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The blasting operation is an important rock fragmentation technique employed in
several foundation engineering disciplines such as mining, civil, tunneling, and road
planning. Back-break (BB) is one of the adverse effects caused by the blasting
operations that produces several effects including vulnerability of mining machinery,
bench slope design, and risks to the next blast-patterns due to the eruption of gases
from several discontinuities in jointed rock masses. Several techniques have been
executed by the researchers in order to predict BB in the blasting operations. However,
this is the first work to implement a-state-of-the-art Catboost-based t-distributed
stochastic neighbor embedding (t-SNE) approach to predict BB. A total of 62 datasets
having 12 influential BB-generating features are collected from genuine blasting
patterns. A novel dimensionality depletion technique t-SNE that operates the
Kullback-Leibler divergence interpretation is employed to tailor the pioneer
exaggeration of the blasting dataset. Then the t-SNE dataset obtained is split into a
70:30 ratio of the training and testing datasets. Finally, the Catboost method is
implemented on a low-dimensionality blasting database. The performance evaluation
criterion confirms that the BB predictive model is more stable with a goodness of fit
= 99.04 in the training dataset, 97.26 in the testing datasets, and could anticipate a
more accurate prediction. Moreover, the model presented in this work performs
superior to the existing publicly available execution of BB. In summary, this model
can be practiced in order to predict BB in several rock engineering practices and
mining industry scenarios.

1. Introduction

Blasting is one of the significant rock

locality [2-6]. The fragmented rock beyond the

fragmentation techniques employed in several
engineering disciplines including mining, civil,
tunneling, and road planning. In order to reduce
overall cost of blasting operation, enhancing the
drilling process, increasing the price of loading and
shipment of bulk materials, and improving the
effectiveness after mineral’s extraction, the
blasting engineers have to deal with a desired
blasting operation [1]. In a blasting operation, an
abundant portion of explosive energy is dissipated
to several environment effects including back-
break (BB), ground vibrations, fly-rock, and air-
overpressure, which can influence the adjacent
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boundary of rear row of drill holes in a blasting
design is known as BB. BB causes the vulnerability
to the mining machinery and bench slope blasting
[7], and may interrupt the mining operation.

The control blasting techniques including line
drilling, cushion blasting, and pre-shearing have
been introduced to reduce BB [8]. However, these
methods are typically time-consuming and
expensive [9]. Various researchers have proposed
several blast design features causing BB. An
adaptable and robust framework is acquired to
obtain an ideal blast pattern [10]. The traditional
statistical methods may mislead to obtain BB
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generating cause due to its various non-linear
attributes [11].

BB can produce some additional risks to the next
blast-patterns considering the breakout of gases
from various discontinuities within rock mass [7].
In order to analyse the environmental effects of
blasting, various artificial intelligence techniques
have been developed by the researchers [12-21].

Khandelwal and Singh [22] have used an
artificial neural network in order to establish a new
framework on ground vibration prediction
resulting from blasting operations. A fly-rock
distance has been predicted by Rezaei et al. [23].
The model results in depict that the developed
fuzzy model predicts the fly-rock with a high
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accuracy as compared to the traditional statistical
models. Various machine learning algorithms
including artificial neural network, fuzzy model,
and regression frameworks have been utilized to
predict BB at the Sangan iron mine Iran dataset
[24]. Their study reveals that as compared to the
other frameworks, the ANFIS model has a high
efficiency to forecast BB. A novel mechanism was
established based on the hybrid particle swarm
optimization (PSO) and artificial neural network in
order to predict the air blast-overpressure [25].
Their results depict that the presented technique
predict the airblast-overpressure with a high
accuracy. Table 1 presents the recent up-to-model
artificial intelligence models to predict BB [26-35].

Table 1. Advanced artificial intelligence framework forecasting BB.

