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 Attenuation of the signal received from the sources causing anomalies is the negative 
feature of the airborne measurements. Using a stable downward continuation method 
is a practical way to address this shortcoming. In this work, we investigate the 
efficiency of various stabilizers in achieving a stable downward continued data. The 
purpose of this work is to select the most appropriate stabilizer(s) for this operation. 
We examine the various stabilizing functions by introducing them into the Tikhonov 
regularization problem. The results of the research work on the synthetic airborne 
gravity and magnetic data show that the βL1 (the other definition of L1 norm) and SM 
(the smoothest model) stabilizers have the potential to be used in the stable 
implementation of the downward continuation method. These stabilizers perform 
better than the others in the three comparisons including the visual, quantitative (RMS 
error), and graphical comparisons. Also by examining the airborne magnetic data 
related to the Esfordi district in the Yazd Province (Iran), it has been found that, in 
general, the βL1 stabilizer is more suitable than the other stabilizing functions studied 
in this research work. 
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1. Introduction 
Nowadays, the importance of using airborne 

surveys, especially in mineral exploration, is not 
hidden from anyone. In the early stages of 
exploration, i.e. the reconnaissance stage, aerial 
surveys help us to limit large areas, and achieve 
promising smaller areas (prospects). In addition, 
the rapid implementation and cost-effective 
coverage of large areas and the facilitation of data 
measurement in impassable areas are some of our 
incentives to use the airborne surveying method [1, 
2]. Unfortunately, despite these advantages, the 
received signals are weakened due to the distance 
from the sources causing the anomalies. Also the 
data resolution reduces such that distinguishing 
different sources from each other is not easily 
possible. In these cases, a downward continuation 
method has been used in order to address these 
shortcomings and achieve a better interpretable 
data. 

The downward continuation method is the 
mathematical projection of the potential field data 
(gravity or magnetic) from one datum vertically 
downwards to another datum [3]. This method 
increases the perceptibility of the small, shallow-
sourced anomalies over that of the original data [4]. 
Nevertheless, this operation is unstable, and the 
presence of noise in the original data is 
troublesome; therefore, like the inverse modeling 
method, it is considered as an ill-posed problem. In 
order to stabilize the calculations related to this 
operation, different methods have been proposed, 
in which the stable downward continued data is 
usually produced by the directed or iteration 
method [5]. Among them, the Tikhonov 
regularization-based method and its high 
applicability have been investigated in many 
studies (e.g. [6-9]). (Note that the Tikhonov 
regularization method was first described by 
Tikhonov and Arsenin (1977) [10], and the readers 
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can refer to it for a further understanding.) In fact, 
in this approach, the stable downward continuation 
operation is simulated by inverting the original data 
in the Fourier domain. Then in order to solve the 
new problem, the corresponding Tikhonov cost 
function is minimized. This function consists of 
data misfit and model norms. The data misfit norm, 
which controls the extent to which the data fits the 
model, has a single definition in most studies, i.e. 
the sum of the squares of the difference between 
the recovered and measured data. However, the 
model norm term is chosen in order to meet the 
available information and assumptions related to 
the desired solution. The previous inversion 
algorithms used the L2 norm as the model norm. 
Although this choice had the advantage of 
simplifying the calculations, it produced smooth 
solutions that were, in some cases, far from the 
truth. Then in order to eliminate the existing gaps 
and achieve models closer to reality, various 
stabilizing functions have been introduced by 
many researchers. For example, in [11-15], the 
minimum support (MS), smoothest model (SM), 
total variation (TV), first-order minimum entropy 
(ME-1), and minimum gradient support (MGS) 
stabilizers have been introduced, respectively. The 
stabilizing function plays an essential role in 
solving the inverse problem by selecting the most 
appropriate model from the set of possible ones 
[16]. For instance, the L2 norm and maximum 
smoothness stabilizers produce smooth solutions, 
while the minimum gradient support, minimum 
support, total variation, and minimum entropy are 
used to create non-smooth solutions. Also, blocky 
and piecewise-constant results can be produced 
using the L1 norm. The use of stabilizers in the 
inversion of various geophysical data is common 

(e.g. [17, 18] (2D magnetotelluric data); [19] 
(gravity and magnetic data); [20] (1D and 2D 
magnetotelluric data); [21] (3D DC resistivity 
data), and [22] (3D gravity data)).   

This work aims to investigate the performance of 
some stabilizers in the production of stable 
downward continued data. We will answer the 
following questions: Will different stabilizers be 
able to do this operation at all? Will the use of 
different stabilizers in this problem produce 
different results? We will use the stabilizers 
including the L1 norm, L2 norm, SM, MS, MGS, 
ME-1, and TV. In the following, implementing the 
proposed method is explained by describing the 
stabilization of downward continuation using the 
Tikhonov method, and then introducing the 
mentioned stabilizing functions and how to 
incorporate them into the inversion problem. 

