[1]. Basu, A., Mishra, D.A. (2014). A method for estimating crack-initiation stress of rock materials by porosity. J. Geol. Soc. India., 84 397–405.
[2]. Chang, S. H., Lee, C.I. and Jeon, S. (2002). Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng. Geo., 66: 79-97.
[3]. Hoek, C.D. (2014). Fracture initiation and propagation in intact rock–a revie., J. Rock Mech. Geotech. Eng., 6: 287 –300.
[4]. Lisjak, A. (2017). A 2D, fully coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses. Comput. Geotech., 8: 1–18.
[5]. Karimpouli, S., Hassani, H., Malehmir, A. (2013). Understanding the fracture role on hydrocarbon accumulation and distribution using seismic data: A case study on a carbonate reservoir from Iran. J. Appl.Geophys., 96: 98–106.
[6]. Bobet, A. and Einstein, H.H. (1998). Fracture integrate in rock-type materials under uniaxial and biaxial compression. Int. J. Rock Mech. Min. Sci., 35: 863–888.
[7]. Wong, R.H.C. (2001). Analysis of crack integrate in rock-like materials containing three flaws-Part I: experimental approach. Int. J. Rock Mech. Min. Sci., 38: 909–924.
[8]. Sagong, M. and Bobet, A. (2002). Integrate of multiple flaws in a rock-model material in uniaxial compression. Int. J. Rock Mech. Min. Sci., 39: 229–241.
[9]. Wong, L.N.Y., and Einstein, H.H. (2009). Crack integrate in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech. Rock Eng., 42: 475–511.
[10]. Wong, L.N.Y. and Einstein, H.H. (2009). Crack integrate in molded gypsum and Carrara marble: part 2-microscopic observations and interpretation. Rock Mech. Rock Eng., 42: 513–545.
[11].Yang, S.Q. (2011). Crack integrate behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure. Eng. Fract. Mech., 78: 3059-3081.
[12] .Yang, S.Q. (2008). Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int. J. Solids Struct., 45: 4796–4819.
[13]. Yang, S.Q., (2012). An experimental study of the fracture integrate behaviour of brittle sandstone specimens containing three fissures. Rock Mech. Rock Eng., 45: 563–582 .
[14]. Wong, L.N.Y. and Einstein, H.H. (2009). Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int. J. Rock Mech. Min. Sci., 46: 239–249.
[15]. Park, C.H. and Bobet, A. (2010). Crack initiation, propagation and integrate from frictional flaws in uniaxial compression. Eng. Fract. Mech., 77: 2727–2748.
[16]. Park, C.H. and Bobet, A. (2009). Crack integrate in specimens with open and closed flaws: a comparison. Int. J. Rock Mech. Min. Sci., 46: 819–829.
[17] Kranz, R.L. (1979). Crack-crack and crack-pore interactions in stressed granite. Int. J. Rock Mech. Min. Sci., 16: 37–47 .
[18]. Lee, H.K. and Ju, J.W. (2007). A 3D stress analysis of a penny-shaped crack interacting with a spherical inclusion. Int. J. Damage Mech., 16: 331–359.
[19]. Carter, B.J. (1992). Size and stress gradient effects on fracture around cavities. Rock Mech. Rock Eng., 25:167–186 .
[20]. Carter, B.J., (1991). Primary and remote fracture around underground cavities. Int. J. Numer. Anal. Methods Geomech., 15P:1–40.
[21]. Wong, R.H.C. (2006). Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression., Mech. Mater., 38: 142–159.
[22]. Bocca, P. , Carpinteri, A. and Valente, S. (1990). Size effects in the mixed mode crack propagation: softening and snap-back analysis. Eng. Fract. Mech., 35:159-170.
[23] Xu, C. and Fowell, R.J. (1994). Stress intensity factor evaluation for cracked chevron notched Brazilian disc specimens. Int. J. Rock Mech. Min. Sci., 31: 157–162.
[24]. Trädegård, A. (1998). FEM-remeshing technique applied to crack growth problems. Comput. Methods Appl. Mech. Eng., 160:115–131 .
[25]. Barani, O.R. , Khoei, A.R. and Mofid, M. (2011). Modeling of cohesive crack growth in partially saturated porous media; a study on the permeability of cohesive fracture. Int. J. Fract., 167: 15– 31.
[26]. Tan, X. H. (2015). A simulation method for perme-ability of porous media based on multiple fractal model. Int. J. Eng. Sci., 95: 76-84.