Al approaches Input attributes Output attribute No of Patterns R’ RMSE References
GP B, S, ST, PF, SR BB 175 0.98 0.32 16
ANN B, S, ST, L, PF BB 34 0.77 0.53 17
B, S, ST, N, PF,
ANN DPM. SD, RF BB - 0.86 0.49 18
ANN B, S, L, ST, PF, SD BB 103 0.87 0.22 19
SVM B, S, L, SD, ST, PF BB 193 0.92 0.34 20
SR, ST, PF, RD, N, ANN =0.92 ANN=0.88
ANN, ANFIS CLR, S/B BB 42 ANFIS = 0.96 ANFIS =0.6 2
UCS, SD, WC, B, S,
ANN ST, D, BH, PF, C BB 97 0.9 - 22
D, L, B, S, ST, PF,
GA-ANN SD, C, RMR BB 195 0.96 - 23
B, S, ST, SD, PF,
FIS HD, C. RD BB - 0.95 - 24
B, CLR, PF, S/B,
ANN ST/B. N BB 300 - 0.64 25

where S = spacing, B =burden, PF = powder factor, ST = stemming, N = number of rows, C = charge per delay, L =hole depths, SR = stiffness
ratio, SD specific drilling, GP = genetic programming, ANN = artificial neural network, RD = rock density, CLR = last row charge per total
charge ratio, Q = linear charge concentration, WC = water content, DPM = delay per meter, RF = rock factor, BH = bench height.

Based on the above-mentioned literature, the
implementation of the state-of-the-art Catboost-
based T-distributed stochastic neighbor embedding
(t-SNE) has not been employed to predict BB. In
this work, an attempt is introduced to predict BB
associated with a blasting operation by employing
the blasting database at Dewan Cement Limited,
Pakistan. This work introduces a state-of-the-art
unsupervised data depletion technique t-SNE to
tailor the exaggeration of the blasting dataset, and
later, a supervised machine learning algorithm i.e.
Catboost to predict BB in the blasting operations.
To the best of the author information, this is the
first work to execute the state-of-the-art t-
SNE+Catboost method to predict BB. A flowchart
of this work is elucidated in Figure 1.
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2. Data acquisition

The dataset acquired in this work is from the
published article of Dewan cement limestone
quarry, Pakistan [11]. The Dewan cement
limestone quarry is located in the Khyber
Pakhtunkhwa Province in Pakistan at a distance of
4.5 km from the main crushing plant [11]. The
main rock constituent at Dewan Cement Limited is
sedimentary rock, i.e. at the upper plate is
limestone and the bottom plate is siltstone-
claystone to claystone. The typical perspective
view of the Dewan cement limestone quarry is
shown in Figure 2. Blasting is the main operation
employed to fragment the rocks in order to provide
the raw material for manufacturing cement. The
overall dataset consists of 62 blast patterns having
12 influential attributes including burden, spacing,
hole depth (m), blasthole inclination, high
explosive %, ANFO%, Stemming (m), powder
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factor, delay per row, hole-to-hole delay, No. of
rows, No. of free faces, and the corresponding BB.
The statistical description of the blasting patterns is
shown in Table 2. The Python software with the
Seaborn module is utilized to present the pairwise
correlation of original blasting database. Figure 3
shows the pairwise correlation of various
influential attributes to BB. From this figure, it is
clear that burden, hole depth (m), blast hole

High dimensional blasting dataset
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inclination, ANFO%, stemming (m), powder
factor, hole-to-hole delay, and number of rows are
positively correlated to BB, whereas spacing, high
explosive %, delay per row, and number of free
faces are negatively correlated to BB. Moreover, it
can also be concluded from Figure 3 that a bunch
of attributes are relatively low correlated to BB,
hence all the attributes are considered in order to
improve the accuracy of the model.

Early Inspection

(o]

KL divergence

Low dimensional blasting dataset

Figure 1. A flowchart of the work.

