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 When longwall mining involves total extraction, it includes the overlying strata 
movements. In order to better control these movements, the height of fracturing 
(HoF) must be determined. HoF includes both the caved and continuous fractured 
zones, and represents the region of the broken ground whereby a hydraulic 
connection to the mined seam occurs. Among the various empirical models for 
predicting HoF, the Ditton's geometry and geology models are widely used in the 
Australian coalfields. This work uses a case-based reasoning (CBR) method in order 
to predict HoF. The model's variables, including the panel width (W), cover depth 
(H), mining height (T), key stratum thickness (t), and its distance from the mined 
seam (y), are selected via the Buckingham's p-theorem. The data set consisting of 31 
longwall panels is partitioned into the training and test subsets using the W/H ratio as 
the primary classifier of a semi-random partitioning method. This partitioning 
method overcomes the class imbalance and sample representativeness problems. A 
new CBR model presents a linear mathematical equation to predict HoF. The results 
obtained show that the presented model has a high coefficient of determination (R^2   
= 0.99) and a low average error (AE = 8.44 m). The coefficient of determination for 
the CBR model is higher than that for the Ditton’s geometry (R^2 = 0.93) and 
geology (R^2 = 0.97) models. Contrary to the Ditton's models, the performance of 
the CBR model is consistent regarding the average and standard errors (AE and SE) 
of the training and test stages. The proposed model has an acceptable performance 
for all the width to depth ratios to predict HoF. 
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1. Introduction 

Longwall mining is the most large-scale 
underground coal mining method. The main 
concerns of many longwall coal mining 
researchers are to evaluate the behavior of the 
overlying strata above the mined seam during and 
after the panel extraction.  When a longwall panel 
is extracted, the overlying strata sag down, 
leading to changes in the in-situ stress regime and 
the hydraulic conductivity in the overburden. The 
volume expansion of the fractured zone 
determines the behavior of the overburden strata. 
Nowadays, a reliable prediction of the subsurface 
movements and the height of different zones 
above a mined panel become a priority. Knowing 
the behavior of the overburden strata can ease the 

study of the surface subsidence and groundwater 
regime changes. Numerous studies have been 
investigated by many researchers on the caving 
and fracturing behavior of the overburden zones. 

The maximum height of the distressed zone is 
equal to 50% for cohesive and 63% for 
insufficient cohesion of the cover depth for a 
dome [1]. Kenny has suggested that the caving 
height is 2–4 times the mining height [2]. The 
National Coal Board developed some empirical 
methods in order to predict the caving and 
fracturing zones [3]. Fawcett has developed a new 
model based on the panel width, which over-
predicts the fractured heights when the widths are 
between 100 m and 200 m [4]. Follington and 
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Isaac using a finite element method have 
suggested that the panel width and failure height 
have a linear relationship [5].  Peng has 
categorized the overburden zones into the caved, 
fractured, continuous deformation, and surface 
zones [6]. Kelly has studied the ground movement 
processes above the longwall panels in more 
details [7]. The height of the caved zone equals 
4.1–11.25 times the mined coal seam for the weak 
overburden conditions [8]. The fracturing height 
would be about 22–37 m for a single-seam 
extraction method [9]. The physical and numerical 
modeling methods have shown that the height of 
the stress arch above the longwall face is 11.5 
times the mining height [10]. The maximum 
height of the caving is 15 times the mining height 
[11]. Palchik has shown that the horizontal 
fractures are 12.9–149.4 m above the underground 
openings [12]. Zhimin using the field 
measurements and numerical modeling results has 
shown that the fractured zone height equals 
14.33–17.71 and 16.04 times the mining height, 
respectively [13]. The field measurements have 
shown that the height of the caving and fracturing 
zones reaches 4.03 and 32.64 times the height of 
the mined seam, respectively [14]. 

A numerical approach has shown that the 
fractured height above the longwall coal mines is 
approximately 40 m into the roof [15]. The 
cavability index (CI) has been introduced based 
on the hybrid multi-criteria decision-making 
technique, combining the fuzzy analytical 
network processes (ANPes) and the fuzzy 
decision-making trial and evaluation laboratory 
(DEAMTEL) method [16]. The fuzzy decision-
making trial and evaluation laboratory 
(DEMATEL) has been employed to study and 
analyze the parameters influencing the roof strata 
cavability. The results obtained showed that the 
most influencing parameters were the uniaxial 
compressive strength (UCS), tensile strength, and 
coal seam depth [17]. Mohammadi et al. have 
introduced the roof strata cavability index (RSCI) 
as a simple and efficient tool to assess the 
cavability of the immediate roof and evaluate the 
caving intervals in longwall mining [18]. A 
numerical model has been presented in order to 
investigate the stability of a simultaneous 
excavation of two longwall coal panels of the 
Tabas Parvadeh underground coal mine [19]. The 
first roof weighting effect interval (FRWEI) and 
the periodic roof weighting effect interval 
(PRWEI) heve been determined using numerical 
modeling at the E3 panel of the Tabas Parvadeh 
coal mine [20]. A new hybrid probabilistically 

qualitative-quantitative has been proposed to 
evaluate the cavability of the immediate roof, and 
estimate the main caving span in longwall mining 
by combining the empirical model and numerical 
solution [21]. A new time-independent analytical 
model based on the strain energy balance in 
longwall mining has been developed to determine 
the height of the destressed zone (HDZ). The 
proposed energy model incorporates the possible 
influencing geometrical and geo-mechanical 
parameters in calculating HDZ [22]. A new ANN 
approach has been proposed to estimate the height 
of caving–fracturing zone (HCFZ) over the 
longwall mines. The proposed ANN model is in 
close agreement with the in situ models, and the 
existing empirical, analytical, numerical, and 
physical models [23]. Rezai et al., using measured 
data, have presented a multi-layer perception 
(MLP) model to predict the height of the HDZ. 
The proposed MLP model predicted the values in 
agreement with the measured ones. Their results 
showed that the most influential parameter is the 
unit weight. On the other hand, the elastic 
modulus is the minor effective parameter on HDZ 
in the study [24]. In another study, Rezai et al. 
have developed a new theoretical energy-based 
model of HDZ determination in the long-term 
condition. Furthermore, the sensitivity analysis 
showed that the two temperature-related 
constants, material constant, and time are the most 
influential variables in HDZ, and the slope of 
material hardening is the least effective one [25]. 
A time-dependent model based on the energy 
balance in longwall mining combined with a 
rheological model of caved materials with time-
varying parameters has been used to calculate 
HDZ [26]. 

