jara, E., Musto, H., and Sowinski, S.C. (2016). Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach. AIMS Bioengineering, 3 (2): 156–175.
[29]. Ubalde, M.C., Brana, V., Sueiro, F., Morel, M.A., Martinez-Rosales, C., Marquez, C., and Castro-Sowinski, S. (2012). The versatility of Delftia sp. isolates as tools for bio-remediation and bio-fertilization technologies. Current Microbiology, 64: 597–603.
[30]. Brana, V., Cagide, C., and More, M.A. (2016). The sustainable use of Delftia in agriculture, bioremediation, and bioproducts synthesis. In: Castro- Sowinski, Susana, editor. Microbial models: from environmental to industrial sustainability, Springer, 227–247.
[31]. Barrionuevo, M. and Vullo, D.L. (2012). Bacterial swimming, swarming, and chemotactic response to heavy metal presence: which could be the influence on wastewater bio-treatment efficiency? World Journal of Microbiology & Biotechnology, 28: 2813–2825.
[32]. Zou, G., Papirio, S., van Hullebusch, E.D., and Puhakka, J.A. (2015). Fluidized-bed denitrification of mining water tolerates high nickel concentrations. Bioresource Technology, 179: 284–290.
[33]. Robertson, L.A. and Kuenen, J.G. (1999). The colorless sulfur bacteria, the prokaryotes: an evolving electronic resource for the microbiological community. 3rd Ed. NY: Springer-Verlag.
[34]. Garcia-Moyano, A., Austnes, A., Lanzen, A., Gonzalez-Toril, E., Aguilera, A., and Ovreas, L. (2015). Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches. Microorganisms, 3 (4): 667–694.
[35]. Heinzel, E., Hedrich, S., Janneck, E., Glombitza, F., Seifert, J., and Schlomann, M. (2009). Bacterial Diversity in a Mine Water Treatment Plant [J]. Applied and Environmental Microbiology, 75 (3): 858–861.
[36]. Das, S., Dong, B., and Ting, Y.P. (2015). Gold Bio-dissolution from Electronic Scrap and Biomineralization of Bacterial Gold Nanoparticles. Advanced Materials Research 1130, 668-672.
[37] Schulz, S., Dong, W., Groth, U. and Cook, A.M. (2000). Enantiomeric degradation of 2-(4-sulfophenyl) butyrate via 4-sulfocatechol in Delftia acidovorans SPB1. Applied and Environmental Microbiology, 66: 1905–1910.
[38]. Ghosh, S. and Paul, A.K. (2016). Bio-leaching of nickel by Aspergillus humicola SKP102 isolated from Indian lateritic overburden. Journal of Sustainable Mining, 15 (3): 108-114.
[39]. Marrero, J., Coto, O., and Schippers, A. (2017). Anaerobic and aerobic reductive dissolutions of iron-rich nickel laterite overburden by Acidithiobacillus. Hydrometallurgy, 168: 49-55.
[40]. Alibhai, K., Dudeney, A.W.L., Leak, D.J., Agatzini, S. and Tzeferis, P. (1993). Bio-leaching and bio-precipitation of nickel and iron from laterites. FEMS microbiology reviews, 11 (1-3): 87-95.
[41]. Valix, M., Tang, J.Y., and Cheung, W.H. (2001). The effects of mineralogy on the biological leaching of nickel laterite ores. Minerals Engineering, 14 (12): 1629–1635.
[42]. Yang, Y., Ferrier, J., Csetenyi, L., and Gadd, G.M. (2019). Direct and indirect bioleaching of cobalt from low-grade laterite and pyritic ores by Aspergillus niger. Geomicrobiology Journal, 36 (10): 940-949.
[43]. Valix, M., Usai, F., and Malik, R. (2001). The electro-sorption properties of nickel on laterite gangue leached with an organic chelating acid. Minerals Engineering, 14 (2): 205-215.
[44]. Hosseini Nasab, M., Noaparast, M., and Abdollahi, H. (2020). Dissolution optimization and kinetics of nickel and cobalt from iron-rich laterite ore using sulfuric acid at atmospheric pressure. International Journal of Chemical Kinetics 52, 283–298.