Figure 2. A typical perspective view of Dewan cement limestone quarry.
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Table 2. Statistical description of blasting patterns.
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Figure 3. Pairwise correlation plot for robust attributes selection in blasting dataset.

3. Methodology
3.1. Distributed stochastic neighbor embedding
(t-SNE) technique overview

T-distributed Stochastic Neighbor Embedding (t-
SNE) is a state-of-the-art deep learning algorithm
employed for non-linear dimension depletion in
order to process the data visualization [36-37]. T-
SNE is an updated modification of stochastic
neighbor embedding (SNE) introduced by Van der
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Maaten and Hinton [38-39]. This technique
achieves optimum consequences for data
visualization, which permits an extrapolation of the
points in a low dimensional region that excels it
easy to utilize for a large set of data [40]. The
parameter t-SNE includes learning rate that affects
the speed at which the model tends or moves
toward one point or one another in back-
propagation [41]. The T-SNE technique has been
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widely employed in the rock engineering studies in
order to visualize high-dimensional datasets [42-
44].

3.2. Catboost description

Catboost is one of the significant gradient
boosted machine learning frameworks introduced
by Dorogush et al. in the recent time [45]. This
algorithm can handle both the classification and
regression complication, and has been published as
an open access full-featured gradient boosting
archive [45-46]. The execution time and memory
manipulation of Catboost are far fewer than the
other machine learning algorithms [47]. While
handling the categorical attributes, Catboost could
be a better replacement with superlative results
[48]. In contrast, with the point to point training of
continuous attributes by the machine learning
algorithms, Catboost locates the mixed attributes
with a high precision in rock mechanics prediction
models [49].

3.3. Blasting dataset visualization employing t-
SNE
3.3.1. Stochastic neighbor embedding (SNE)

The t-SNE implemented in this work is an
advanced dimensionality depletion unsupervised
machine learning technique contingent on the
stochastic neighbor embedding. SNE converts the
euclidean distance in a multi-scale data point to
conditional uncertainty in order to reveal the
resemblance among the data points. In a dataset,
the conditional uncertainty Uy, is employed to
constitute the resemblance of point am, which is
given in Equation 1.

exp(=|lam — an|*/20,*)

Unjm = {Zm exp — ||am — ayl|?/(20:)?
0Om=n

M
where m #n

Where o; depicts the Gaussian distribution
variance having an as the center position, which is
established by a binary search by employing the
mechanism of perplexity. The perplexity is shown
in Equation 2.

Perp(U,,) = 2HWd (2

where, E(Un) is the entropy of Ui, as given in
Equation 3.

E(Um) = _ZUn|mlogzUn|m (3)

Suppose that b and b, are locality in the low
dimension that are designated to am and a, in the
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In our case, the Gaussian

1
V2
resemblance of Uy, of a, to am is given in

Equation 4.

high dimension.

distribution is particularizing as —. Succeeding the

exp(=llam — axll*)

Ykz1 exp(—|lam — ayll?)
Om=n

Un|m =
“4)

m¥+n

If the dimensionality depletion outcome is
satisfactory, then the resemblance in a high
dimensionality space is assumed to be identical to
that in low dimensionality i.e.Uy ;= V- When
the conditional uncertainty between an and all the
other points are examined, the conditional
uncertainty distribution U, can be established.
Correspondingly, the identical uncertainty
distribution V, is established as the U, low
dimensionality space. In order to measure the
resemblance between two points, the Kullback-
Leibler divergence is employed. Hence, a cost
function F is established, as shown in Equation

5.
Un|m
F= ZKL(Um | v.) =ZZ Uy |mlog ‘
The gradient formula is defined by Equation 6.

5C
=2 E(Un|m—Vn|m+ Unln
n

Syi
- m|n)(am _an)

)

(6)

3.3.2. t-SNE based on SNE

The t-SNE technique is an updated mechanism
calculated on the SNE technique, which utilizes
the joint distribution in place of conditional one,
as shown in Equation 7.

