Document Type : Original Research Paper

Authors

1 Department of Mining Engineering, Baluchistan University of IT, Engineering and Management Sciences, Pakistan

2 Department of mining Engineering, University of engineering and Technology, Peshawar, Pakistan

3 School of Mines, China University of Mining and Technology, P.R China

4 State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, P.R China

5 Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan

Abstract

In this work, we focus on the up-gradation of the copper ore of Qilla Saifullah in Pakistan through the froth flotation technique. The chemical analysis of the head copper ore sample reveal the presence of 2.85% Cu, 22%  Fe2O3, 52.9% SiO2, and other minor minerals. The optimum grinding time and liberation size of the copper ore have been determined as 30 minutes and +149-105 µm, respectively, for further processing. The chemical reagents are optimized in order to get a maximum grade and recovery of the copper ore. After comparisons and analysis of the results obtained, it can be concluded that the maximum grade and recovery of the copper ore are achieved at the dosage 300 (g/t) of the collector potassium amyl xanthate (C6H11KOS2), 250 g/t of pine oil, 250 g/t of a depressant (Na2SiO3), conditioning time of 10 minutes for a collector, flotation time of 6 and 10 minutes, and pH of 10 using the froth flotation technique.

Keywords

[1]. Ahmad, I., Ahmad, S., and Ali, F. (2016). Structural analysis of the Kharthop and Kalabagh Hills area, Mianwali District, Punjab, Pakistan. Journal of Himalayan Earth Science. 49 (2).
[2]. Afzal, J., Williams, M., and Aldridge, R.J. (2009). Revised stratigraphy of the lower Cenozoic succession of the Greater Indus Basin in Pakistan. Journal of Micropalaeontology. 28 (1): 7-23.
[3]. Ahmad, Z. and Abbas, S.G. (1979). The Muslim Bagh Ophiolites. Geodynamics of Pakistan. Geological Survey of Pakistan, Quetta, 243-249.
[4]. Bukhari, S.W.H., Mohibullah, M., Kasi, A.K., and Iqbal, H. (2016). Biostratigraphy of the Eocene Nisai Formation in Pishin Belt, Western Pakistan. Journal of Himalayan Earth Sciences. 49 (1): 17.
[5]. Iqbal, M. (2004). Integration of Satellite Data and Field Observations in Pishin Basin, Balochistan. Pakistan Journal of Hydrocarbon Research. 14: 1-17.
[6]. Kakar, M.I., Kerr, A.C., Mahmood, K., Collins, A.S., Khan, M., and McDonald, I. (2014). Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: insights from geochemistry and petrology. Lithos. 202: 190-206.
[7]. Khan, M., Kerr, A.C., and Mahmood, K. (2007). Formation and tectonic evolution of the Cretaceous–Jurassic Muslim Bagh ophiolitic complex, Pakistan: Implications for the composite tectonic setting of ophiolites. Journal of Asian Earth Sciences. 31 (2): 112-127.
[8]. Khan, S.D., Mahmood, K., and Casey, J.F. (2007). Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. Journal of Asian Earth Sciences. 30 (2): 333-343.
[9]. Klein, B., Altun, N.E., Ghaffari, H., and McLeavy, M. (2010). A hybrid flotation–gravity circuit for improved metal recovery. International Journal of Mineral Processing. 94 (3-4): 159-165.
[10]. Ge, B.L., Fu, Y.X., and Li, Q. (2013). A Copper Oxide Ore Treatment by Flotation. In Advanced Materials Research (Vol. 813, pp. 230-233). Trans Tech Publications Ltd.
[11]. Gu, G.H., Sun, X. J., Li, J.H., and Hu, Y.H. (2010). Influences of collector DLZ on chalcopyrite and pyrite flotation. Journal of Central South University of Technology. 17 (2): 285-288.
[12]. Kuopanportti, H., Suorsa, T., Dahl, O., and Niinimäki, J. (2000). A model of conditioning in the flotation of a mixture of pyrite and chalcopyrite ores. International journal of mineral processing. 59 (4): 327-338.
[13]. Jameson, G.J. and Emer, C. (2019). Coarse chalcopyrite recovery in a universal froth flotation machine. Minerals Engineering. 134: 118-133.
