[1]. Wills, B.A. and Finch, J. A. (2016). Wills’ Mineral Processing Technology. Elsevier, 8th Edition.
[2]. Yahyaei, M. and Powell, M. (2018). Production improvement opportunities in comminution circuits. The 15th AusIMM Mill Operators Conference. Brisbane, Qld, August 2018, pp. 673.
[3]. Manouchehri, H.R. (2014). Changing the game in comminution practices: Vibrocone TM, a new crusher having grinding performance. IMPC 2014. Santiago. Chile.
[4]. Maleki-Moghaddam, M. Arghavani, E. Ghasemi, A.R. and Banisi, S. (2019). Changing sag mill liners type from Hi-Low to Hi-Hi at Sarcheshmeh copper complex based on physical and numerical modeling. Journal of Mining and Environment (JME). 10 (2): 365-372.
[5]. Amiri, S. H. and Zare, S. (2019). Influence of Grinding and Classification Circuit on the Performance of Iron Ore Beneficiation – A Plant Scale Study. J. Mineral Processing and Extractive Metallurgy Review, DOI: 10.1080/08827508.2019.1702982.
[6]. Zare, S. Yahyaei, M. Mahmoudi, Maleki-Moghaddam, M. and Banisi. S. (2021). Effect of crushing chamber filling on the performance of cone crushers – The Sarcheshmeh copper complex case. IMPC 2021: XXX International Mineral Processing Congress, Cape Town, South Africa, 18-22 October 2020.
[7]. Herbst, J.A. and Potapov, A.V. (2004). Making a Discrete Grain Breakage model practical for comminution equipment performance simulation. Powder Technology. Journal 2004 143-144, 145-150.
[8]. Jacobson, D. Janssen, P. and Urbinatti, V. (2010). Cavity level’s effect on cone crusher performance and production. 7th International Mineral Processing Seminar 2010, Santiago, Chile, Chapter 1, pp.15-21.
[9]. Huiqi, L. McDowell, Glenn, R. Lowndes and Ian. (2014). Discrete element modelling of rock comminution in a cone crusher using a bonded particle model. Geo-technique Letters, 4, 79-82.
[10]. Quist, J. C. (2017). DEM Modelling and Simulation of Cone Crushers and High Pressure Grinding Rolls. Gothenburg: Chalmers University of Technology.
[11]. Cleary, P.W. Sinnott; M.D. Morrison, R.D. (2017). Cummins. Analysis of cone crusher performance with changes in material properties and operating conditions using DEM. Minerals Engineering, 100: 49-70.
[12]. Evertsson, C. M. Quist, J. Bengtsson, M. and Hulthén, E. (2016). Monitoring and Validation of Life Time Prediction of Cone Crusher with Respect to Loading and Feeding Conditions. Comminution '16. Cape Town: Minerals Engineering.
[13]. Nematollahi, E. Zare, S. Ghorbani, F. Ghasemi, A. and Banisi, S. (2018). an investigation of feed box shape effects on cone crusher performance by discrete element method (DEM) – The Sarcheshmeh copper complex cone crusher case. 29th International Mineral Processing Cong., (IMPC 2018), Mosco, Russia.
[15]. Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial model predictive control strategy. J. Control Engineering Practice, 11, 733-764.
[16]. Sbarbaro, D. and Del Villar, R. (2010). Advanced control and supervision of mineral processing plants, Advances in Industrial Control series, Springer Press, London.
[17]. Camalan, M. and Hoşten, C. (2015). Ball-mill grinding kinetics of cement clinker comminuted in the high-pressure roll mill. Mineral Processing and Extractive Metallurgy Review 36 (5):310–16. doi:10.1080/ 08827508.2015.1004402.
[18]. Van der Meer, F. P. Ӧnol, S. and Strasser, S. (2012). Case study of dry HPGR grinding and classification in ore processing. 9th International Mineral Processing Conference, Chile, 32–34.
[19]. Ghobadi, P. and Pourjenaei, E. (2018). Determining impact of operating parameters on HPGR performance using design expert and industrial tests results. XXVII International Mineral Processing Congress, Santiago, Chile.
[20]. Amiri, S.H. Zare, S. Ramezanizadeh, M. Arghavani, E. and Sepehri, F. (2021). The Process Audition, a Method of Improvement Opportunities in Mineral Processing Circuits - Case Study: Gohar-Zamin Iron Ore Beneficiation Plant. IMPC 2020: XXX International Mineral Processing Congress, Cape Town, South Africa, 18-22 October 2020.
[21]. Gupta, A. and Yan, E. S. (2006). Mineral processing design and operation- An introduction (1st Ed.). Perth, Australia, Elsevier Publisher.
[22]. Schützenmeistera, L. Mützea, T. and Kacheb, G. (2020). The Influence of roll speed and feed fineness on HPGR-performance in finish grinding of cement clinker, International Mineral Processing Congress (IMPC).
[23]. Westermeyer, C.P. and Cordes, H. (2000). Operating experience with a roller press at the Los Colorados iron ore dressing plant in Chile. J. Aufbereitungs-Technik/Mineral Processing 11, 497–505.
[24]. Maxton, D., Van der Meer, F.P. and Gruendken, A. (2006). KHD Humboldt Wedag. 150 years of innovation. New developments for the KHD roller press. In: Proceedings SAG, Vancouver, Canada.
[25]. Aminalroaya, A. and Pourghahramani, P. (2021). The Effect of Feed Characteristics on Particles Breakage and Weakening Behavior in High Pressure Grinding Rolls (HPGR), Mineral Processing and Extractive Metallurgy Review, DOI:
10.1080/08827508.2021.1913153.
[26]. Jankovic, A. Valery, W. Sonmez, B. and Oliveria, R. (2014). Effect of circulating load and classification efficiency on hpgr and ball mill capacity. XXVII International Mineral Processing Congress, Santiago, Chile.
[27]. Senchenkoa, A.Y. and Kulikov, Y.V. (2020). Ore hardness effect on design of comminution circuits which use competing technologies: SAG vs HPGR, International Mineral Processing Congress (IMPC).
[29]. Li, G. Roufail, R. Klein, B. Nordell, L. Kumar, A. Sun, C. and Kou, J. (2019). Experimental evaluation of the conjugate anvil hammer mill–Comparison of semi-confined to confined particle breakage, Miner. Eng. 137, 34–42.
[30]. Johansson, M. and Evertsson, M. (2019). A time dynamic model of a high pressure grinding rolls crusher, Miner. Eng. 132, 27–38.
[31]. Li, Y.-W. Zhao, L.-L. Hu, E.-Y. Yang, K.-K. He, J.-F. Jiang, H.-S. and Hou, Q.-F. (2019). Laboratory-scale validation of a DEM model of a toothed double-roll crusher and numerical studies, Powder Technol. 356, 60–72.
[32]. Barrios, G.K.P. and Tavares, L.M. (2016). A preliminary model of high pressure roll grinding using the discrete element method and multi-body dynamics coupling, Int. J. Miner. Process. 156 32–42.
[33]. Nagata, Y. Tsunazawa, Y. Tsukada, K. Yaguchi, Y. Ebisu, Y. Mitsuhashi, K. and Tokoro, C. (2020). Effect of the roll stud diameter on the capacity of a high-pressure grinding roll using the discrete element method, Miner. Eng. 154, 106412.
[35]. Chehreh Chelgani S. Nasiri, H. and Tohry, A. (2021). Modeling of particle sizes for industrial HPGR products by a unique explainable AI tool- A ‘‘Conscious Lab” development. Advanced Powder Technology, article in press,
https://doi.org/10.1016/j.apt.2021.09.020.