[1]. Yousefi, M., Kreuzer, O.P., Nykänen, V., and Hronsky, J.M.A. (2019). Exploration information systems―a proposal for the future use of GIS in mineral exploration targeting. Geology Reviews 111, 103005.
[2]. Afzal, P., Yousefi, M., Mirzaei, M., Ghadiri-Sufi, E., Ghasemzadeh, S. and Daneshvar Saein, L. (2019). Delineation of podiform-type chromite mineralization using Geochemical Mineralization Prospectivity Index (GMPI) and staged factor analysis in Balvard area (southern Iran). Journal of Mining and Environment 10: 705-715.
[3]. Carranza, E.J.M. (2008). Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Exploration and Environmental Geochemistry. Vol. 11, Elsevier, Amesterdam.
[4]. Yousefi, M. and Carranza, M.J.M. (2015). Fuzzification of Continuous-value spatial evidence for mineral prosprctivity mapping. Computers & Geosciences 74: 97-109.
[5]. Yousefi, M., Carranza, M.J.M. (2017). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences 128: 47-60.
[6]. Ghaeminejad, H., Abedi, M., Afzal, P., Zaynali, F., and Yousefi, M. (2020). A fractal-based outranking approach for mineral prospectivity analysis. Bollettino di Geofisica Teorica e Applicata. 61 (4): 555-588.
[7]. Yousefi, M., Kamkar-Rouhani, A., and Carranza, M.J.M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration 115: 24–35.
[8]. Yousefi, M. and Khaloo Kakaei, R. (2004). Mineral Potential Modeling of Gold in Mahneshan Area using GIS. Mining Engineering Conference, Tarbiat Moddares University.
[9]. Saadati, H., Afzal, P., Torshian, H., and Solgi, A. (2020). Geochemical exploration for Li using Geochemical Mapping Prospectivity Index (GMPI), fractal and Stage Factor Analysis (SFA) in NE Iran. Geochemistry: Exploration, Environment, Analysis 20: 461-472.
[10]. Kianpoorian, S., Farahmandian, M., Karimi, M., and Bahroodi, A. (2014). Mineral Potential Modeling of copper using Neuro-Fuzzy Model in Chargonbad, Kerman. Earth Science Journal, 94: GSI.
[11]. Berberian, F., Muir, I.D., Pankhurst, R.J., and Berberian, M. (1982). Late cretaceous and early miocene andean-type plutonic activity in northern Makran and central Iran. J. Geol. Soc. Lond. 139, 605e614.
[12]. Badrzadeh, Z. and Aghazadeh, M. (2014). Geochemistry and Structural Geology of Intrusive Masses of South-Western Part of Jiroft. Geochemistry Journal, 2, Payame Noor University
[13]. Roberts, R.G., Sheahan, P., and Cherry, M.E. (1998). Ore Deposit Models. Geoscience Canada Reprint Series 3, Geological Association of Canada, Newfoundland.
[14]. Berger, B. R. and Drew, L.J. (2002). Mineral–deposit models: new developments in: A.G. Fabbri, Gaal, G., Mccammon, R.B. (Eds.), Deposit and Geoenviromental models for Rsource Exploration and Enviromental Security. NATO Science Series 2, 80: 121-134.
[15]. Arribas, A.J. (1995). Contemporaneous formation of adjacentporphyry and epithermal Cu-Au deposits over 300 ka innorthern Luzon, Philippines. Geology, 23: 337–340.
[16]. Singer, D.A., Berger, V.I., and Moring, B.C. (2005). Porphyry copper deposits of the world: database, map, grade, and tonnage models. U.S. Geological Survey. Open-File Report: 1005–1060.
[17]. Hezarkhani, A. (2006). Mineralogy and fluid inclusion investigations in the Reagan Porphyry System, Iran, the path to an uneconomic porphyry copper deposit. Journal of Asian Earth Sciences 27: 598–612.
[18]. Guillou-Frottier, L., and Burov, E. (2003). The development and fracturing of plutonic apexes: Implications for porphyry ore deposits. Earth and Planetary Science Letters 214: 341–356.
[19]. Qu, X., Hou, Z., Zaw, K., and Youguo, L. (2007). Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau: Preliminary geochemical and geochronological results. Ore Geology Reviews 31: 205–223.
[20]. Ghasemi, A. and Talbot, C.J. (2006). A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences 26: 683–693.
[21]. Meshkani, S.A., Mehrabi, B., Yaghubpur, A. and Sadeghi, M. (2013). Recognition of the regional lineaments of Iran: using geospatial data and the implications for exploration of metallic ore deposits. Ore Geology Reviews 55: 48–63.
[22]. Zare Chahooki, M.A. (2010). Moltivariate Analysis in SPSS. University of Tehran.
[23]. Carranza, E.J.M., Woladi, T., and Chikambwe, E.M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmaties, Lundazi District, Zambia. Natural Resource Reserves 14: 47-63.
[24]. Bonham-Carter, G.F., Agterberg, F.P., and Wright, D.F. (1989). Weight of evidence modeling: a new approach to mapping mineral potential In: Agterberg, F.P., Bonham-Carter, G.F. (Eds.), Statistical Applications in the Earth Science. Geological Survey of Canada 89: 171-183.
[25]. Nezhad, S.G., Mokhtari, A.R. and Rodsari, P.R. (2017). The true sample catchment basin approach in the analysis of stream sediment geochemical data. Ore Geology Reviews. 83: 127–134.
[26]. Zhang, N., Zhou, K., and Du, X. (2017). Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu- Tousuquan island arc, Xinjiang, NW China. Journal of African Earth Sciences 128: 84–96.
[27]. Du, X., Zhou, K., Cui, Y., Wang, J., Zhang, N. and Sun, W. (2016). Application of fuzzy Analytical Hierarchy Process (AHP) and Prediction-Area (PA) plot for mineral prospectivity mapping: A case study from the Dananhu metallogenic belt, Xinjiang, NW China. Arabian Journal of Geosciences 9: 298.
[28]. Roshanravan, B., Aghajani, H., Yousefi, M. and Kreuzer, O. (2018). An Improved Prediction-Area Plot for Prospectivity Analysis of Mineral Deposits. Natural Resources Research.