The initial understandings about the overburden 
zones above a longwall panel can only be inferred 
from the conceptual models. These models have 
been discussed by many researchers using several 
simplified hypotheses. Peng has presented a new 
conceptual model including the caved, fractured, 
continuous deformation, and surface zones [6]. 
Several conceptual models have been developed 
in the Australian coalfields based on the 
measurements and numerical modeling methods. 
Forster has presented a comprehensive monitoring 
program above longwall panels in the Great 
Northern (GN) seam, concluding that the height 
of the continuous fractured zone is between 21T 
and 33T above the mined seam ( T is the mining 
height) [27]. Another widely accepted conceptual 
model in New South Wales is the Mackie model 
[28]. The four different zones (caved, fractured, 
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constrained, and surface zones) above the mined 
seam are depicted in Figure 1. The caved zone 
includes the immediate roof, collapsing into the 
void space left after longwall panel extraction has 
finished. The fractured zone is affected by a high 
degree of bending, causing the fracturing and 
separation of the rock mass. The constrained zone 

is situated above the fractured zone and has been 
deformed by bending action, but lesser than the 
fractured zone. The surface zone includes the 
vertical cracking due to the horizontal tensile and 
compressive strains caused by the mine 
subsidence deformation. 

 
Figure 1. Zones in overburden according to Mackie model [28]. 

The empirical height of the fracturing prediction 
models such as the Ditton’s geometry and geology 
methods are currently used widely in Australia. 
The independent expert panel on mining in the 
catchment (IEPMC) has concluded that both 
Ditton’s models are valuable. In the geometry 
model, three parameters, including the effective 
panel width (m), cover depth (m), and mining 
height (m), are the influential independent 
variables. The regression results of the Ditton’s 
geometry model suggest that the fracturing height 
has a positive correlation with the effective panel 
width (W’), cover depth (H), and mining height 
(T). Regarding the geology model, four influential 
parameters are the effective panel width (m), 
cover depth (m), mining height (m), and effective 
key stratum thickness. The regression results 
indicate that the fracturing height has a positive 
correlation with the effective panel width (W’), 
cover depth (H), and mining height (T), and a 
negative correlation with the thickness of the key 
stratum. The Ditton’s geometry and geology 
models are as Equations 1, and 2 [27]. 

 H୤ = 2.215Wᇱ଴.ଷହ଻H଴.ଶ଻ଵT଴.ଷ଻ଶ (1) 

H୤  = 1.52Wᇱ଴.ସH଴.ହଷହT଴.ସ଺ସ tᇱି଴.ସ (2) 

where H୤: is the height of the fractured zone 
(m), Wᇱ: is the effective panel width (minimum of 
W and 1.4 H) (m), H: is the cover depth (m), T: is 
the mining height (m), and tᇱ: is the effective key 
stratum thickness (m) that limits the fracturing 
height above a longwall panel. 
If t୪୭୥  >t୫ୟ୶, then t’ = t୫ୟ୶ and If t୪୭୥  <t୫ୟ୶, then t’ = t୫୧୬ (3) 

where t୪୭୥ indicates the thickness of bore log (m), 
t୫ୟ୶ is a parameter that can be calculated from 
Equation 4 (m), and t୫୧୬  is the minimum key 
stratum value (m) (Table 1). 

t୫ୟ୶= Wᇱ[0.035 ቀ୷
ୌ
ቁ
ିଵ.ଷ

] (4) 

where Wᇱ: is the effective panel width 
(minimum of W and 1.4H) (m), y: is the key 
stratum location above workings (Figure 4) (m), 
and H  is the cover depth (m). The minimum 
effective key stratum thickness values for the 
normal and adverse rock mass conditions in the 
Australian coalfields are provided in Table 1. The 
Adverse conditions are likely to be affected by the 
geological structure or the atypical rock mass 
conditions. 
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Table 1. ܖܑܕܜ  values in Australian Coalfields [27]. 

Cover 
depth(m) 

Minimum Effective ܖܑܕܜ 

Normal conditions Adverse conditions 

Southern Western Newcastle Hunter valley Bowen basin All coalfields 

>450 40 - - 30 30 15 
350 - 450 40 40 30 20 20 15 
250 - 350 20 20 20 20 20 10 
150 - 250 20 20 20 15 15 10 

<150 20 15 20 15 15 10 
 

The application of case-based reasoning in 
underground mining and especially longwall coal 
mining is entirely new. The method presented in 
this research work has a solid mathematical 
support in defining the matrix of the empirical 
height of fracturing expertise model (EHOFEM), 
introducing the new similarity function, and 
finally presenting a new mathematical formula to 
predict HoF. The final presented equation is easy 
to use and interpret. The proposed model applies 
the homogeneity theorem in order to select the 
independent variables of the HoF model. The 
presented CBR model has the following 
characteristics: 1) Contrary to other soft 
computing methods, the presented method 
provides a mathematical formula that can be used 
to predict HoF. This method may also be used as a 
quick check on the results of the other empirical 
models. 2) This model is developed based on the 
data from New South Wales, and is only valid for 
the selected sites fitting to the parameter scale that 
the model is developed. 3) Due to the differences 
in geology, lithology, and stratigraphy, the 
application of this model in other regions requires 
some modifications in the presented final 
equation. 4) Among the various empirical models, 
the Ditton's geometry and geology models are 
widely used in the Australian coalfields. The 
independent expert panel on mining in the 
catchment (IEPMC) believes that both are 
valuable models to estimate the height of 
fracturing. 5) The results obtained are compared 
with the results of the Ditton's models and 
acquired satisfying conclusions. 6) The predictor 
variables are selected based on the mathematical 
logic and homogeneity theorem. All the input 
variables of the model according to the 
homogeneity theorem should be independent. 
Therefore, the presented model does not include 
the dependent variables such as the uniaxial 
compressive strength (UCS), the coefficient of 
immediate roof expansion, and many other 

dependent variables used in other numerical or 
intelligent methods. In other words, the effect of 
these dependent parameters is indirectly involved 
in the proposed model, although they are not 
included in the final equation introduced to 
predict the height of fracturing above longwall 
panels. 7) While simple, this method can provide 
reliable results with a small number of input 
parameters. 8) In the greenfields of New South 
Wales, where the longwall mining experience 
does not exist, this model can be used as a 
primary method to estimate the height of 
fracturing above longwall panels. 