2. Methodology 
Our proposed method for stabilizing the 

calculations of downward continuation is based on 
the Tikhonov regularization method, and is 
performed using the mentioned stabilizers. The 
definitions and mathematics of our method are 
concisely explained in the following sub-sections. 

2.1. Stable downward continuation 

In physical terms, the downward continued filter 
transforms the data to what it would have been if 
the measurements had been made at a different 
height below the observational level [23]. The data 
obtained at two different elevation levels are 
related to each other by Equation (1), as follows 
[24-27]: 

 

௭ܲమ(ݔ, ,ݕ (ݖ∆ =
1

ߨ2
ඵ ௭ܲభ(ܺ, ݖ∆(ܻ

[(ܺ − ଶ(ݔ + (ܻ − ଶ(ݕ + ଶ]ଷݖ∆ ଶ⁄

ାஶ

ିஶ

ܻ݀ܺ݀ , ݖ∆ = ଶݖ − ଵݖ ≥ 0 (1) 

 
This equation represents the upward continuation 

operation in an integral form of convolution, where 
௭ܲభ  and ௭ܲమ  are, respectively, the potential field data 

at two distinct elevation levels located at vertical 
distance ∆ݖ from each other, (ܺ, ܻ,  ଵ) andݖ
,ݔ) ,ݕ  ଶ) represent the coordinates of the data atݖ
the lower and upper height levels, respectively. 
Transferring the data from the spatial domain to the 
spectral domain using 2D Fourier transform 
produces the following more straightforward 
relation: 
෨ܲ௭మ൫ܭ௫ , ௬ܭ , ൯ݖ∆ = ݁ି∆௭௄ ෨ܲ௭భ൫ܭ௫ ,  ௬൯ (2)ܭ

where ෨ܲ represents the Fourier transform of P, 
݁ି∆௭௄  is the upward continuation operator, ܭ =

ටܭ௫ଶ +  ௬ଶ  is the radial wavenumber, andܭ

௫ܭ ௬ܭ ݀݊ܽ   are the wave numbers in the x and y 
directions, respectively. Since the measured data is 
often noisy, the stable execution of the downward 
continuation operation is challenging. The 
Tikhonov regularization method has often been a 
practical solution to this problem (e.g. [5, 6, and 
28]). Here, we describe the following inversion 
problem, relying on Abedi et al. (2013), who have 
simulated the stable downward continuation 
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operation by the airborne data inversion in the 
Fourier domain [6].  

From the similarity of Equation (2) with the 
forward modeling problem, it is inferred that the 
stable downward continued data can be calculated 
by inverting the airborne data (in the Fourier 
domain): 

ൣ ሚ݀௨௣൧௡×ଵ
= ௡×௡ൣܩ ሚ݀ௗ௢௪௡൧௡×ଵ (3) 

where ሚ݀௨௣  and ሚ݀ௗ௢௪௡ are the airborne potential 
data and the corresponding downward continued 
data in Fourier domain, respectively. The forward 
operator ܩ is a diagonal matrix containing the 
values of ݁ି∆௭௄ . In order to solve the inverse 
problem, the following Tikhonov parametric 
function (ܲఈ ) is minimized: 

ܲఈ(݉, ݀) = ߶(݉, ݀) +  (4) (݉)ܵߣ

where ߶(݉, ݀) and ܵ(݉) represent the data 
misfit and the stabilizing functions, respectively, ݉ 
shows the desired solution, and ݀ is the measured 
data that here is equivalent to ሚ݀ௗ௢௪௡  and ሚ݀௨௣ , 
respectively. The data misfit function is defined as 
follows: 

߶(݉, ݀) = ฮ൫ࢊ − ൯ฮ(݉)ࡳ
ଶ

ଶ
 (5) 

The regularization parameter ߣ plays a 
controlling role in the importance of these terms on 
the inversion results. Several methods have been 
proposed for automatically estimating this 
parameter, and the L-curve method is used in this 
work. In this method, the curve is obtained by 
plotting the solution norm against the 
corresponding residual norm for different 
regularization parameters in the logarithmic scale. 
Then the elbow point represents the optimal 
regularization parameter [29]. The following sub-
section provides more details about the stabilizing 
term. 