[45]. Hosseini Nasab, M., Noaparast, M., and Abdollahi, H. (2020). Dissolution of nickel and cobalt from iron-rich laterite ores using different organic acids. Journal of Mining and Environment, 11 (3): 779-797.
[46]. Hosseini Nasab, M., Noaparast, M., Abdollahi, H., and Amoozegar, M. A. (2020). Kinetics of two-step bioleaching of Ni and Co from iron-rich laterite using supernatant metabolites produced by Salinivibrio kushneri as a halophilic bacterium. Hydrometallurgy, 195: 105387.
 [47]. Murray, R.G.E. and Stackebrandt, E. (1995). Taxonomic Note: Implementation of the Provisional Status Candidatus for Incompletely Described Procaryotes. International journal of systematic bacteriology, 45 (1): 186–187.
[48]. Ciftci, H. and Atik, S. (2017). Microbial leaching of metals from a lateritic nickel ore by pure and mixed cultures of mesophilic acidophiles. Metallurgical Research & Technology, 114: 508.
[49]. McDonald, R.G. and Whittington, B.I. (2008). Atmospheric acid leaching of nickel laterites review Part I. Sulfuric acid technologies. Hydrometallurgy, 91: 35–55.
[50]. Simate, G.S., Ndlovu, S., and Walubita, L.F. (2010). The fungal and chemolithotrophic leaching of nickel laterites-Challenges and opportunities. Hydrometallurgy, 103: 150–157.
[51]. Gharabaghi, M., Noaparast, M., and Irannajad, M. (2009). Selective leaching kinetics of low-grade calcareous phosphate ore in acetic acid. Hydrometallurgy, 95 (3): 341-345.
[52]. Tang, A., Su, L., Li, C., and Wei, W. (2010). Effect of mechanical activation on acid-leaching of kaolin residue. Applied Clay Science, 48 (3): 296-299.
[53]. Ghassa, S., Noaparast, M., Shafaei, S.Z., Abdollahi, H., Gharabaghi, M., and Borumand, Z. (2017). A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy, 171: 362-373.
[54]. Onal, M.A.R. and Topkaya, Y.A. (2014). Pressure acid leaching of Caldag lateritic nickel ore: an alternative to heap leaching. Hydrometallurgy, 1 (42): 98-107.
[55]. Levenspiel, O. (1972). Chemical engineering reaction. Wiley-Eastern Limited, New York.
[56]. MacCarthy, J., Nosrati, A., Skinner, W., and Addai-Mensah, J. (2016). Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low-grade saprolitic nickel laterite ore. Hydrometallurgy, 160: 26-37.
[57]. Mohapatra, P., Bhoja, S.K., Kumar, C.R., and Jena, B. (2016). Lateritic nickel mineralization and its extraction techniques-a review. Dr. SK Sarangi, 17 (1): 37–43.
[58]. Changa, Y., Zhaoa, K., and Pesicb, B. (2016). Selective leaching of nickel from pre-reduced limonitic laterite under moderate HPAL conditions-Part I: Dissolution. Journal of Mining and Metallurgy Section B Metallurgy B 52 (2), 127–134.
[59] Nayanthika, I.V.K., Jayawardana, D.T., and Gunathileka, B.M. (2018). Sorption of Fe ions in aqueous media by laterite clay: A study of pH dependency. Journal of Geological Society of Sri Lanka 19, 35-46.
[60]. Wang, K., Li, J., McDonald, R.G., and Browner, R.E. (2018). Iron, aluminium, and chromium co-removal from atmospheric nickel laterite leach solutions. Minerals Engineering 116, 35–45.
[61]. Habashi, F. (1999). Kinetics of metallurgical processes. Metallurgie Extractive Quebec.
[62]. Ucar, G. (2009). Kinetics of sphalerite dissolution by sodium chlorate in hydrochloric acid. Hydrometallurgy. 95 (1): 39-43.