2. Materials and methods 
The case-based reasoning method is briefly 

introduced in Section 2.1; since the fundamentals 
and various applications of the CBR method are 
discussed comprehensively in [29], the detailed 
review is not presented. In Section 2.2, the 
granular computing theory and a semi-random 
data partitioning algorithm are presented. 

2.1. Case-based reasoning 
The field of case-based reasoning (CBR) arises 

out of the research in cognitive science. The 
earliest contributions in this area were from Roger 
Schank and his colleagues at the Yale University 
[30]. The systems based on case-based reasoning 
first collect the data and information about the 
problem. After identifying a new system, the 
problem is defined, and similar solutions are 
identified in the past. The solutions and answers 
related to the past cases are often effective for the 
new case and can be used as a new solution. Then, 
the solutions and results are selected using 
similarity and difference tests between the case 
under review and the items in the database. In 
other words, after completing the database using a 
specific procedure, it is necessary to determine a 
method to define the degree of similarity and 
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difference between the new case and the database 
items. For this purpose, a logical method is 
defined to calculate the similarity of the new case 
with the database. 

Extensive studies have been conducted on the 
application of case-based reasoning in various 
fields [31-37]. The applications of this method are 
divided into the following two categories based on 
their tasks: (1) analytical and (2) combined 
systems. The first category is solved by finding 
the correct item from the database, and then the 
solution can be directly deduced. The 
classification issues, case-based decision support 
fall into this category. The second category 
attempts to find a new solution, which did not 
exist before, by combining the past solutions. 
Configuration, planning, and design are some of 
these. Case-based reasoning works on experience 
without a detailed understanding of the principal 
mechanism of the prediction model. Contrary to 
the rule-based systems, the database of a case-
based reasoning system consists of the relevant 

cases, their representation, and finally, storage. In 
the systems that the results are recorded, the cause 
for failures is applied to avoid future failures. The 
complexity nature of the rule-based models leads 
to a problem when there is a missing or 
incomplete data. In contrast, in these situations, 
the case-based systems can often provide a 
reasonable and reliable solution. A case-based 
reasoning system can be applied to broader 
problems with higher accuracy and success as 
databases expand. Another advantage of this 
system is avoiding the repeating steps that are 
required to be taken to find a solution. The cycle 
of a case-based reasoning system consists of four 
parts [29]: (1) retrieving similar previously 
experienced cases (2) reusing the cases by 
copying or integrating the solutions from the cases 
retrieved (3) revising or adapting the solution(s) 
retrieved in an attempt to solve the new problem, 
and (4) retaining the new solution once it has been 
confirmed or validated. Figure 2 shows the cycle 
in a case-based reasoning system [29]. 

 
Figure 2. Case-based reasoning cycle [29]. 

2.2. Granular computing and semi-random 
data partitioning 

Granular computing has become a common 
method in information-processing and 
computational intelligence. Basic foundations and 
different applications of this method can be found 
in [38-45]. Granular computing uses a structural 
framework for the in-detail processing of 
information. In general, granular computing 
consists of granulation and organization. 

Granulation includes decomposing a problem into 
small parts, whereas the organization integrates 
parts into a whole. Granulation is a top-down 
approach, while an organization is a bottom-up 
approach. A similarity between the granules gଵ 
and gଶ can be defined as Equation 5 [46]. 

Sim (gଵ, gଶ) = ଵ
୫×୬

∑ Sim(gଵ,୧
୫,୬
୧ୀଵ,୨ୀଵ , gଶ,୨) (5) 

where m and n are the numbers of granules ( gଵ, 
gଶ), respectively, gଵ,୧ is the ith subgranule of gଵ, 
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and gଶ,୨ is the jth sub-granule of gଶ. It is critical in 
machine learning methods to split a data-set into 
the training and testing subsets correctly. The 
training set is used for learning the model, and the 
test set is then used to evaluate the performance of 
the proposed model. In most studies, data 
partitioning has only been studied regarding the 
optimal proportion for the two sets, and the 
characteristics of the training and test sets are 
neglected. The common practice in traditional 
data partitioning is to split the dataset randomly 
into 70% and 30% for the training and testing 
purposes. Randomly partitioning the data leads to 
two main problems: (1) class imbalance and (b) 
sample representativeness issues [47, 48]. Class 

imbalance occurs when the samples from one 
class are higher than the others. In imbalanced 
data-set, the class with more instances is called a 
majority class, while the one with a relatively 
small number of instances is called a minority 
class. Class imbalance affects the performance of 
classifiers towards the majority class. The 
representativeness of the training set affects the 
model performance through the datasets that do 
not describe the characteristics of the whole 
datasets. In this work, a semi-random data-
partitioning method proposed by [37] is used to 
determine the data type (training or test). Figure 3 
illustrates the semi-random data partitioning 
method used in the proposed CBR method. 

 
Figure 3. Multi-granularity framework used to semi-random data partitioning [43]. 

The data set contains three classes of cases with 
the frequency distribution of a: b: c, where a + b + 
c = 1 and the size of the data-set is m; a, b, c are 
the percentages of the sub-critical, critical, and 
super-critical cases in the whole dataset. 
Following the data partitioning, the percentage of 
the training set is q, whereas the percentage of the 
test set is 1-q. The data-set is divided into three 
subsets (subcritical, critical, and supercritical 
panels), respectively, which results in ma sub-
critical cases, bm critical cases, and cm super-
critical cases. Every three classes are split into the 
training and test subsets. In particular, for the 
subcritical class, the size of the training subset is 
maq, and the size of the test subset is ma (1-q). 
For the critical class, the size of the training 
subset is mbq, and the size of the test subset is mb 
(1-q). Similarly, for the super-critical class, the 
size of the training subset is mcq, and the size of 
the test subset is mc (1-q). The three training 
subsets are combined into a whole training set, 
and the frequency distribution between the sub-
critical, critical, and super-critical classes is maq : 
mbq : mcq, which is equivalent to a : b : c of the 

original class distribution. The three test subsets 
are combined into a whole test set, and the 
frequency distribution between the sub-critical, 
critical, and supe-rcritical classes is ma (1-q) : mb 
(1-q) : mc (1-q), which is equivalent to a : b : c of 
the original class distribution. Level 3 of the 
multi-granularity data partitioning framework 
controls the selection of the training and test cases 
to ensure sample representativeness. The lack of 
sample representativeness is likely to lead to 
overfitting, which means a model performs well 
on the training data and poorly on the test data. In 
these situations, what the algorithm has learned 
from the training data is not helpful for the test 
data, leading to a lack of generalization. 