2.2. Stabilizers family 

The main application of the stabilizing functions 
is to select solutions from a set of possible ones that 
are continuously dependent on the data, and have 
particular properties according to the selected 
function [16]. In the following, the stabilizers used 

in this work are introduced, and their equations are 
presented: 

The L1 norm stabilizer is defined in the following 
form: 

ܵ௅భ(݉) = ෍|݉௜|
ெ

௜ୀଵ

 (6) 

where ݉௜ represents the model parameter. This 
function can also be re-written as follows, the 
advantage of which will be determined later. In 
order to distinguish between these definitions, we 
display the second definition with ఉܵ௅భ(݉). 

ఉܵ௅భ(݉) = ܵ௅ଵ(݉) = ෍
|݉௜|
|݉௜|

ெ

௜ୀଵ

|݉௜| = 

(7) 

෍
݉௜

ଶ

ඥ݉௜
ଶ

ெ

௜ୀଵ

≅෍
݉௜

ଶ

ඥ݉௜
ଶ ଶߚ+

ெ

௜ୀଵ

 

where ߚ is a very small positive value.  
The L2 norm stabilizer is defined as the square 

root of the sum of the squares of the model 
parameters, i.e. 

ܵ௅మ(݉) = ൭෍|݉௜|ଶ
ெ

௜ୀଵ

൱

ଵ
ଶൗ

 (8) 

The next stabilizing function is the smoothest 
model (SM), given below as: 

ௌܵெ(݉) = ‖∇ଶ݉‖ଶ (9) 

where ∇ is the gradient operator here and in the 
subsequent cases. The two functions, minimum 
support (MS), and minimum gradient support 
(MGS) used in focusing inversion are written as 
follow: 

ܵெௌ(݉) = ෍
݉௜

ଶ

݉௜
ଶ + ଶߚ

ெ

௜ୀଵ

 (10) 

ܵெீௌ(݉) = ෍
∇݉௜∇݉௜

∇݉௜∇݉௜ + ଶߚ

ெ

௜ୀଵ

 (11) 

where ߚ is called a focusing parameter, and is 
selected as a small positive number. 

The next stabilizer creating sharp models in 
inversion is called the first-order minimum entropy 
(ME-1), which is defined as follows: 

 

ܵொିଵ(݉) = −෍ ቈ
|݉௜ାଵ −݉௜| + ߚ

∑ (|݉௜ାଵ −݉௜ | + ெିଵ(ߚ
௜ୀଵ

. ݃݋݈ ቆ
|݉௜ାଵ −݉௜| + ߚ

∑ (|݉௜ାଵ −݉௜| + ெିଵ(ߚ
௜ୀଵ

ቇ቉
ெିଵ

௜ୀଵ

 (12) 
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The last stabilizer whose impact on performing 
stable downward continuation of airborne data is 
investigated is the total variation function (TV).  

்ܵ௏(݉) = ෍
|∇݉௜| + ଶߚ

ඥ(݉௜ + (ଶߚ

ெ

௜ୀଵ

 (13) 

In the last two cases, ߚ is selected as an 
infinitesimal small positive constant. 

Fortunately, all the stabilizing functions can be 
re-written as a pseudo-quadratic function of the 
model parameters. This procedure makes it easy to 
solve the optimization problem, and creates a 
single method in order to achieve the desired 
solution. Accordingly, the parametric function is 
re-written as Equation (14): 

ܲఈ(݉, ݀) = ฮ൫ࢊ − ൯ฮ(݉)ࡳ
ଶ
ଶ

+  ଶଶ (14)‖࢓ࢃ‖ߣ

where ࢃ is the product of two variables (ࢋ࢝) and 
constant (ࡸ) weighting matrices, i.e. 
ࢃ =  (15) ࡸࢋ࢝

In this relation, ࢋ࢝ is the pseudo-quadratic form 
of the selected stabilizing function, and according 

to this choice, the matrix ࡸ is chosen as zero, the 
first or second derivative of the potential field in 
the z direction. The ݊ vertical derivative of the 
potential field data in the Fourier domain is 
calculated through: 

ܨ ൤
݀௡ܲ
௡ݖ݀

൨ =  (16) [ܲ]ܨ௡|ܭ|

where ܨ represents the Fourier transform 
operator, ܲ is the potential field data, and ܭ is the 
radial wave number. Accordingly, the operator ܮ 
can be obtained by evaluating |ܭ|௡. Here, the ࡸ 
matrix corresponding to the ߚL1, L2, and ME-1 
stabilizers equal to the identity matrix (i.e. ࡸ =  (ࡵ
for L1, MS, MGS, and TV equal to ܭ and in relation 
to the SM stabilizer equal to ܭଶ . 

The ࢋ࢝ equations for different stabilizers have 
been introduced in various studies (e.g. [16, 21]). 
Table 1 shows these relations. Since these 
weighting functions depend on the model 
parameters, the inverse problem is required to be 
solved by iteration. 

