[1]. Bazant, Z.P. (2002). Concrete fracture models: testing and practice. Engineering Fracture Mechanics 69, 165–205.
[2] Shah, SP., Swartz, SE. and Ouyang, C. (1995) Fracture mechanics of concrete. New York: John Willey and Sons Inc.
[3]. Chen, W.F. (1970). Double punch test for tensile strength of concrete. ACI Materials Journal 67 (2): 993–995.
[4]. Mazars, J. (1986). A description of micro- and macroscale damage of concrete structures. Engineering Fracture Mechanics 25, 729–737.
[5]. Protodyakonov, M.M. and Voblikov, V.S. (1957). Determining the strength of rocks on samples of an irregular shape, Ugol. 32 (4).
[6]. Bieniawski, Z.T. (1975). The point-load test in geotechnical practice, Eng. Geol. 9 (1): 1-11.
[7]. Broch, E. and Franklin, J.A. (1972). The point-load strength test, J. Rock Mech. Min. Sci. Geomech. Abstr. 9 (6): 669-676.
[8]. Basu, A. and Kamran, M. (2010). Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength, J. Rock Mech. Min. Sci. 47 (5): 823-828.
[9]. Basu, A., Mishra, D.A., and Roychowdhury, K. (2013). Rock failure modes under uniaxial compression, Brazilian, and point load tests”, Bull. Eng. Geol. Environ. 72 (3, 4): 457-475.
[10]. Singh, T.N., Kainthola, A. and Venkatesh, A. (2012). Correlation between point load index and uniaxial compressive strength for different rock types, Rock Mech. Rock Eng. 45 (2): 259-264.
[11]. Chau, K.T. and Wong, R.H.C. (1996). Uniaxial compressive strength and point load strength of rocks, J. Rock Mech. Min. Sci. Geomech. Abstr. 33 (2): 183-188.
[12]. Fener, M., Kahraman, S., Bilgil, A. and Gunaydin, O. (2005). A comparative evaluation of indirect methods to estimate the compressive strength of rocks, Rock Mech. Rock Eng. 38 (4): 329-343.
[13]. Sonmez, H. and Osman, B. (2008). The limitations of point load index for predicting of strength of rock material and a new approach”, Proceedings of the 61st Geological Congress of Turkey, 1, 261-262.
[14]. Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E. and Nefeslioglu, H.A. (2006). Estimating the uniaxial compressive strength of a volcanic bimrock”, J. Rock Mech. Min. Sci. 43 (4): 554-561.
[15]. Sonmez, H., Tuncay, E. and Gokceoglu, C. (2004). Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate, J. Rock Mech. Min. Sci. 41 (5): 717-729.
[16]. Basu, A. and Aydin, A. (2006). Predicting uniaxial compressive strength by point load test: significance of cone penetration, Rock Mech. Rock Eng. 39 (5): 483-490.
[17]. Kahraman, S. and Gunaydin, O. (2009). Effect of rock classes on the relation between uniaxial compressive strength and point load index, Bull. Eng. Geol. Environ. 68 (3): 345-353.
[18]. Kayabal, K. and Selçuk, L. (2010). Nail penetration test for determining the uniaxial compressive strength of rock, J. Rock. Mech. Min. Sci. 47 (2): 265-271.
[19]. Ma, G.W. and Wu, W. (2010). Water saturation effects on sedimentary rocks, Civil Eng. Res., 23, 129131.
[20]. Heidari, M., Khanlari, G., Torabi Kaveh, M. and Kargarian, S. (2012). Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing, Rock Mech. Rock Eng. 45 (2): 265-273.
[21]. Singh, V.K. and Singh, D.P. (1993). Correlation between point load index and compressive strength for quartzite rocks, Geotch. Geol Eng. 11 (4): 269-272.
[22]. Li, D. and Wong, L.N.Y. (2013). Point load test on meta-sedimentary rocks and correlation to UCS and BTS, Rock Mech. Rock Eng. 46 (4): 889-896.
[23]. Haeri, H., Khaloo, A. and Marji, M.F. (2015). Experimental and numerical analysis of Brazilian discs with multiple parallel cracks, Arab. J. Geosci. 8 (8): 5897-5908.
[24]. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2015). The HDD analysis of micro-crack initiation, propagation, and coalescence in brittle substances, Arab. J. Geosci. 8 (5): 2841-2852.
[25]. Tsiambaos, G. and Sabatakakis, N. (2004). Considerations on strength of intact sedimentary rocks, Eng. Geol., 72(3), 261-273.
[26]. Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L. and Dai, F. (2012). Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials, J. Rock. Mech. Min. Sci., 49, 105-112.
[27]. Ayatollahi, M.R. and Alborzi, M.J. (2013). Rock fracture toughness testing using SCB specimen, Proceedings of the 13th International Conference on Fracture, Beijing, China, June.
[28]. Wei, M.D., Dai, F., Xu, N.W., Xu, Y. and Xia, K. (2015). Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens, Eng. Fract. Mech., 134, 286-303.
[29]. Xu, N.W. Dai, F. Wei, M.D. Xu, Y. and Zhao, T. (2015a). Numerical observation of three dimensional wing-cracking of cracked chevron notched Brazilian disc rock specimen subjected to mixed mode loading”, Rock Mech. Rock Eng. 49 (1): 79-96.
[30]. Lee, S., Lee, S.H. and Chang, Y.S. (2015). Evaluation of RPV according to alternative fracture toughness requirements, Struct. Eng. Mech. 53 (6): 1271-1286.
[31]. Rajabi, M. Soltani, N. and Eshraghi, I. (2016). Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials, Struct. Eng. Mech. 58 (2): 144-156.
[32]. Yaylaci, M. (2016). The investigation crack problem through numerical analysis, Struct. Eng. Mech. 57 (6): 1143-1156.
[35]. Lin, Q. and Cao P. (2020). Fatigue behavior and constitutive model of yellow sandstone containing pre-existing surface crack under uniaxial cyclic loading,
Theoretical and Applied Fracture Mechanics, 109: 111-128.
[36]. Lin, Q. and Cao P. (2020). Strength and failure characteristics of jointed rock mass with double circular holes under uniaxial compression: Insights from discrete element method modelling,
Theoretical and Applied Fracture Mechanics, 109: 77-89.
[37]. Lin, Q. and Cao, P. (2021). Mechanical behavior of a jointed rock mass with a circular hole under compression-shear loading: Experimental and numerical studies,
Theoretical and Applied Fracture Mechanics, 114: 100-113.
[38]. Kahraman, S., Gunaydin, O. and Fener, M. (2005). The effect of porosity on the relation between uniaxial compressive strength and point load index, J. Rock. Mech. Min. Sci. 42 (4): 584-589.
[39]. Potyondy, D.O. and Cundall, P.A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41: 1329–1364.
[40]. Palassi, F. and Afzali, M. (2015). Effects of Lateral Confinement on the Results of Point Load Test. Conference: Geohalifax 2009-62nd Canadian Geotechnical Conference At: Halifax, Canada.