3. Model Development 
The principle of dimensional homogeneity 

states that an equation expressing a physical 
relationship between the variables must be 
dimensionally homogeneous. The dimensions of 
each side of the equation must be the same. It is a 
valuable means of determining the physical 
relationships between the independent (W, H, T, t, 
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y) and response variables (H୤) in a complex 
system that defy the analytical solutions and must 
be solved empirically. The Buckingham’s P-
theorem accomplishes this principle by defining a 
series of dimensionless groups of independent 
variables that are measurable in the field. This 
theory suggests that in order to define the physical 
relationship between a set of n independent 
parameters in a complex system, n-3 
dimensionless P-terms will be required to define 
the response variable reasonably (Equation 6). 
πଵ  = F (πଶ , πଷ … π୬ିଷ) (6) 

where πଵ is the dimensionless P-term 
corresponding to the dependent (response) 
variable,  πଶ to π୬ିଷ are the dimensionless P-
terms corresponding to the independent variables, 
and n is the number of variables. Up to 9 variables 
may influence the height of fracturing as Equation 
7: 
H୤ = F (W, H, T, t, y, UCS, E, E୥, tanθ) (7) 

Where H୤: is the height of the fractured zone 
(m), W: is the panel width (m), H: is the cover 
depth (m), T: is the mining height (m), t: is the 
thickness of key stratum (m), y: is the key stratum 
distance from mined seam (m), UCS: is the 
uniaxial compressive strength of the rock mass 
(Mpa), E: is the Young modulus (Mpa), E୥: is the 
goaf modulus (Mpa), and θ: is the caving angle 
(degree). The goaf modulus (E୥) and caving angle 
(θ) are considered dependent on the mining 
geometry, and precluded from the analysis. The 
dimensionless π terms for the remaining predictor 
variables were then analyzed using the P-terms. 

πଵ: is the H୤/H, πଶ: is the W/H, πଷ: is the t/T, πସ: 
is the y/H, and πହ: is the E/UCS. Then the 
complete equation of the dimensionless π terms 
may be simplified as Equation 8. 
H୤ /H = F ((W/H), (t/T), (y/H), (E/UCS)) (8) 

The last π term (πହ: E/UCS) for all cases in the 
database will be constant (E is typically 250 to 
300 times the UCS), and then the final equation 
can be simplified as Equation 9. 

H୤ /H = a (W/H)஑ (t/T) ஒ (y/H)ஓ (9) 

where a, α, β, and  γ are constants. Rearranging 
Equation 9 in terms of H୤ gives Equation 10 as: 

H୤  = aW஑ Hଵି஑ିஓ tஒ Tିஒ yஓ (10) 

Therefore, the independent variables for 
calculating the response variable are W, H, T, t, 
and y. The main independent variables may 
influence the height of fracturing as Equation 11. 
H୤  = F (W, H, T, t, y) (11) 

Figure 4 shows a schematic representation of 
the key variables of the proposed CBR model. 
The mentioned factors are classified, and finally, 
the specifications of each item are stored as a 
matrix with 0 and 1 items in the empirical height 
of the fracturing expert model (EHOFEM). If a 
specific factor corresponds to one of the 
categorized cases, the number 1 is used for that 
specific value; otherwise, the number zero is used. 
In other words, entering the number 1 indicates 
that the attribute matches the category of that 
column.  

 
Figure 4. A schematic representation of key variables of case-based reasoning model [27]. 
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One of the case-based reasoning method 
challenges is retrieving the most similar item in 
the database to the new one. This procedure is 
often determined by defining a similarity function 
in order to check the similarity of the new item 
with the items in the database. Therefore, the 
EHOFEM model should develop a procedure to 

search and retrieve the most similar case in the 
database to the new case. For this purpose, the 
matrix Z in the EHOFEM model is defined as 
Equation 12. 

[T]୩×୬[Z]୬×ଵ= [M୩]୩×ଵ (12) 

where: 

[T]୩×୬= 

⎣
⎢
⎢
⎢
⎡
aଵଵభ aଵଶభ aଵଷభ … aଵ୧భ aଵଵమ aଵଶమ aଵଷమ … aଵ୧ౠ
aଶଵభ aଵଵభ aଵଵభ … aଶ୧భ aଶଵమ aଶଶమ aଶଷమ … aଶ୧ౠ
aଷଵభ aଵଵభ aଵଵభ … aଷ୧భ aଷଵమ aଷଶమ aଷଷమ … aଷ୧ౠ

… … … … … … . . . … … …
a୩ଵభ a୩ଶభ a୩ଷభ … a୩୧భ a୩ଵమ a୩ଶమ a୩ଷమ … a୩୧ౠ⎦

⎥
⎥
⎥
⎤

 

[ܼ]௧ = ൣZଵభ Zଶభ Zଷభ … Z୧భ Zଵమ Zଶమ Zଷమ … Z୧ౠ൧ଵ×୬ 

[M୩]୲=[ HoFᇱ
ଵ  HoFᇱଶ  HoFᇱଷ …  HoFᇱ୩]ଵ×୩ 

 
J is the code assigned to each attribute;  i୨ is a 

code assigned to the ith category of the jth 
attribute; n is the number of categories; k denotes 
the number of items in the database; T is the 
comprehensive characteristic matrix and consists 
of the characteristics of all cases with k × n 
elements; HoFᇱ୩ denotes the estimated value for 
the height of fracturing in case k is the product of 
multiplying the row k of the matrix T by matrix Z; 
M୩ denotes the matrix consisting of HoFᇱ୩ for all 
cases; matrix Z is the coefficient matrix with n 
numbers; Z୧୨  denotes the element of the matrix Z 
defined as a proportionate coefficient of i୨; and  
a୩୧ౠ denotes the value of the matrix T obtained 
according to Equation 13. 

a୩୧ౠ=ቊ
1    if A୩୧ౠ ∈  i୨ 
0    if A୩୧ౠ ∉ i୨

 (13) 

where A୩୧ౠ  is the value of the characteristic j in 
the case k. Therefore, in order to determine the 
most optimal properties of the matrix Z, Equation 
14 can be used. 

Minimize R=∑ (୩ଵ HoF୩ −  HoFᇱ୩ )ଶ 
(14) 

Subject to: [Z]=[T]ିଵ×[M୩] 

HoFᇱ୩ denotes the estimated height of fracturing 
for case k, obtained by multiplying the row k of 
the matrix T by the matrix Z (m); HoF୩  is the 
measured value of the height of fracturing (m); 
[T]ିଵ is the inverse of matrix T; R shows the sum 
of the squares of the differences between HoF୩ 
and  HoFᇱ୩. The value of R must be minimized by 
optimizing the arrays of the matrix Z. The average 
error (AE) can be calculated by Equation 15. 