[14]. Galvão, R.O., Oliveira, D.R., Neres, M.R., Sousa, D.M., Costa, D.D.S., and Braga, P.F. Flotation of Copper ORE from SOSSEGO Mine Utilizing Palm Oil as Collector Auxiliary.
[15]. Moslemi, H. and Gharabaghi, M. (2017). A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry. 47: 1-18.
[16]. Khan, N.M., Ahmed, I., Hussain, S., and Ali, I. (2018). Characterization of Phosphate Rock of Garhi Habibullah, District Mansehra, Pakistan. International Journal of Economic and Environmental Geology. 9 (4): 34-38.
[17]. Ahmad, I. and Ahmad, J. (2017). Beneficiation of low grade Phosphate Rock by Shaking Table of Garhi Habib Ullah (GHU), District Mansehra. Journal of the Pakistan Institute of Chemical Engineers. 45 (1): JPIChE-45.
[18]. Muhammad, N., Hussain, S., Shehzad, A., Naseem, T., and Mohammad, N. (2015). Up-gradation of the local coal of Cherat area, Khyber Pakhtunkhwa, for cement industry. Journal of Himalayan Earth Sciences. 48 (2): 19.
[19]. Mohammad, N., Hussain, S., and Noor, M. (2015). Optimization of flotation parameters for talc carbonates of Mingora emerald mine (Swat), Khyber Pakhtunkhwa, Pakistan. Journal of Himalayan Earth Sciences. 48 (2): 26.
[20]. Otsuki, A., Chen, Y., and Zhao, Y. (2014). Characterisation and beneficiation of complex ores for sustainable use of mineral resources: Refractory gold ore beneficiation as an example. International Journal of the Society of Materials Engineering for Resources. 20 (2): 126-135.
[21]. Aydın, I., Aydın, F., and Ziyadanoğulları, R. (2005). Enrichment of U, Mo, V, Ni, and Ti from asphaltite ash. Journal of Minerals and Materials Characterization & Engineering. 4 (1): 1-10.
[22]. Xiong, F., Li, Y. J., Zhang, Z., Du, G.F., and Lan, Y.Z. (2014). Application of chelating collectors in the flotation of copper minerals. In Advanced Materials Research (Vol. 868, pp. 417-422). Trans Tech Publications Ltd.
[23]. Wills, B.A. and Finch, J. (2015). Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann.
[24]. Little, L., Mainza, A.N., Becker, M., and Wiese, J.G. (2016). Using mineralogical and particle shape analysis to investigate enhanced mineral liberation through phase boundary fracture. Powder Technology. 301: 794-804.
[25]. Ghorbani, Y., Becker, M., Mainza, A., Franzidis, J.P., and Petersen, J. (2011). Large particle effects in chemical/biochemical heap leach processes–a review. Minerals Engineering. 24 (11): 1172-1184.
[26]. Wang, Y.J., Wen, S. M., Liu, D., Cao, Q.B., Feng, Q.C., and Lv, C. (2013). Sulphidizing Flotation of Copper Oxide Ore. In Advanced Materials Research (Vol. 807, pp. 2279-2283). Trans Tech Publications Ltd.
[27]. Vrlíková, V., Čablík, V., and Janáková, I. (2020). Utilization of flotation in copper extraction from polymetallic ore.
[28]. Moharrami, M. and Abdollahzadeh, A.A. (2020). Feasibility Study of Differential Flotation of Cu–Pb–Zn Minerals from Copper Sulfide–Oxide Ores. Transactions of the Indian Institute of Metals. 73 (10): 2645-2655.
[29]. Liu, J., Wang, Y., Luo, D., and Zeng, Y. (2018). Use of ZnSO4 and SDD mixture as sphalerite depressant in copper flotation. Minerals Engineering. 121: 31-38.
[30]. Sousa, R., Futuro, A., Pires, C.S., and Leite, M.M. (2017). Froth flotation of Aljustrel sulphide complex ore. Physicochemical Problems of Mineral Processing. 53.
[31]. Albijanic, B., Subasinghe, G.N., Bradshaw, D.J., and& Nguyen, A.V. (2015). Influence of liberation on bubble–particle attachment time in flotation. Minerals Engineering. 74: 156-162.
[32]. Gorain, B.K., Harris, M.C., Franzidis, J.P., and Manlapig, E.V. (1998). The effect of froth residence time on the kinetics of flotation. Minerals Engineering. 11 (7): 627-638.
[33]. Raziq, A., de Verdier, K., Younas, M., Khan, S., Iqbal, A., and Khan, M. S. (2011). Milk composition in the Kohi camel of mountainous Balochistan, Pakistan. J. Camel. Sci, 4, 49-62.