Table 1. Pseudo-quadratic forms corresponding to various stabilizers; ࢐ is the iteration number, ࢼ is a very small 
positive value, સ is the gradient operator, and ࢐࢓ represents the model parameter in ࢐ ࢋࢎ࢚th iteration [21]. 

࢐ࢋࢃ   Notation Stabilizer 

(17) ௘ܹೕ
ఉ௅భ = ݀݅ܽ݃ቌ

1

൫࢓௝
ଶ + ଶ൯ଵߚ ସ⁄ ቍ ߚL1 

1-norm 
(definition 1) 

(18) ௘ܹೕ
௅భ = ݀݅ܽ݃൫࢓௝൯ L1 

1-norm 
(definition 2) 

(19) ௘ܹೕ
௅మ = ݀݅ܽ݃൫࢓௝

ଶ൯ L2 2-norm 

(20) ௘ܹೕ
ௌெ = ݀݅ܽ݃൫∇࢐࢓.  ൯ SM smoothest࢐࢓∇

model 

(21) ௘ܹೕ
ெௌ = ݀݅ܽ݃ቌ

1

൫࢓௝
ଶ + ଶ൯ଵߚ ଶ⁄ ቍ MS Minimum 

support 

(22) ௘ܹೕ
ெீௌ = ݀݅ܽ݃ ൮

௝࢓∇

ቀ൫∇࢓௝൯
ଶ

+ ଶቁߚ
ଵ ଶ⁄

൫࢓௝
ଶ + ଶ൯ߚ

ଵ ଶ⁄
൲ MGS 

Minimum 
gradient 
support 

(23) ௘ܹೕ
ொଵ = ݀݅ܽ݃ ቈ−ቆ

|݉௜ାଵ −݉௜| + ߚ
∑ (|݉௜ାଵ −݉௜| + ெିଵ(ߚ
௜ୀଵ

ቇ . ݃݋݈ ቆ
|݉௜ାଵ −݉௜| + ߚ

∑ (|݉௜ାଵ −݉௜| + ெିଵ(ߚ
௝ୀଵ

ቇ
1

(݉௜
ଶ + ଶ)ଵߚ ଶ⁄ ቉ ME-1 Minimum 

entropy-1 

(24) ௘ܹೕ
்௏ = ݀݅ܽ݃ቌ

ห∇࢓௝ห
ଶ + ଶߚ

൫࢓௝
ଶ + ଶ൯ଵߚ ଶ⁄ ቍ TV Total variation 
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The desired solution is obtained as the following 
iterative procedure: 
ሚ݀
ௗ௢௪௡
௝ାଵ = ܩ்ܩ) + ௘ݓ௝(௘்ݓ)ߣ ௝ܮ்ܮ)ିଵ்ܩ ሚ݀௨௣    

(25) 
 ݆ = 0, 1, 2, … 

where ܶ represents the transpose of a matrix. For 
the first iteration (݆ = 0), we considered the ݓ௘ 
matrix equal to the identity matrix. In the later 
iterations, this matrix is assessed using the model 
parameters gained in the former iteration. The 
following relation is considered as the stop 
criterion for the iterations. 

ฮ ሚ݀ௗ௢௪௡
௝ାଵ − ሚ݀

ௗ௢௪௡
௝ ฮ

ଶ

ଶ
ฮ ሚ݀ௗ௢௪௡

௝ ฮ
ଶ

ଶ
ൗ ≤  (26) ݁ܿ݊ܽݎ݈݁݋ݐ

3. Application to synthetic potential field data 
In order to evaluate the capability of the 

mentioned stabilizers in the successful 
implementation of stable downward continuation, 

the synthetic models of gravity and magnetic were 
simulated with the physical characteristics 
summarized in Table 2. These models consist of 
seven rectangular prisms in which four blocks are 
large-sized targets, and three blocks represent the 
small-sized ones (Figures 1c and 1f).  The Earth 
magnetic field was assumed by a vector with an 
inclination I = 50o, a declination D = 2o, and a 
strength of 46,000 nT. By the forward modeling 
method, 10201 data points were generated at an 
altitude of 150 m on a 100 m grid spacing over a 
survey area of 1 km by 1 km. This airborne gravity 
and magnetic data are shown in Figures 1a and 1d, 
respectively. The theoretical observations at the 
ground level were also created in order to evaluate 
the stable downward continuation operation 
(Figures 1b and 1e). Also, to get closer to the actual 
situation, the surface and airborne data was 
corrupted with 2% and 3% Gaussian noise, 
respectively, for the gravity and magnetic data.  