AE୉ୌ୓୊୉୑ = 
∑ (หୌ୭୊ౡିୌ୭୊ᇲౡห)ౡ
భ

୩
 (15) 

HoF୩, HoFᇱ୩, and k are defined in Equation 14. 
After calculating the most optimal elements of the 
matrix Z, the value of the height of fracturing for 
case u is achieved through Equation 16. 
T୳× Z = HoFᇱ୳ (16) 

where T୳: is the specification matrix of the new 
case u, HoFᇱ୳: is the height of fracturing value for 
case u; and u denotes the new case. Finally, in 
order to determine the similarity degree between 
the new case and the cases in the database, a 
function must be defined to calculate the 
percentage of similarity. This function must be 
defined so that as the difference between two 
cases increases, its value decreases and eventually 
tends to zero. As the difference between HoFଵ 
and HoFଶ decreases, the similarity percentage 
increases and eventually reaches to 100. 
Therefore, the similarity function between the 
new case and the existing ones is proposed as 
Equation 17. 

Sim୩ି୳ =
100

1 + ቚHoFᇱ୳ − HoFᇱ୩
HoFᇱ୳

ቚ
 (17) 

Sim୩ି୳ is the similarity percentage between the 
new case and the database; HoFᇱ୳ denotes the 
estimated height of fracturing value for case u 
(m), and  HoFᇱ୩ is the estimated height of 
fracturing value for case k (m). According to 
Equation 17, the similarity values tend to zero as 
the difference between HoFᇱ୳ and  HoFᇱ୩ 
increases. Also, the similarity values reach 100 
when HoFᇱ୳ and  HoFᇱ୩ are equal. Finally, the 
estimated height of the fracturing value for the 
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new case is equal to the measured value of the 
case with the highest percentage similarity to the 
new case. Therefore, the estimated height of the 
fracturing value for the new case can be calculated 
as Equation 18. 

∀HoFᇱ୳=HoF୲: Sim୲ି୳= ଵ଴଴

ଵାฬౄ౥ూ
ᇲ౫షౄ౥ూᇲ౪
ౄ౥ూᇲ౫

ฬ
 ∈ 

(18) 
Max{Simଵି୳, Simଶି୳, … , Sim୩ି୳} 

 where Sim୲ି୳ ∶ is the percentage of similarity 
between the case t and the case under study (case 

u); t: is the case or cases that have the highest 
percentage of similarity with the case under 
investigation; HoF୲: is the measured height of 
fracturing for case t (m); HoFᇱ୲: is the estimated 
value of the fractured height for case t (m); and 
HoFᇱ୳: is the estimated value of the fractured 
height for case u (m). Table 2 shows how to 
categorize the specifications of each item. Table 3 
shows how to store the information for the 
hypothetical case in the EHOFEM model. 

Table 2. Specifications of each item in proposed CBR model. 
Variable Classes Assigned code  

Panel width (m) 

W < 150 m 1ଵ 
150m < W < 250 m 2ଵ 
250m < W< 350 m 3ଵ 

W > 350 m 4ଵ 

Cover depth (m) 

H < 150 1ଶ 
150 < H< 250 2ଶ 
250 < H < 350 3ଶ 

H > 350 4ଶ 

Mining height (m) 
T < 2.5 1ଷ 

2.5 < T < 3.5 2ଷ 
T > 3.5 3ଷ 

Tickness of key 
stratum (m) 

T < 30 1ସ 
30 < t < 60 2ସ 

t > 60 3ସ 

Key stratum 
location (m) 

y < 50 1ହ 
50 < y < 100 2ହ 

y > 100 3ହ 

Table 3. Stored information for hypothetical case in EHOFEM model. 

Specification of hypothetical case (LW10- metropolitian mine) 

Height of 
fracturing 

according to the 
proposed CBR 

model 
=117.39 m 

W(m) H(m) T (m) t(m) y(m) 

1ଵ 2ଵ 3ଵ 4ଵ 1ଶ 2ଶ 3ଶ 4ଶ 1ଷ 2ଷ 3ଷ 1ସ 2ସ 3ସ 1ହ 2ହ 3ହ 

1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 

4. Results and Discussion 
The described CBR model is used for the 

prediction of the height of fracturing above the 
longwall panels. The dataset, which is the exact 
dataset Ditton used for the proposed geology and 
geometry models, is provided as a benchmark for 
the data analysis and model building (Table 5). 
The model database includes the extensometer 

and piezometric data from the Southern, Western, 
and Hunter Valley coalfields in New South Wales 
(NSW), Australia. The independent variables for 
calculating the response variable are W, H, T, t, 
and y (Figure 4). 21 training datasets, including 
W, H, T, t, and y, according to Table 5, are used 
for model building. Table 4 shows the statistics of 
the variables of the CBR model. 
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Table 4. Statistics of CBR model parameters. 
Parameter(m) Type Min Max Mean Standard deviation  

Panel width (W) input 110 355 197.13 76.29 
Cover depth (H) input 76 460 251.26 135.18 
Mining height (T) input 1.88 6 3.1 0.94 
Thickness of key stratum (t) input 15 120 57.80 37.76 
Key stratum distance from mined seam (y) input 33 145 87.82 32.18 
Height of fracturing (H୤) output 40 145 89.52 31.35 

 
By solving Equations 12 and 15, the matrix Z 

and the AE୉ୌ୓୊୉୑ value for the EHOFEM model 
is obtained as follows: 

AE୉ୌ୓୊୉୑  = ∑ (หୌ୭୊ౡିୌ୭୊ᇲౡห)ౡ
భ

୩
 = ଶଵ଼.଴ଵ

ଷଵ
 = 8.44 m 

 
 
Z୘= [ 25.17 24.73 24.82 −1.53    −17.05 20.36 32.69 37.2 22.38 24.14 26.68 5.39 22.08  45.73 18.5 −3.45 −14.84 ] 

 
The final and simplified mathematical equation 

of the proposed CBR model for prediction of the 
height of fracturing are as Equation 19 and 
Equation 20. 