Unln T Un|m o

Unn = 2

The t-distribution is the important dissimilarity
between the SNE and t-SNE techniques in
preference to the Gaussian method. Rather,
Gaussian is employed in a low dimensionality
region to transform a data into an uncertainty
distribution, whereas Gaussian is still employed
in a high dimensionality region, and when the
freedom degree is 1, then V,,, is defined by
Equation 8.
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Finally, the optimized gradient is given by
Equation 9.

(8)

¢ _4 2 (v V., +U

5y, 4 nlm ™ 'n|m m|n ©)
- m|n)(am_an)

In order to make it more precise, the

comprehensive mechanism of t-SNE is given as:

Stage 1: Get data U= Uy, Uz, Us,..., Uy in a high
dimension region, and assign the dimensionality

depletion consequences as B =V, Vo, Vi,...,
V.

Stage 2: Compute perplexity, and assign iteration
times 7, momentum of a(t), and learning rate 7.

Stage 3: Calculate U as given in Equation 1.

m|n>
Stage 4: Estimate U,,,,, as depicted in Equation 7.
Stage 5: Arbitrary choose Y with N.

Stage 6: Compute V},,,, as stated in Equation 8, and
estimate the gradient as stated in Equation 9.

Stage 7: Finally repeat the stage 6 procedure so
that the iteration number is remarkable than T.

3.4. BB prediction Catboost

method

employing

In the Catboost method, the decision tree is
utilized as a weak learner. The Categorical and text
attributes of a dataset can be handled with Catboost
without the executor required to tackle them
individually. It also anticipates grid search and
randomized search, which assist in finding out a
catalogue of attributes value to search the best
composition of attributes that permits the optimum
outcome. The default attributes settings in the
Catboost library usually gives a good fitness
model. Besides, Catboost also anticipates
assistance for executing the training stage on GPU
and tenfold hyper-parameter optimization with
straight forward alignment to improve the diverse
practicable rock and soil mechanics circumstances.

The Catboost method reduces the prediction
relocation that occurs during the training stage. The
prediction relocation is the elimination of F(a)| (a;)
with a; being a training instance, in association
with F(b)| (b;) being a test instance b. The gradient
boosting utilizes the same instance for the
estimation of gradient, and the model minimizes
the gradient. The idea of Catboost is to build a base
model for the discrete D boosting iterations. The
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ith model of the mth iterations is trained on the ith
instance of the permutation, and is appropriate to
estimate the gradient of j+/ instance for p+I/
repetition. Moreover, this mechanism utilizes »
reciprocated inconsistent presentation. Finally, an
identical model is built per iteration that contains
all the framework permutations. Following the
same splitting criteria, the tree is outstretched by
fattening the leaf nodes level-wise.

The technique implemented in Catboost is to
estimate the contemporary attribute resemblance to
the one that mimics for building the network.
Hence, for a specified inconsistent permutation of
the sample, the data sample < i is employed to the
attribute value for each discrete sample i. Finally,
following several permutations in the blasting
dataset, the acquired attributes are averaged. Figure
4 depicts the Catboost method implemented in this
work.

It is important to mention that the Catboost
method training capability is governed by its model
hypermeters including the iteration number,
maximum depth and learning rate, etc. The
designation of the optimal hyper-parameters for a
model is a laborious, complicated, and challenging
task; however, it is based on the executor
competences and expertise.

