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Blast-induced ground vibration (PPV) evaluation for a safe blasting is a long-
established criterion used mainly by the empirical equations. However, the empirical
equations are again considering a limited information. Therefore, using Machine
Learning (ML) tools [Support Vector Machine (SVM) and Random Forest (RF)] can
help in this context, and the same is applied in this work. A total of 73 blasts are
monitored and recorded in this work. For the ML tools, the dataset is divided into the
80-20 ratio for the training and testing purposes in order to evaluate the performance
capacity of the models. The prediction accuracies by the SVM and RF models in
predicting the PPV values are satisfactory (up to 9% accuracy). The results obtained
show that the coefficient of determination (R2) for RF and SVM is 0.81 and 0.75,
respectively. Compared to the existing linear regressions, this work recommends using
a machine learning regression model for the PPV prediction.

Ground Vibration
Peak Particle Velocity
Random Forest Regression

Support Vector Regression

1. Introduction

Blasting is a damaging and irreversible operation
by its very nature. However, due to its economics and
adaptability, it is used in the open cast mines.
Working professional’s primary concern during
blasting for excavation is a disruption to the
excavation's boundary, which results in noticeable
changes to the rock's appearance in the form of
cracking, fragmentation, slabbing, back-break, and
over-break [1-4]. If the magnitude of the damage and
its impact on the surrounding rock can be anticipated,
the blast design can be adjusted to minimize the ore
and waste dilution and instability problems by
adjusting the reverent parameters.

Ground vibrations, air blast, and fly-rock
generation are the three main disruptions caused by
blasting in the surface mines. Almost all of these
issues cause severe damages to the buildings near the
blasting zone, and, aside from that, they can lead to
ongoing tension with the residents living near the
activity site. As a result, a vibration control study in

E Corresponding author: james.mukul@gmail.com (M. Sharma).

mines is required to predict the blast-induced ground
vibration components, which is critical for mitigating
the negative consequences.

Many researchers' use of empirical equations is one
of the most recognized and highly used methods and
procedures for the vibration prediction.

The engineers have been using the scaled distance
regression analysis in order to predict PPV for
decades because it is the simplest and least
complicated tool. The scaled distance is a term based
on the amount of energy released by explosives in air
shock generation and seismic waves and the impact
of distance on ground wave attenuation [5], [6]. The
scaled distance is determined by multiplying the
distance between the energy source and the measured
points on the field by the maximum charge weight
per delay. [7] stated that the effect of charge weight
per delay on PPV was much more pronounced than a
far distance (> 50 m).
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Although the approach is well-accepted due to its
ease of use, it is merely an empirical approach that
does not consider the inevitable phenomenon of blast
wave superimposition. Many attempts have been
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made to obtain the actual charge weight per delay,
contributing to the superimposed waveforms
resulting from production blasting.

Table 1. Empirical equations for ground vibration prediction [1].

S1. No. Researchers Year Predictor equation
1 Langefors and kihlstrom 1958 V max = k(Q/D?3)"2
2 Duvall and Petkof 1959 Vimax = k(D/Q'2)®
3 Devine et al. 1963 Vimax = k(D/QV2y®
4 Ambraseys and Hendron 1968 Vimax = k(D/Q'3)®
5 Nicholls et al. 1971 Vimax =k (Q*DY
6 Is 6922 1973 Vinax = k(D/Q?3)°
7 Just-Free 1980 Vmax = k(D/QlB) ~b._,DQ"
8 Ghose and Daemen 1983 Vimax = k(/Q"?) ~be~aD
9 Ghose and Daemen 1983 Vmax = k(D/QlB) ~bg—aD
10 Gupta et al. 1987 Vimax =kD/Q"") le(@XD/Q)
11 Pal Roy 1993 Vimax =n+kD/Q ") "
12 CMRI 1993 Vimax =n+kD/Q ") "
13 Rai and Singh 2004 Vimax =k R Qmax ¢ ¢
14 Ramulu 2004 Vinax = V(2(Bd/Bo)'”? -1)
15 Rai et al. 2005 Vmax = 0438D~1-52
16 Nicholson 2005 Q max =k(VD?) ®
17 Kahriman et al. 2006 Vimax = 0.561D
18 Ozer (sandstone) 2008 Vmax =0.257D "
19 Ozer (shale) 2008 Vmax =631D "
20 Ozer (limestone) 2008 Vimax =3.02D %
21 Kumar et al. 2016 Vimax = ((0.3396 X 1.02%"