Table 2. The assumed parameters for the synthetic models shown in Figures. 1c and 1f. 
Model  Dimension (m) Depth (m) Susceptibility (SI) Density contrast (g/cm3) 

1 1000 × 3000 × 500 500 0.06 0.5 
2 500 × 500 × 150 50 0.06 0.5 
3 500 × 1000 × 200 100 0.06 0.5 
4 750 × 500 × 150 150 0.06 0.5 
5 100 × 100 × 75 50 0.1 1.5 
6 100 × 150 × 100 75 0.08 1 
7 200 × 100 × 75 25 0.06 0.5 

 
As it can be seen, due to the geophysical signal 

attenuation, none of the small-sized targets is 
evident within the airborne anomalies clearly, and 
their manifestations are very weak (Figures. 1a and 
1d). In contrast, those targets have significant 
signatures in the surface data (Figures. 1b and 1e). 
The stable downward continuation of airborne data 
was performed using eight different stabilizers 

 with (L1, L1, L2, SM, MS, MGS, ME-1, and TVߚ)
the method described in Section 2.1. The final 
parameters used in the desired approach are given 
in Table 3. As shown in this table, the ࡸ matrix used 
in the different methods is not the same. We 
examined different modes in order to find the most 
suitable matrix, and in fact, the expressed matrix 
produced the best results. 

Table 3. The parameters used for downward continuation of the synthetic data. 

Stabilizer ܍ܟ matrix ࡸ ࢼ matrix ࣅ 
Magnetic Gravity 

 L1 Eq. (17) 10ିଷ I 4.84 2.50e(-1)ߚ
L1 Eq. (18) - K 2.25e(-6) 2.50e(-3) 
L2 Eq. (19) - I 2.50e(-3) 1.60e(-3) 
SM Eq. (20) - Kଶ 4.90e(+7) 9.00e(+6) 
MS Eq. (21) 10ିଷ K 8.10e(+5) 9.00e(+4) 

MGS Eq. (22) 10ିଵ଴ K 2.89e(-6) 2.50e(-3) 
ME-1 Eq. (23) 10ିଵହ I 1.68e(-5) 1.44e(-4) 
TV Eq. (24) 10ିଵହ K 3.18e(-7) 4.20e(-3) 

 
Based on this, the airborne gravity and magnetic 

data was transferred from a height of 150 m to the 
ground surface. Figures 2 and 5 show the results 

obtained for the magnetic and gravity data, 
respectively. These results were generated from the 
optimal regularization parameter selected from the 
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L-curve method (Figures 3 and 6). These values are 
also listed in Table 3. 

In order to evaluate the performance of different 
stabilizers, 150 m-downward continued data was 
compared with the surface theoretical data using 
the same color legend bar to facilitate visual 
comparison. The visual comparisons of data in 
magnetic (i.e. Figure 2 vs. Figure 1d) and gravity 

case (i.e. Figure 5 vs. Figure 1e) indicate that 
different stabilizers have performed stable 
downward continued data satisfactorily. However, 
the results obtained from some stabilizers are 
flawed so that smaller sources have less resolution, 
and in some cases, additional noise is introduced 
into the data.  

 

 
Figure 1. Synthetic potential field data simulation (a) gravity data at an altitude of 150 m, (b) gravity data at 

surface, (c) geometry of multi-source anomaly with different density contrasts, (d) magnetic data at an altitude of 
150 m, (e) magnetic data at surface, and (f) geometry of multi-source anomaly with different magnetic 

susceptibility. Both surface and airborne data were corrupted with 2% and 3% Gaussian noise, respectively, for 
the gravity and magnetic data. 
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Figure 2. Downward continuation of the synthetic magnetometry data with various stabilizers from an altitude 
of 150 m to the ground surface through implementing a stabilizer of (a) βL1, (b) L1, (c) L2, (d) SM, (e) MS, (f) 

MGS, (g) ME-1, and (h) TV. 
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Figure 3. Selection of an optimum regularization parameter by means of L-curve method for the various 
stabilizers of (a) βL1, (b) L1, (c) L2, (d) SM, (e) MS, (f) MGS, (g) ME-1, and (h) TV. The corresponding 

downward continued magnetic data is presented in Figure 2. 
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Figure 4. Plot of the 150-m downward continued synthetic magnetic data versus the theoretical data for the 

various stabilizers of (a) ࢼL1, (b) L1, (c) L2, (d) SM, (e) MS, (f) MGS, (g) ME-1, and (h) TV. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
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Figure 5. Downward continuation of the synthetic gravity data with various stabilizers from an altitude of 150 m 

to the ground surface through implementing a stabilizer of (a) ࢼL1, (b) L1, (c) L2, (d) SM, (e) MS, (f) MGS, (g) 
ME-1, and (h) TV. 
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Figure 6. Selection of an optimum regularization parameter by means of L-curve method for the various 
stabilizers of (a) ࢼL1, (b) L1, (c) L2, (d) SM, (e) MS, (f) MGS, (g) ME-1, and (h) TV. The corresponding 

downward continued gravity data is presented in Figure 5. 
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Figure 7. Plot of the 150-m downward continued synthetic gravity data versus the theoretical data for the 

various stabilizers of (a) ࢼL1, (b) L1, (c) L2, (d) SM, (e) MS, (f) MGS, (g) ME-1, and (h) TV. 