[27].Ţene, M., (2016). Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures. J. Comput. Phys., 321: 819 –845.
[28]. Supar, K. and Ahmad, H. (2017). XFEM modelling of multi-holes plate with single-row and staggered holes confi gurations. MATEC Web Conf. 103, 02031.
[29]. Schrefler, B.A. and Xiaoyong, Z. (1993). A fully coupled model for water flow and air flow in deformable porous media. Water Res. Res., 29: 155 –167.
[30]. Aliha, M.R. (2012). Mixed mode I/II fracture path simulation in a typical jointed rock slope. 4th Int. Conf. Crack Paths, pp:55-60.
[31]. Sukumar, N. (2001). Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Meth. Appl. Mech. Eng,. 190: 6183-6200.
[32] . Gordeliy, E. and Peirce, A. (2015). Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems. Comput. Methods Appl. Mech. Eng., 283: 474-502.
[33]. Mohammadnejad, T. (2013). An extended fi nite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack mode. Finite Elem. Anal. Des., 73: 77 –95.
[34]. Khoei, A.R., (2014). A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique. Int. J. Fract., 188: 79 –108.
[35]. Gordeliy, E. and Peirce, A. (2013). Coupling schemes for modeling hydraulic fracture propagation using the XFEM. Comput. Meth. Appl. Mech. Eng., 253: 305 –322.
[36]. Dahi-Taleghani, A. and Olson, J.E. (2011). Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures. SPE J., 16: 575 –581.
[37]. Réthoré, M.A. (2007). A two-scale approach for fluid fl A t fractured porous media. Int. J. Numer. Meth. Eng., 71: 780 – 800.
[38] T.P. Cheng and K.W. Fries, Higher-orderXFEM for curved strong and weak dis-continuities, Int. J. Numer. Meth. Eng. 82 (2010) 564 –590.
[39] S. Mohammadi, XFEM Fracture Analysis of Composites, John Wiley & Sons Incorporated, 2012,
[40]. Natarajan, S., Roy Mahapatra, D. and Bordas, S.P.a. (2010). Integrating strong and weak dis continuities without integration subcells and example applications in an XFEM/ GFEM framework. Int. J. Numer. Methods Eng., 83: 269 –294.
[41] .Wong, L.N.Y. and Einstein, H.H. (2009). Crack integrate in molded gypsum and carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech. Rock Eng,. 42: 475-511.
[42]. Wong, L.N.Y. and Einstein, H.H. (2009). Crack integrate in molded gypsum and carrara marble: Part 2 – Microscopic observations and interpretation. Rock Mech. Rock Eng., 42: 513 –545.
[43]. Ju, Y. (2008). A statistical model for porous structure of rocks. Sci. China, Ser. E Technol. Sci., 51: 2040 –2058.
[44]. Hedjazi, L. (2012). Application of the discrete element method to crack propagation and crack branching in a vitreous dense biopolymer material. Int. J. Solids Struct., 49:1893 –1899.
[45]. Vahab, M. and Khalili, N.(2018). X-FEM modeling of multizone hydraulic fracturing treatments within saturated porous media. Rock Mech. Rock Eng., 51: 3219 –3239.
[46]. Haddad, M. and Sepehrnoori, K. (2016). XFEM-Based CZM for the simulation of 3D multiple-cluster hydraulic fracturing in quasi-brittle shale formations. Rock Mech. Rock Eng, 49: 4731-4748.
[47]. Natarajan, S. (2011). Enriched finite element methods: advances and applications.
[48]. Rodriguez-Florez, N. (2017). The use of XFEM to assess the in fluence of intra-cortical porosity on crack propagation. Comput. Meth. Biomech. Biomed. Eng., 20: 385–392.
[49]. Florez R. (2018). Mechanics of Cortical Bone: Exploring the Micro- and Nano-Scale, Imperial College London.
[50]. Bouchard, P.O., Bay, F. and Chastel, Y. (2003). Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Comput. Methods Appl. Mech. Eng., 192: 887–3908 .
[51]. Li, H. and Wong, L.N.Y. (2012). Influence of flaw inclination angle and loading condition on crack initiation and propagation. Int. J. Solids Struct., 49: 2482–2499.
[52]. Bobet, A. and Einstein, H.H. (1998). Numerical modeling of fracture integrate in a model rock material. Int. J. Fract., 92: 221–252 .