GSII.13)0.642D1.463)/I.

where Vmax is the magnitude of ground vibration; Q is the maximum charge weight in
any delay interval; D is the distance from blasting; K, a,and b are constants whose
values depend on the condition of the site; B is the slope of the best fit line of the Vimax
versus scale distance; e-oP is the inelastic attenuation factor; o is the inelastic
attenuation coefficient, n is the parameter related to the rock properties and geometrical
discontinuities; V is the Vibration due to optimum burden; Bd is the deviated burden;
Bo is the optimum burden; and GSI is the geological strength index.

Due to the non-homogeneous nature of rocks, the
geology of civil structures and the explosive blast
design parameters are optimized by testing on the
field. In addition, monitoring blast vibrations during
the actual excavation helps to ensure a proper and
safe operation and provide the necessary data to
improve the blasting patterns if deemed necessary
[8].

According to USBM [9], the empirical relationship
between PPV and scaled distance (D) is as follows:

V = K(SD)™® (1)

where V is the PPV (m/s); SD is the scaled
distance, which is defined as the ratio of the distance

from charge point, R (m), to the square root of charge
mass, Q (kg), expressed in TNT net equivalent
charge weight, i.e. SD = R/Q"%; and k and b are site-
specific constants.

In the recent years, the researchers have developed
a variety of soft computing techniques and
approaches in order to predict and provide solutions
to reduce the adverse effects of blast-induced ground
vibration in the surface mining methods including
machine learning such as artificial neural networks
[10]-[13], genetic algorithm, CART analysis, neural
fuzzy technique [14]. The recent works on the
prediction of blast-induced ground vibration by
various Al techniques with their efficiency are as
follows:
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Table 2. Soft computing technique used by various research works for predicting ground vibration.

Researchers Predictive model Input parameters R?
(Kamali and Atai 2010) ANN MCPD, TCPR, E,C(b, L.NH, Dy, No, R%2=0.99
(Kamali and Ataei, 2011) ANN MCPD, TCPR, E’C“” L.NH, Dy, No, R2=0.99
. . . 2. — 2
(Mohamadnejad, Gholami, and Ataei SVM, GRNN D, MCPD Rsym 70.946 R%GraN
2012) =0.92
ohamad Atae1 and Kamali, N =0.
Mohamad Ataei and Kamali, 2013 ANFIS D, MCPD R2=0.9897
(Ghasemi, Ataei, and 2_
Hashemolhosseini 2013) FIS S, B, ST, D, MCPD, NH R*=0.9459
. Atael and Sereshki, , =0.
M. Ataei and Sereshki, 2017 GA D, MCPD R%2=0.92
maghani et al. , =0.

Ar i L. 2018 ICA MCPD, D R%2=0.9458
ang et al. - 00st ,B,5, D, =0.
Zhang et al. 2020 PSO-XGB PF, B, S, D, MCPD R?=0.968
uyen et al. - ,B,5, D, =0.
Nguy 1. 2020 HKM-ANN PF, B, S, D, MCPD R?=0.983