For example, in the magnetic case, in Figure 2e 
(MS stabilizer), the anomalous areas related to 
small sources are less clear. Also in Figures. 2b and 
2g, which are related to the L1 and ME-1 
stabilizers, respectively, the amount of noise is 
high, and causes a weakening in the display. Also 
in the gravity data, the evidence of the presence of 
all sources appears in all images (except Figure 5e). 

Figures. 5a, 5c, 5d, and 5h, which are the results for 
the ߚL1, L2, SM, and TV stabilizers, respectively, 
prove the existence of sources, while controlling 
the noise level. In addition, in order to 
quantitatively compare the results of different 
stabilizers, the root mean square (RMS) error was 
calculated using the following equation: 

 

ܵܯܴ = ඨ∑ ൫݀௜
௦௨௥௙௔௖௘ − ݀௜ௗ௢௪௡௪௔௥ௗ൯

ଶே
௜ୀଵ

ܰ
 (27) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
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where N is the number of data, and ݀௦௨௥௙௔௖௘  and 
݀ௗ௢௪௡௪௔௥ௗ  represent the theoretical surface and 
downward continued data, respectively. Table 4 
shows these RMS errors calculated from the use of 
different stabilizers. As it can be seen in the 

magnetic data, the RMS errors related to the ߚL1, 
L2, and MS stabilizers have the lowest values, 
respectively, while in the gravity data, the ߚL1, 
MS, L2, and SM stabilizers show better results. 

Table 4. RMS errors related to different stabilizers in the synthetic data. 
 RMS error 

Synthetic data ߚL1 L1 L2 SM MS MGS ME-1 TV 
Magnetic 15.74 19.54 16.71 17.86 17.12 18.57 37.65 24.10 
Gravity 0.13 0.20 0.16 0.19 0.14 0.20 0.23 0.17 

 
Another method used in this work to evaluate the 

results is a graphical comparison of data. In this 
procedure, the scatter plot of 150-m downward 
continued data versus surface theoretical data was 
drawn (Figures 4 and 7). In this method, the 
criterion of the superiority of one stabilizer over 
others is the conformity of the trend line of its 
scatter plot to the line x = y. As shown in Figure 4 
(magnetic case), the degree of compliance with the 
x = y line is approximately equal in all plots but the 
extent of data dispersion varies. Thus another 
condition for choosing a stabilizer is to have a 
minimum width along the x = y line. Accordingly, 
Figures. 4a, 4d, and 4e  that correspond to the ߚL1, 
SM, and MS stabilizers, respectively, can be the 
candidates for the desired stabilizer. In the gravity 
example, the ߚL1 and SM stabilizers have 
produced the best results (Figures. 7a, 7d). 

4. Geological descriptions of Esfordi district 
Different kinds of iron deposits including 

Kiruna-type magnetite-apatite, volcano-
sedimentary, skarn, IOCG (i.e. iron oxide-copper-
gold deposit), magmatic, and placer deposits are 
found in Iran [30]. In general, these deposits and 
indications are distributed in four major areas 
including Central Iran, Sanandaj–Sirjan zone, 
Eastern Iran, and Kordestan region [31]. One of the 
significant structural regions of Iran is the Bafgh-
Posht-e-Badam block. This area is one of the 
components of the Central Iranian microcontinent 
based on newer structural divisions of Iran [32]. 
The Bafgh-Posht-e-Badam block, also known as 
the Bafgh metallogenic zone, is the place of 
occurrence of various iron deposits. Figure 8 shows 
the distribution map of the iron deposits over the 
tectonic map of Iran. As it can be seen, the 
concentration of these deposits in the Bafgh region 
is high. 

The studied area is a part of the Bafgh 
metallogenic zone, which dates back to the Late 
Precambrian-Early Cambrian period in the 
geological time scale. In this respect, it is the oldest 
metallogenic zone of Iran [31]. The Esfordi district 
is located in the northeast of the city of Bafgh in 
the Yazd Province (Iran) between the 55˚30ʹ to 
56˚00ʹ eastern longitudes and the 31˚30ʹ to 32˚00ʹ 
northern latitudes. A simplified geological map 
with iron and phosphate deposits of the Esfordi 
area is shown in Figure 9. In this district, different 
units outcrop from the Precambrian to Quaternary. 
The studies conducted by the Geological Survey of 
Iran (GSI) indicate that this area is economically 
prosperous. In this regard, the deposits and 
occurrences of iron, manganese, lead and zinc, 
apatite, molybdenum, copper, gypsum, and 
building stones have been reported. One of the 
prominent features of this region is the existence of 
numerous various iron deposits, which is an 
encouraging factor for applying the magnetometry 
method to explore the areas prone to iron 
mineralization and other associated minerals. 