[53]. Hosseini-Tehrani, P. (2005). Boundary element analysis of stress intensity factor KI in some two-dimensional dynamic thermoelastic problems. Eng. Anal. Boundary Elem., 29: 232–240.
[54]. Lu, X. and Wu, W.L. (2006). A sub-region DRBEM formulation for the dynamic analysis of 2D cracks. Math. Comput. Model., 43: 76–88.
[55]. Zhang, X.P. and Wong, L.N.Y. (2013). Crack initiation, propagation and integrate in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mech. Rock Eng., 46: 1001–1021.
[56]. Ghazvinian, A., Sarfarazi, V. (2012). A study of the failure mechanism of planar non-persistent open joints using PFC2D. Rock Mech.Rock Eng., 45: 677–693.
[57]. Sarfarazi, V. (2014). Numerical simulation of the process of fracture of echelon rock joints. Rock Mech. Rock Eng., 47: 1355–1371.
[58]. Park, J.W. and Song, J.J. (2009). Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int. J. Rock Mech. Min. Sci., 46:1315–1328.
[59]. Wu, Z. and Wong, L.N.Y. (2012). Frictional crack initiation and propagation analysis using the numerical manifold method. Comput. Geotech., 39: 38–53.
[60]. Cai, Y.C. (2013). A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Front. Struct. Civ. Eng., 7: 369–378 .
[61]. Zhuang, X.Y. and Augarde, C. (2010). Aspects of the use of orthogonal basis functions in the element-free Galerkin method. Int. J. Numer. Meth. Eng., 81: 366–380.
[62]. Zhu, H.H. (2011). High rock slope stability analysis using the enriched meshless shepard and least squares method. Int. J. Comput. Methods, 8: 209-228.
[63. Itasca, (2004). PFC2D (Particle Flow Code in 2 Dimensions), Version 3.1 Minneapolis.
[64]. Potyondy, D.O. and Cundall, P.A. (2004). A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci., 41: 1329–1364.
[65]. Zhang, X.P. and Wong, L.N.Y. (2012). Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallelly bonded-particle model approach. Rock Mech. Rock Eng., 45: 711–737.
[66] Lee, H. and Jeon, S. (2011) An experimental and numerical study of fracture integrate in pre cracked specimens under uniaxial compression. Int. J. Solids Struct., 48: 979-999.
[67]. Uzun Yaylacı, E., Yaylacı, M., Ölmez, H., and Birinci, A. (2020). Artificial Neural Network Calculations for A Receding Contact Problem. Computers and Concrete, 2(6): 88-99.
[68]. Yaylacı, M., Eyüboğlu, A., Adıyaman, G., Uzun Yaylacı, E., Öner, E., and Birinci, A. (2021). ssessment of different solution methods for receding contact problems in functionally graded layered mediums. Mechanics of Materials, 33(2): 99-111.
[69]. Yaylacı, M., Yaylı M., Uzun Yaylacı E., Ölmez, H., and Birinci A. (2021). Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron. Structural Engineering and Mechanics, 78(5): 585-597.
[70]. Yaylaci, M. (2016). The investigation crack problem through numerical analysis. Structural Engineering and Mechanics, 57(6): 1143-1156.
[71]. Haeri, H. and Marji, MF. (2016). Simulating the crack propagation and cracks coalescence underneath TBM disc cutters. Arabian Journal of Geosciences, 9 (2):124-130.
[72]. Lak, M., Marji, M.F. (2019). Discrete element modeling of explosion-induced fracture extension in jointed rock masses. Journal of Mining and Environment, 10 (1): 125-138.
[73]. Yavari, MD. (2021). On the propagation mechanism of cracks emanating from two neighboring holes in cubic concrete specimens under various lateral confinements. Journal of Mining and Environment (accepted for publication).
[74]. Abdollahipour, A. and Marji, MF. (2020). A thermo-hydromechanical displacement discontinuity method to model fractures in high-pressure, high-temperature environments. Renewable Energy, 153: 1488-1503.
[75]. Bakhshi, E. (2019). Hydraulic Fracture Propagation: Analytical Solutions versus Lattice Simulations. Journal of Mining and Environment, 10 (2): 451-464.
[76]. Lin, P., (2015). Experimental study of coalescencemechanisms and failure under uniaxial compression of granitecontaining multiple holes. Int J Rock Mech Min Sci., 77:557‐582.
[77]. Lin, Q., (2020). Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression. Archives of Civil and Mechanical Engineering, 20(1):19-29.