ayat et al. , o, D, =0.
Bay. 1. 2020 ANN B, S,D,CPD R?2=0.977

enet al. - s , B, Vo, , =0.
Ch 1.2021 MFA-SVR MCPD, BS, E, V,, ST, D R?=0.984

where E is the Young’s modulus; B is the burden, S is the spacing; MCPD is the maximum charge per delay; TCPR is
the total charge per round; L is the hole length; NH is the number of holes; SC is the specific charge; D; is the total
delay time; Ny is the number of delay interval; ST is the stemming; D is the distance form the blast site; PF is the
powder factor; BS is the burden to spacing ratio; ¢ is the direction of firing; CPD is the charge per delay; V), is the p-
wave velocity; SVM is the support vector machine; GRNN is the general regression neural network; FIS is the fuzzy
inference system; ANFIS is the adaptive neuro-fuzzy inference system; ICA is the imperialist competitive algorithm;
PSO is the particle swarm optimization, XGBoost is the extreme gradient boosting; HKM is the K-means clustering
algorithm; ANN is the artificial neural network; MFA is the modified firefly algorithm; and SVR is the support vector

regression.

2. Objective of study

Determine the values of site constants in the
USBM equation in order to predict PPV, and
accordingly, find the maximum charge per delay
using the statistical regression analysis.

Use the machine learning algorithm of ‘random
forest’ and ‘support vector regression’ in order to
predict the peak particle velocity.

Make a comparative study statistical approach,
random forest, and support vector regression in
order to predict the peak particle velocity.

3. Machine learning techniques-a brief overview

Ensemble learning: An ensemble method is a
technique that combines the predictions from several
machine learning algorithms in order to make more
accurate predictions than any individual model
developed by a user. A model comprised of a number
of models is called an ensemble learning method.

Decision tree in machine learning: A decision
tree can be used to describe the decisions and
decision-making in a decision tree analysis. It
employs an inverted tree-like model of decision-
making based on the statistical filters, as the name
implies. Though it is most commonly used in data
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mining to develop a strategy to achieve a specific
target, it is also widely used in machine learning,
which will be the subject of this article.

The resulting tree is inverted, with the root at the
top. The text in bold in black in the image below
(Figure 1) represents a condition/internal node based
on which the tree is divided into branches. The
decision/leaf is the end of the branch that can no
longer be split; in our example, whether the plane
passenger died or survived is expressed as red and
green text, respectively.

e S
A A y 75 T A
A K A..%\Q./X\OOKOT K
00000000 000 0000 00 O 0O
Figure 1. Decision tree (source: Internet).
Problems with decision trees: The dataset on

which the decision trees are trained is significant. If
the training data is updated, the decision tree results
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will be somewhat different, which will have an
equivalent impact on the prediction.

Also since the algorithm cannot be moved back
after the split is made, the decision trees are
challenging to train, and have a high chance of
overfitting the dataset. They also appear to find the
local optima.

We use the random forest algorithm to fix these
flaws in a decision tree model, which demonstrates
the power of integrating several decision trees into a
single model for a more accurate prediction.

Journal of Mining & Environment, Vol. 12, No. 3, 2021

3.1. Random forest

Random forest is a supervised machine learning
algorithm that performs classification, and uses an
ensemble learning model of predictions [26].
Random woods have trees that run parallel to each
other. As a result, when constructing a model, there
is no interaction between these trees. It works by
training a large number of decision trees, and then
calculating the class that is the mode of the classes
(classification) or the mean prediction (regression) of
the individual trees, as shown in Figure 2.

Test Sample Input

—_—

Tree 2

Prediction 2

—_—
——

_\_‘-\_‘_-\_—_\_-\_\_\_‘_‘_‘——._
_%_______%H_‘
Tree GO0
//
() -
v d !
\\ ll ,-'; 1. '~\
® | ¢ @ O

| Prediction 600 |

e

(...
A’f—_’

Average All Predictions

-

Random Forest
Prediction

Figure 2. Ensemble learning model of prediction (source: Internet).

A random forest combines the result of multiple
predictions, which aggregates many decision trees,
with some helpful modifications:

The number of features that can be split at each
node is limited to some percentage of the total
(that is known as the hyperparameter). This
ensures that the ensemble model does not rely too
heavily on any single individual feature given to
the model, and makes use of all the potentially
predictive features.

When generating its splits, each tree draws a
random sample from the original data set, adding
a further element of randomness that
prevents overfitting.