 (HOFେ୆ୖ)୩ is the the height of fracturing for 
case k according to the CBR model. (Zଵభ, Zଶభ ,
Zଷభ, Zଵభ) = (25.17, 24.73, 24.82, -1.53) 
corresponds to the panel width variable, (Zଵమ , 
Zଶమ , Zଷమ , Zଵయ) = (-17.05, 20.36, 32.69, 37.2) 
corresponds to the cover depth, as the coefficients 
show the higher cover depths lead to the higher 
height of fracturing values, (Zଵయ, Zଶయ , Zଷయ) = 
(22.38, 24.14, 26.68) corresponds to the mining 

height variable; it can be inferred from the 
corresponding coefficients that as the value of the 
mining height increases the value of the height of 
fracturing increases, (Zଵర, Zଶర , Zଷర) = (5.39, 22.08, 
45.73) corresponds to the thickness of the key 
stratum; the value of this variable has a positive 
correlation with the value of the height of 
fracturing, (Zଵఱ , Zଶఱ, Zଷఱ) = (18.5, -3.45, -14.84) 
corresponds to the key stratum distance from the 
mined seam. The predicted values of the CBR 
model are compared with the results of the 
Ditton’s geometry and geology models in Table 5. 

 
(HOFେ୆ୖ)୩ = 25.17a୩ଵభ + 24.73 a୩ଶభ + 24.82 a୩ଷభ − 1.53a୩ସభ − 17.05 a୩ଵమ + 20.36 a୩ଶమ + 32.69 a୩ଷమ + 

(19) 
37.2a୩ସమ  +22.38a୩ଵయ+ 24.14a୩ଶయ+ 26.68a୩ଷయ+ 5.39a୩ଵర + 22.08a୩ଶర+ 45.73a୩ଷర+18.5a୩ଵఱ  −3.45a୩ଶఱ −14.84a୩ଷఱ  

(HOFେ୆ୖ)୩ = (25.17, 24.73, 24.82, -1.53) . a୩୧భ│
௜ୀସ
௜ୀଵ + (-17.05, 20.36, 32.69, 37.2) . a୩୧మ│

௜ୀସ
௜ୀଵ+ 

(20) 
(22.38, 24.14, 26.68)  . a୩୧య│

௜ୀଷ
௜ୀଵ+ (5.39, 22.08, 45.73)  . a୩୧ర│

௜ୀଷ
௜ୀଵ+ (18.5, -3.45, -14.84)  . a୩୧ఱ│

௜ୀଷ
௜ୀଵ 

 
Figure 5 compares the predicted values of the 

CBR model and the field measurements. The 
residuals of the predicted values for the CBR 
model are depicted in Figure 6. The scatter plots 
of the residuals for the CBR model are depicted in 
Figure 7. The R-Square of the linear regression 
equation is 0.0058. Figure 8 shows the results of 

the three models (Ditton’s geometry, geology, and 
CBR) vs. the measured values. The CBR 
predictions are closer to the actual data at most 
points, which illustrates the better modelling via 
the CBR model. The test results of the CBR 
model are compared with the Ditton’s models in 
Table 6.
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Table 5. Predicted values of CBR model vs. results of Ditton’s models [16]. 
Case Panel W (m) H (m) (ܕ) ܜ (ܕ) ܂ Y (m) Geometry (m) Geology (m) CBR (m) Measured (m) 

1 LW10 140 460 3.4 100 130 107 109 117.39 130 
2 LW1-

4 
110 325 2.5 100 85 80 76 87.48 85 

3 LW6 117 335 2.75 100 98 85 84 89.24 98 
4 LWA

1 
159 417 6 100 80 135 118 95.84 87 

5 LW51
4 

150 400 2.7 100 90 97 84 93.74 90 
6 LW28 200 500 2.3 120 90 108 81 91.54 90 
7 LW2 150 368 3.5 100 113 105 101 117.39 113 
8 LW9 150 350 2.7 34 110 81 86 134.29 110 
9 SW1 120 176 2.3 100 76 68 63 75.15 76 

10 411 315 368 3.25 55 139 133 156 128.43 139 
11 LW5 160 179 3.7 25 83 90 103 122.25 118 
12 LW1 216 206 3.44 30 126 101 121 111.51 126 
13 TE1 120 95 2.3 15 41 57 59 32.45 45 
14 LWE

1 
259 155 2.55 15 145 84 120 133.54 145 

15 LW41 179 113 3.8 20 72 76 76 74.94 72 
16 LW39 280 155 3.5 35 105 95 105 111.59 85 
17 LW39 179 105 3.9 20 68 73 71 74.94 68 
18 TE3D 355 185 1.9 50 63 84 60 59.84 63 
19 TE35

5 
355 180 1.9 50 40 83 59 43.16 40 

20 Panel
2 

150 76 1.88 15 33 48 45 54.4 45 

21 LW1 205 95 3.2 30 55 67 58 50.45 55 

 
Figure 5. Predicted values of CBR model vs. field measurements. 

 
Figure 6. Residuals of predicted values (CBR model). 
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Figure 7. Scatter plots of residuals (CBR model). 

 
Figure 8. Results of compared models vs. measured values. 

Table 6. Test results of the CBR model vs. Ditton’s models [16].  
Site Panel W(m) H(m) (ܕ)ܜ (ܕ)܂ y(m) Geometry (m) Geology (m) CBR (m) Measured(m) 

1 MW508 110 421 2.5 100 90 86 82 92 92 
2 LW20 163 450 3.4 100 100 113 99 93.3 100 
3 TE 200 446 2.5 100 101 108 86 116.95 101 
4 LW409 265 384 3.25 55 133 126 131 128.43 133 
5 LW5 245 255 3.75 80 123 116 110 114.99 123 
6 LW1 145 116 2.7 15 106 84 90 96.49 96 
7 LWs 216 154 2.55 30 82 84 91 87.86 82 
8 LW40 179 113 3.8 20 80 80 81 74.94 80 
9 TE-NB 150 75 2.88 20 58 55 53 58 58 

10 LW9/9a 200 80 3.3 15 65 61 62 72.4 70 
 

Figure 9 shows the test results of the proposed 
case-based reasoning model vs. the measured 
values. The test results are closer to the actual 

data at the majority of points, which illustrates the 
acceptable performance of the CBR method. 
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Figure 9. Test results of CBR model vs. Ditton’s models. 

The most general definition of the coefficient of 
determination is as Equation 21. 
Rଶ = 1− ୗୗ౨౛౩

ୗୗ౪౥౪
 (21) 

where SS୰ୣୱ  is the  sum of the squares of the 
residuals, and can be measured as Equation 22. 
SS୰ୣୱ= ∑ (y୧ − f୧)ଶ୧  (22) 

where SS୲୭୲ is the total sum of the squares, and 
can be calculated as Equation 23. 