5. Application to real data set in Esfordi district 
The Esfordi aeromagnetic data used for this work 

was collected under the supervision of the 
Geological Survey of Iran (GSI). The data was 
measured at an altitude of 150 m above the ground 
surface, and the distance between the flight lines 
was 560 m. The Aeromagnetic residual map over 
the Esfordi district is shown in Figure 10a. Also the 
reduced-to-pole (RTP), analytic signal (AS), and 
tilt angle maps are shown in Figures. 10b-d. The 
location of the known iron and phosphate deposits 
mentioned in Figure 9 have been superimposed on 
these maps.  
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Figure 8. Distribution map of iron deposits over the tectonic map of Iran, where the location of the Esfordi 

district is shown in the middle of map (reproduced from [30, 31]). 
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Figure 9. Simplified 1:100,000 scale geological and mineral occurrence map of the studied area located in the 

Esfordi district (reproduced from reports of the Geological Survey of Iran, GSI). 
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Figure 10. Aeromagnetic data over the Esfordi district (a) residual magnetic data, (b) RTP map, (c) analytic 
signal map, (d) tilt angle map. Locations of the Fe-P deposits listed in Table 2 have been superimposed on all 

maps. 

As it can be seen, the analytical signal map has 
reliably identified the areas concerning the 
available deposits. By applying the Tikhonov 
regularization method and using different 
stabilizers, the 150-m downward continued maps 
were generated (Figure 11). For best results, the 
value of the optimum regularization parameter 
according to Figure 12 was selected from the L-
curve method. As it can be seen, the results 
obtained are slightly different from the original 
data (Figure 10a) because the height difference 
between the two observation and continuation 
levels is not high. In this situation, the visual 
comparison was challenging to perform. Also due 
to the lack of sufficient information to validate the 
results, we decided to use a recursive approach in 
order to calculate the RMS error to evaluate the 
results. We performed the upward continuation 
operation similarly on the downward continued 

data. Then we used the original airborne data and 
the upward data to calculate the error. Therefore, 
the following equation was used: 

ܵܯܴ = ඨ∑ ൫݀௜
௔௜௥௕௢௥௡௘ − ݀௜

௨௣௪௔௥ௗ൯
ଶே

௜ୀଵ
ܰ

 (28) 

In this equation, ݀௔௜௥௕௢௥௡௘ is the airborne data, 
݀௨௣௪௔௥ௗ  is the upward data, and N is the number 
of data. The upward data was also calculated using 
Equation (3). Based on this, the RMS error values 
were calculated according to Table 5. As it can be 
seen in this case, the ME-1, L1, MGS, and ߚL1 

stabilizers have a minor error compared to the 
others. Figures. 11c and 11d also confirm the high 
RMS error obtained from the L2 and SM 
stabilizers. For example, if we look at the position 
of No. 12 and 25 indices (Lakkeh siah Fe-P 
deposits), which are star-like, the downward 
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continued results show this area more strongly. At 
the same time, the L2 norm and SM stabilizers have 
produced smoother results. Also the area related to 

the No. 18 index (i.e. Nargun Fe-deposit) confirms 
this issue. For this reason, these stabilizers can be 
excluded. 

Table 5. RMS errors related to different stabilizers in the real data. 
RMS error 

 L1 L1 L2 SM MS MGS ME-1 TVߚ
0.16 0.06 17.67 28.07 12.20 0.10 0.02 8.71 

 

 
Figure 11. Downward continued magnetometry data over the Esfordi region through implementing a stabilizer 

of (a) ࢼL1, (b) L1, (c) L2, (d) SM, (e) MS, (f) MGS, (g) ME-1, and (h) TV. Locations of the Fe-P deposits have 
been superimposed on all maps. 
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Figure 12. Selection of an optimum regularization parameter by means of the L-curve method for the various 

stabilizers of (a) ࢼL1, (b) L1, (c) L2, (d) SM, (e) MS, (f) MGS, (g) ME-1, and (h) TV. The magnetometry data over 
the Esfordi region was the input data for continuation to the ground surface. 