3.2. Support vector regression

Support Vector Regression (SVR) is a supervised
machine learning technique that utilizes the idea of
support vectors in a model [27]. SVR seeks to reduce
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the prediction error by determining the hyperplane
and minimizing the range between the expected and
the observed values, referred to as ‘tolerance.’

Unlike ordinary least square, which aims to
minimize error and find the best fit, the SVR's goal is
to reduce the coefficients—specifically, the 12-norm
of the coefficient vector. Instead, the model's error is
treated in the constraints function, where we set the
absolute error to be less than or equal to a given
value/margin, referred to as the maximum error
(epsilon). In order to achieve the desired accuracy of
our model, we can adjust the margins or epsilon.

4. Research methodology and field study
4.1. Mine details and data collection

The mine is being worked by the mechanized
drilling and blasting method with 6.0 to 9.0 m high
benches and a bench angle close to 80° to 85°.
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Drilling: Crawler mounted DTH drills of 110 mm
are being used to drill blast holes. The general dip of
the formations is steep, dipping away from the face.
Therefore, the holes are made close to vertical.

Blasting was carried out using explosives, namely,
Raj blast Super Emulsion Explosive (Make: Raj.
Explosive and Chemical Ltd.) and NONEL (Orica
make).

A total of 73 blasting data was recorded using
engineering seismographs, which provided us with
peak particle velocity, frequency of the seismic
waves, and air overpressure.

A database was prepared with burden, spacing,
hole depth, maximum charge per delay, distance
from the blast, total charge per hole, and delays of 17
ms between the holes in a row and 42 ms between the
holes the rows with NONEL initiation system.

0
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Figure 3. Solution of linear SVR (source: Intel, 2012).

[ DATA COLLECTION I ~| Blasting Seismograph

v

! b

'

'

CHARGE DISTANCE PEAK PARTICLE
WEIGHT FROM BLAST VELOCITY

FREQUENCY OF
BLAST WAVE

:

CREATION OF DATABASE AND DEFINING

INPUT AND OUTPUT PARAMETERS

¥

[ DATA VISUALISATION B

1. Scatter plot

Mean [ .

DATA PREPROCESSING

Variance &

Skewness

. i A
Standard Deviation ,l STATISTICAL ANALYSIS

e W e

Kurtosis L

-

\. L1

TRAIN TEST SPLIT

!

\ |

PROPOSED MODEL

I x

PREDICTION
\ |

¥

PERFORMANCE

MATRICES ANALYSIS

2. Box Plot
3. Histogram

1. Random Forest Regression
2. Support Vector Regression

R¥(Coefficient of Determination)
MSE (Mean Squared Error)
Person’s Correlation Coefficient
RMSE (Root Mean Squared Error)

W N

Figure 4. A flow chart of the study.
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Table 3. Statistical information of data collected.

S1. No. Variables Minimum Maximum
1. Burden (m) 3.5 3.5
2. Spacing (m) 4.0 4.5
3. Hole depth (m) 7.0 8.5
4. Charge per hole (kg) 26.0 48.3
5. Charge per round (kg) 215 645
6. Stemming length (m) 2.50 3.25
7. Number of blast hole per round 9 20
8. Powder Factor (Te/kg) 3.50 4.25
9. Maximum charge per delay (kg) 28.4 200
10. Distance (m) 50 450
11. PPV (mmy/s) 2 59.90

5. Results and discussion
5.1. Relationship between scale distance and PPV

The ground vibration data for 73 blasts were
recorded during blasting, and used to plot a curve
between the scale distance and PPV, and shown in
Figure 5.

e From the above plot, the equation relating the
peak particle velocity and the square root scaled
distance using regression was obtained and
given as:

V =K(SD)"

2

where K =370.09 and n = -1.149

o In order to design a safe blast, we are required
to increase the value of site constant ‘k’ so that

it covers every value lying above the previously
obtained equation and gets a new equation at a
95% confidence level.