SS୲୭୲= ∑ (y୧ − yത)ଶ୧  (23) 

where y୧ is the measured value for case i, f୧ is 
the predicted or fitted value for case i, and yത is the 
mean of the observed or measured values. 
Rearranging Equation 21 based on the proposed 
case-based reasoning model gives Equation 24 as: 

Rଶ
ୌ୭୊ = 1 − ∑ (ୌ୭୊౟ିୌ୭୊ᇲ౟)మ౟

∑ (ୌ୭୊౟ିୌ୭୊തതതതതത)మ౟
 (24) 

where Rଶ
ୌ୭୊ is the coefficient of determination, 

HoF୧is the measured value of the height of 
fracturing for case i, HoFᇱ୧ is the predicted value 
of the height of fracturing for case i, and HoFതതതതത is 
the mean value of the measured heights of 
fracturing. In the best case, the modeled values 
exactly match the observed values, which results 
in SS୰ୣୱ = 0 and Rଶ = 1. The standard error (SE) 
measures the spread of data distribution. It 
measures the typical distance between the data 
points and the mean of the population. The 
formula is used for standard deviation depending 
on whether the data is considered a population of 
its own or a sample representing a larger 
population. In the present work, the predicted 
values are a sample representing a large 
population. In other words, the aim of using SE in 

the present work is to determine the spread of the 
predicted results of the compared models 
(Ditton’s geometry, geology, and the proposed 
CBR). SE measures the distance between the 
mean value of the predicted results and the 
predicted values. The general formula for 
calculation of the standard deviation of a sample 
is as Equation 25. 

SE = ୗ౮
√୩

 (25) 

S୶ = ඨ∑ (x୧ିxത)ଶ୧ୀ୩
୧ୀଵ

k − 1  (26) 

where SE is the standard error of a sample, k is 
the number of data in a given sample, S୶ is the 
standard deviation of the sample,  x୧ is the sample 
value for case i, and xത is the mean value of the 
data in the sample. Rearranging Equation 25 
based on the proposed CBR model gives Equation 
27 as: 

SEୌ୭୊ᇲ  = 
ୗౄ౥ూᇲ
√୩

 (27) 

Sୌ୭୊ᇲ = ඨ∑ (HoFᇱ୩ − HoFᇱതതതതതത)ଶ୩ୀ୩
୩ୀଵ

k − 1  (28) 

where SEୌ୭୊ᇲ is the standard error of the 
predicted values in the model; other parameters 
have been defined previously. Table 7 compares 
the performance of three models (Ditton’s 
geometry, geology, and the CBR) in terms of the 
statistical estimators. Table 8 shows the 
performance of the compared models regarding 
the width to depth ratios (W/H). 
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Table 7. Statistics of Ditton’s geometry, geology models vs. CBR models. 

Stage 
HoF 

Prediction 
model 

Min 
HoF (m) 

Mean 
HoF (m) 

Max 
HoF (m) 

SE (m)  
(Equation 27) 

AE (m) 
 (Equation 15) 

 ૛܀
(Equation 24) 

Training 

Ditton’s geometry 
model 

48 88.42 135 4.76 18.52 0.93 

Ditton’s geology 
model 45 87.38 156 6.03 12.71 0.97 

CBR model 32.45 89.97 133.54 6.68 8.44 0.99 

Validation 
(test) 

Ditton’s geometry 
model 55 91.3 126 7.49 6.60 0.89 

Ditton’s geology 
model 

53 89.7 131 7.08 5.80 0.91 

CBR model 58 93.534 128.43 6.93 4.91 0.92 

Table 8. Performance of CBR and Ditton’s models regarding the (W/H) ratio. 

Stage Panel criticality Number of 
longwall panels 

Number of cases 
(predicted (HoF) > measured (HoF)) 

Ditton’s 
geometry model 

Ditton’s 
geology model CBR model 

Training 
Sub-critical (W/H < 0.7) 9 3 1 6 

Critical (0.7 < W/H < 0.1.4) 4 1 2 1 
Super-critical (W/H > 1.4) 8 7 6 5 

Test 
Sub-critical (W/H < 0.7) 4 2 0 2 

Critical (0.7 < W/H < 0.1.4) 2 0 0 1 
Super-critical (W/H > 1.4) 4 2 2 3 

Total data 
Sub-critical (W/H < 0.7) 13 5 1 8 

Critical (0.7 < W/H < 0.1.4) 6 1 2 2 
Super-critical (W/H > 1.4) 12 9 8 8 

Percent of cases (Predicted (HoF) > measured (HoF)) 48% 35% 58% 

 
The following results can be obtained from 

Tables 7 and 8: 
The coefficient of determination (Rଶ) obtained 

from the proposed CBR model is higher than that 
for the Ditton's geometry and geology models 
(99% vs. 93%) and (99% vs. 97%), respectively. 
Moreover, the average error (AE) of the CBR 
model is 8.44 m that is much smaller than the 
average error of the Ditton's geometry (18.52 m) 
and geology (12.71m) models. Hence, the CBR 
model is the best performing model, as indicated 
in Figures 8 and 9 and Table 7. The standard 
errors of the case-based reasoning model in the 
training and validation stages are 6.68 m and 6.93 
m, respectively. The slight difference in the 
standard error value in the training and validation 
stages indicates the stability and consistency of 
the performance of the CBR model. The 
differences in the standard errors calculated for 
Ditton's geometry (4.76 m, 7.49m) and geology 
(6.03 m, 7.08m) models in the training and 
validation stages indicate the volatility and over-

dependence of these models on the changes in the 
input data. Another significant advantage of CBR 
is its ability to present a coefficient matrix (matrix 
Z); including a detailed relationship between the 
independent and the dependent variables. Matrix 
Z yields a general understanding of the model's 
nature, its variables, and the importance of each 
independent variable in the proposed model. 

1. Sub-critical panels (W/H < 0.7): out of 13 panels, 
Ditton's geometry model, and the case-based 
reasoning model predicted larger values than the 
measured ones in 5 and 8 cases, respectively. 
However, only in one case, the Dittont's geology 
model predicted a larger value than the measured 
value. Therefore, it can be concluded that the 
application of the Ditton's geology model is not 
suitable for predicting HoF in the sub-critical 
panels. Compared to the Ditton's models, the case-
based reasoning model better predicts the height of 
fracturing above the sub-critical longwall panels.  