4. Results and discussion

The Jupyter notebook, a  programing
environment, iS an open-source implementation
particularly employed in engineering for
establishing and sharing the scholastic ideas,
incorporating various categories of resources
including images, texts, and codes in different
programing languages in an isolated catalogue,
approachable through a web portal. The Jupyter
notebook is also appropriate in order to provide
access to an online data analysis and elucidating
how to manipulate the data [S50]. The Python
software is utilized in the Jupyter notebook to
accomplish t-SNE with the Scikit-learn module
[51]. In the first step, the blasting dataset is
visualized from a high-dimensional space to a low-
dimensional space. The original blasting dataset is
categorized into three clusters. In this work, the
drill hole attributes including the burden, spacing,
hole depth (m), blast hole inclination, stemming
(m), powder factor, No. of rows, and No. of free
faces are considered in the first cluster (Dimension
1). The delay time attributes including the delay per
row and the hole-to-hole delay are categorized in
the second cluster (Dimension 2). The explosive
types, i.e. high explosive % and ANFO% are
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grouped in the third cluster (Dimension 3). The
learning rate = 100 is selected in the Python
programming language with the Matplotlib module
in order to visualize the original dataset (all the
other parameters are kept as a default). Following
the blasting dataset depletion mechanism, the
attributes demonstrating space are kept with an
unsophisticated visualization in such a way that the

Journal of Mining & Environment, Vol. 12, No. 3, 2021

original blasting features may retain the originality
to the maximum extent. Table 3 elucidates the
blasting dataset after dimensionality depletion.
Finally, following the t-SNE approach, the actual
blasting dataset (62 x 12 matrix) is transformed to
a (62 x 3) matrix, as shown in Table 3. Figure 5
shows a 3D space of blasting dataset after the t-
SNE data depletion approach.

Blasting dataset
based on t-SNE

J

N samples, M features

Bootstrap
N samples
[ ] [ ]
[ ] [ ]
L. e o o,
.. (] ° .. Y ] ° .. Y L] .
o ° o ° e ©
Construction
of N trees one
after another v A4
[ ] [ ]
. [ ®
o . o O, 9.
Y .. o o ’. o ° . ° ° .
E i e .\_
giotiog ® ® et
, Expansion \
of Wight
Predicton 1 Predicton 2 Predicton N

Average Weight
Prediction

Figure 4. Catboost method interpretation implemented in this work.

Table 3. Data after attribute reduction with t-SNE approach.

Training
Dataset

Testing
Dataset

Blasting patten No

Dimension 1

Dimension 2

Dimension 3

1 -2.0602772 6.6390648
2 -2.0596974 6.4246774
3 -2.0411243 7.9593358
4 0.1286853 7.9593434
5 -2.1744084 7.3905997
58 2.8748353 12.374563
59 2.1663244 14.227405
60 3.6073992 11.243856
61 2.8757045 13.689963
62 3.764091 12.977768

7.7710314

7.9374428
7.588429
7.588428

7.5189633

9.4801922
10.563422
9.2344484
10.576619
9.9173899
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Catboost from five different aspects including
MSE, RMSE, MAE, VAF, and R*.

o . % MSE is an index to evaluate the error between the
o@ 10.5 spatial feature BB and the actual BB, which is
100, defined by the Equation 10.
95 8 n
90 2 1 2
g MSE = ? (BBactual — BBmean) (10)
8.5 o
8.0
75 RMSE is another regression evaluation metric
shown by Equation 11.
n
1 2
4 RMSE = ? Z(BBactual - BBmean) (1D
0 1 & i=1
Dlh;enSIbZ 3 g O
" s MAE is elucidated by Equation 12.
Figure 5. 3D space of blasting dataset after t-SNE n
data depletion approach. MAE = Z| BByoun — BBactual| (12)
In the second step, the low-dimensional space =1 . o
and the actual BB are combined in order to make a ~ Value account For (VAF) is another significant
dataset for the Catboost method. In order to build index used to estimate how powerful a regression
the machine learning model, the overall dataset is model 1s1n a T.OCk mechanics model [56], and is
utilized to build the model [52]. Following the given by Equation 13.
same mechanism, Catboost is developed by an var(BByeryar — BBsrp)
entire t-SNE dataset. Later on, the data obtained VAF = [1 - var (BB yoryal) x 100 (13)

from the t-SNE model is split into the training and
testing datasets. Hence, the real time monitoring of
the next inspector cycle is estimated by Catboost.
Finally, the prediction accuracy is evaluated both
in the training and testing datasets.