V = K(SDgs)"
3)
where K =723 andn=-1.149

5.2. Random forest regression results

73 blast data was collected during the study. 58
data was used to prepare the model, and 15 data was
used to predict PPV. Table 4 shows the result
obtained from applying the random forest regression
algorithm to the blasting data.

y =370.09x 114 y = 72351149
R?=0.7649 RE=1
g :;.‘.\ x
£ .
: i
g e 0%
o ° .
$* KR
S oo
w8
4,50
6
[ ]

Scale Distance

Figure 5. Relation between scale distance and PPV
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Table 4. Predicted PPV using random forest regression.

S.No.  Distance (m) MCD (kg) Sc:‘lllf/‘ll(gislt/’;')‘ce Ac(tl‘l'::ll]/lg v Pre‘ziflt;?sf PV
1 150 57.6 19.764 5.970 6.630
2 350 80 39.131 6.220 5.920
3 125 51.1 17.486 8.000 9.780
4 125 106 12.141 15.000 15.400
5 60 28.4 11.259 21.160 23.320
6 75 90 7.906 56.800 28.350
7 75 40 11.859 22.000 19.550
8 175 28.4 32.838 4.450 5.180
9 250 40 39.528 6.670 7.450
10 250 38 40.555 6.000 5.750
1 150 120 13.693 14.700 12.390
12 100 200 7.071 40.300 38.540
13 120 90 12.649 40.300 36.870
14 165 33.7 28.423 9.400 7.890
15 110 52.8 15.138 13.000 13.990

Predicted PPV vs. actual PPV

W W
S W

25 R*>=10.8131

Predicted PPV (mm/sec)
o — (]
[V B — TV | B

=]

0 10 20 30 40 50 60
Actual PPV (mm/sec)

Figure 6. Predicted PPV vs. actual PPV using RF.

e The R? value for the predicted PPV and actual ~ 5.3. Support vector regression results

PPVis 0.81. 73 blast data was collected during the study. 58

e The results obtained from the algorithm are  data was used to prepare the model, and 15 data was
highly correlated with a correlation coefficient ~ used to predict PPV. Table 5 shows the results
0f 0.901. obtained by applying the support vector regression

algorithm to the blasting data.
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Table 5. Predicted PPV using support vector regression.

Scaled distance

Actual PPV Predicted PPV

Sl. No. Distance (m) MCD (kg) (m/kg0.5) (mm/s) (mm/s)
1 150 57.6 19.764 5.99 11.70
2 350 80 39.131 6.23 5.16
3 125 51.1 17.486 8.00 13.46
4 125 106 12.141 15.03 20.49
5 60 28.4 11.259 21.12 22.65
6 75 90 7.906 56.83 34.12
7 75 40 11.859 21.98 21.33
8 175 28.4 32.838 4.44 6.36
9 250 40 39.528 6.69 5.10
10 250 38 40.555 5.99 4.95
11 150 120 13.693 14.73 17.81
12 100 200 7.071 40.45 38.86
13 120 90 12.649 40.45 19.69
14 165 33.7 28.423 9.39 7.54
15 110 52.8 15.138 12.94 14.88

Predicted PPV vs. Actual PPV

45

40 °

35 o
> 30
A
A R2=10.7517
8 25 .
N
2 20 (o} 8 °
T °
p =
A~ 15 @

(o}
o]
10
o
5 °®
0
0 10 20 30 40 50 60
Actual PPV
Figure 7. Predicted PPV vs. actual PPV using support vector regression.

e The R* value for the predicted PPV and actual o The statistical approach for predicting the peak

PPV is 0.75. particle  velocity  provides  sufficient

e The results obtained from the algorithm are
highly correlated with a correlation coefficient

of 0.86.

6. Conclusions

From the results of this work, the following

conclusions can be drawn:
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information to design a blast considering
maximum charge per delay, reducing the
ground vibration. However, in this method, it
is not easy to include all the input parameters,
and therefore, the accuracy in the prediction of
PPV is very less.

When the ML tools like random forest
regression model and support vector machine
regression were used, it was found that the
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random forest regression model had a better
prediction capability than the support vector
machine regression.
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