The integrated geophysical methods can reduce 
the uncertainty arising from the single set 
geophysical data modeling, where the physical 
properties of magnetic susceptibility and density 
contrast can image most intricate geological targets 
through a fusion rule employed [33]. In the Esfordi 
region, since we have just access to the 
aeromagnetic data, the integrated approaches for 

target identification (i.e. iron deposit) were not 
possible to be utilized. We believe a multi-
disciplinary geospatial data set comprising 
airborne geophysics, satellite imagery data along 
with geochemical, and geological data can lead to 
a more usable output [34, 35], and it deserves to be 
studied in a separate work. 
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6. Conclusions 
In this work, we investigated the ability of 

various stabilizers to stabilize the downward 
continuation of the airborne data. This operation 
was performed by inserting the ߚL1, L1, L2, SM, 
MS, MGS, ME-1, and TV stabilizers into the 
Tikhonov parametric function, and then by 
minimizing this function, the synthetic gravity and 
magnetic models were created in order to evaluate 
the efficiency of these stabilizers. The calculated 
downward continued data was then compared with 
the surface theoretical data. This comparison was 
made in three ways: visual method, quantitative 
method (calculation of RMS error), and graphical 
method. In the visual comparison, revealing all the 
anomalous sources while controlling the noise 
level was our criterion in selecting the best 
stabilizing functions. Based on this, the ߚL1, L2, 
SM, MGS, and TV stabilizers in the magnetic 
example and the ߚL1, L2, SM and TV stabilizers in 
the gravity example were among the candidates of 
most suitable stabilizers. In order to evaluate these 
results quantitatively, the amount of RMS error of 
different stabilizers was calculated. In this regard, 
based on having the slightest RMS error, the ߚL1 
(e = 15.74), L2 (e = 16.71), and MS (e = 17.12) 
stabilizers in the magnetic case and the ߚL1 (e = 
0.13), MS (e = 0.14), L2 (e = 0.16), and SM (e = 
0.19) stabilizers in gravity case were introduced as 
the nominees for the best stabilizer. In the graphical 
method, the best results were determined based on 
the correspondence with the x=y line. The ߚL1, 
SM, and MS stabilizers in the magnetic data and 
the ߚL1 and SM stabilizers in the gravity data were 
introduced as the desired stabilizing functions by 
examining this condition. In addition, this work 
was performed on the real airborne magnetic data 
of the Esfordi district in the Yazd Province in Iran. 
In this case, the results obtained were evaluated by 
visually comparing the data and calculating the 
RMS error of different stabilizers in order to 
determine the most suitable stabilizer. Based on 
this, the ME-1, L1, MGS, and ߚL1 stabilizers with 
RMS error values of 0.02, 0.06, 0.1, and 0.16 could 
be introduced as the most suitable stabilizers. 
Considering all the results obtained from the 
synthetic and real examples, it can be concluded 
that the ߚL1 stabilizer (the second definition of the 
L1 norm) is a good choice to achieve the most 
appropriate results in the execution of a stable 
downward continuation operation. 
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  چکیده:

 یعمل ابزاري ادامه فروسوي پایدار هیافتر کیاست. استفاده از  هوابرد يهايریگاندازه یمنف یژگیو يهنجاربیکننده  جادیشده از منابع ا افتیدر گنالیس میرایی
 ،کار نی. هدف از ابررســی خواهد شــد فروســوي پایدارداده  کیبه  یابیدســت جهت متنوع توابع پایدارکننده یی، کارآپژوهش نیاســت. در ا یکاســت نیرفع ا يبرا

سب ست.  فرایند نیا ي(ها) براپایدارکننده نیترانتخاب منا س خونوفیتسازي منظم عادلهها در مآن ادغام با پایدارکنندهتوابع مختلف  لذاا شد یبرر  جی. نتاخواهیم 
مدل)  نیتر(نرم SM و )L1از نرم  (مشــتق  βL1 يهاکنندهپایدار ســنجی و مغناطیس،هاي مصــنوعی گرانیدادهدر مورد حاکی از این اســت که  یقاتیکار تحق

س سوي پایدارلازم جهت ادامه لیپتان سه طریقها کنندهپایدار نیرا دارند. ا ي فرو سه از  صر با مقای سا یکیو گراف )RMS ي(خطا ی، کميب یعمل م نیریبهتر از 
توابع  رینسبت به سا βL1 پایدارکننده، یبه طور کل شد که، مشخص )رانی(ا زدیدر استان  يمنطقه اسفورد یسیمغناطهوابرد  يهاهداد یبا بررس نیکنند. همچن
  عملکرد بهتري دارد. ،یقاتیکار تحق نیدر ا مطالعه شده پایدارکننده

  سازي تیخونوف، توابع پایدارکننده. ادامه فروسوي پایدار، منظم میرایی سیگنال، کلمات کلیدي:
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