The t-SNE data obtained is distributed into 70%
(43 patterns) for training the Catboost, and the
remaining 30% (19 patterns) is employed for the
testing purposes. The hyperparameter, i.e.
verbose=80, n_estimators=500 is selected in the
Python programming language using the Jupyter
notebook to execute Catboost. (All the other
parameters are kept as a default.)

Several indices are used by the researchers in
order to measure the robustness of regression based
the machine learning algorithms [53-55]. This
work computed the prediction execution of

In order to measure the fitness of the model,
coefficient of correlation R? is implemented in this
article, which is given by Equation 14.

ZF=1(BBactual - BBSFD)2
Z?=1(BBactual - BBmean)2

where BBsrp and BBp,cqn depict the spatial
feature BB data predicted by Catboost, and the
mean BB data respectively, T is the total number
of blasting datasets, and BB t,4; 1 the actual BB
value.

Table 4 depicts the statistical results of the
Catboost model. The results tabulated in Table 2
affirm that the Catboost method predicts the spatial
feature BB with lower RMSE, MSE, and MAE,
and with a high VAF and goodness of fit in both
the training and testing datasets.

R? = [1— ><100] (14)

Table 4. Regression evaluation matrix of Catboost method.

MSE RMSE MAE VAF Goodness of fit
Training dataset 0.068 0.260 0.207 99.078 99.049
Testing dataset 0.080 0.282 0.224 97.585 97.260
Figures 6 and 7 depict the scattered plots of the with the actual BB, Figures 8 and 9 present the
actual versus spatial feature BB predicted by the performance of the Catboost prediction of the
Catboost method at the training and testing stages, spatial feature BB against the actual values at the
respectively. In addition, in order to realize the (a) training data (b) testing data.

presentation of the spatial feature BB combined
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The Catboost-based t-SNE model estimates a
high fitting degree. The t-SNE model adopted in
this work utilizes the non-linear dimensionality
depletion technique to reserve the local and overall
characteristics of the non-linear blasting data, and
then utilizes Catboost to map the non-linear
relationship between the blasting data and BB.
Hence, the model exhibits a high prediction
accuracy in order to predict BB as compared to the
existing publicly available literature [11, 26-35].
Hence, the model suggested in this article can be
implemented in several rock engineering practices
and mining industry scenarios.

5. Conclusions

In this work, the author proposed a two-step state
of the art technique based on t-SNE+Catboost for
the prediction of BB. The t-SNE mechanism
adopted in this article retains the local and overall
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Figure 9. Performance of Catboost prediction
versus actual values at testing dataset.

attributes of a high-dimensional dataset, and
employs the Catboost method to mimic the non-
linear blasting monitoring database. The model
manifests a high performance in predicting BB in
reference to the lists of the published articles.

It can be obtained that the BB prediction model
based on t-SNE+Catboost has a MSE = 0.068,
RMSE = 0.260, MAE = 0.207, VAF = 99.070,
goodness of fit of 99.049 in the training dataset,
and MSE = 0.080, RMSE = 0.282, MAE = 0.224,
VAF = 97.585, and goodness of fit of 99.040 in the
testing dataset. The blasting engineers should
employ the proposed artificial intelligence (Al)
model to predict back-break because the artificial
intelligence model learns and improves the model
performance of the blasting patterns by using data
and experience.

The author future work will focus on predicting
the blasting side-effect by metaheuristic techniques



Kamran

in order to determine the optimized blasting pattern
with a minimal back-break and enhancing the
accuracy of the model prediction and the model
performance in heterogeneous and big datasets.
Moreover, the author plans to investigate BB by
using the optimized-based machine learning
algorithms, hybrid and ensemble learning. Besides,
some other influential attributes will be added to
the blasting dataset that will robust the BB risk by
employing the predicted outcomes of the models.
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