2. Critical panels (0.7 < W/H < 1.4): out of 6 
panels, Ditton's geometry, geology, and the case-
based reasoning models predicted larger values 
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than the measured ones in 1, 2, and 2 cases. None 
of the mentioned methods have a significant 
advantage over the others regarding the cases where 
the predicted values are larger than the measured 
data. 

3. Super-critical panels (W/H > 1.4): out of 12 
super-critical panels, Ditton's geometry, geology, 
and the case-based reasoning methods predicted 
larger values than the measured ones in 9,8, and 8 
cases.  None of the mentioned methods have a 
significant advantage over the others regarding the 

cases where the predicted values are larger than the 
measured ones. 

The predicted values of the CBR model are 
greater than the measured data in 18 out of 31 
(58% of total cases). As the results obtained show, 
the CBR model yields better results than the 
Ditton's (geometry and geology) models for 
predicting the height of fracturing above the 
longwall panels. Table 9 compares the advantages 
and disadvantages of the CBR and Ditton's 
geometry and geology models. 

Table 9. Advantages and disadvantages of compared models. 
HoF prediction 

model Main advantages Main disadvantages 

Ditton’s geometry 
model 

1. It is a simple and fast prediction method with 
few independent input parameters (W, H, T).  
2. It is obtained acceptable performance when the 
longwall panel is sub-critical or super-critical. 

1. Its application is limited to the coalfields of New South Wales 
(Australia). 
2. It does not take into account the presence of the key stratum above 
the mined seam. 
3. It has a lower coefficient of determination and higher average error 
than Ditton’s geology and the case-based reasoning methods.  
4. Its performance is inconsistent regarding the average and standard 
errors (AE and SE) of the training and validation stages. 

Ditton’s geology 
model 

1. It is a simple and fast prediction method with 
few independent input parameters (W, H, T, tᇱ). 
2. It takes into account the presence of the key 
stratum above the mined seam.   
3. It is obtained acceptable performance when the 
longwall panel is super-critical. 

1. Its application is limited to the coalfields of New South Wales 
(Australia). 
2. It has a lower coefficient of determination and higher average error 
than Ditton’s geology and the case-based reasoning methods.  
3. Its performance is inconsistent regarding the average and standard 
errors (AE and SE) of the training and validation stages.  

Case-based 
reasoning model 

1. It is a simple and fast prediction method with 
few independent input parameters (W, H, T, t, y). 

2. It takes into account the presence of the key 
stratum above the mined seam.  
3. It is obtained acceptable performance for all 
width to depth ratios. 
4. It has a higher coefficient of determination and 
lower average error than the Ditton’s geometry 
and geology models. 
5. Its performance is consistent regarding the 
average and standard errors (AE and SE) of the 
training and validation stages. 

1. Its application limited to the coalfields of New South Wales 
(Australia). 

 
4. Conclusions 

An accurate prediction of the height of 
fracturing is the most critical issue regarding the 
mine water interactions above a longwall panel. 
The Mackie model is an acceptable conceptual 
model in the Australian coalfields. The Dittion’s 
geometry and geology models have been widely 
used in the Australian coalfields, especially in 
New South Wales. There is no comprehensive 
model for predicting the height of fracturing 
above the mined longwall panels due to the 
several independent variables with complicated 
relationships. A CBR prediction model was 
presented for the prediction of the height of 
fracturing. This model constructed a linear 

regression model with 21 training datasets. These 
datasets are exactly the datasets that Ditton used 
in order to build the geometry and geology 
models. One granular computing-based approach 
divides the datasets into the training and test 
subsets in order to overcome the class imbalance 
and sample representativeness issues in the data 
partitioning stage. The width to depth ratio (W/H) 
was used as a crucial parameter in the first level 
of the semi-random partitioning method. Finally, 
one new linear mathematical formula was 
presented in order to predict the fracturing height 
above the longwall panels. The results obtained 
indicated that the proposed CBR model had a high 
accuracy in terms of the statistical metrics; Rଶ 
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(99%) and AE (8.44 m); demonstrate the 
acceptable performance of the proposed model. 
The standard errors of the case-based reasoning 
model in the training and test stages were 6.68 m 
and 6.93 m, respectively. The slight difference in 
the standard error value in the training and 
validation stages indicated the stability and 
consistency of the performance of the CBR 
model. The differences in the standard errors 
calculated for the Ditton's geometry (4.76 m, 7.49 
m) and geology models (6.03 m, 7.08 m) in the 
training and validation stages indicated the 
volatility and over-dependence of these models on 
the changes in the input data. The results obtained 
showed that the application of the Ditton's 
geology model was not suitable to predict HoF 
above the sub-critical panels. Compared to the 
Ditton's models, the CBR method better predicted 
the height of fracturing above the sub-critical 
longwall panels. Regarding the cases where the 
predicted values were larger than the measured 
data, the presented CBR method had an 
acceptable prediction performance to predict HoF 
above the mined longwall panels (58% of total 
cases) for all types (sub-critical, critical, and 
super-critical). 
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  چکیده:

در  شکست ارتفاع لازم است حرکات، نیا بهتر کنترل يبرا. شودواقع در بالاي پهنه استخراجی می يهاهیلا موجب حرکت طولانیاستخراج کامل جبهه کار  روش
داخل  به هاي زیرزمینیآب آن در است که يامنطقه دهنده نشان و شکست پیوسته بوده وتخریب  مناطق شامل این ارتفاع. شود نییتع بالاي لایه استخراج شده

 در ياگسترده طور به دایتون یشناس نیزم و یهندس يهامدل ،ارتفاع شکست ینیبشیپ یربجت ي مختلفهامدل بین در شوند.فضاي استخراج شده هدایت می
 استدلال روش از هاي جبهه کار طولانی،پهنه ارتفاع شکست در بالاي ینیبشیپ منظور به در پژوهش حاضر. شودیم استفاده ایاسترال ی کشورزغال هايحوضه

 ،)T(ضخامت لایه استخراجی  ،)H( عمق لایه استخراجی ،)W( پهنه استخراجی عرضشامل  ،پیشنهادي مدل يرهایمتغ. شده است استفاده، مورد بر یمبتن
دسته داده  31 شامل هادادهپایگاه . اندشده انتخاب ،نگهامیباک پی هیقض با به کارگیرياست که  )y( یاستخراج لایه از آن فاصله و )t( ضخیم روباره هیلا ضخامت

طبقه عنوان به، W/H)  (یهاي آموزش و آزمون تقسیم شد. نسبت عرض به عمق پهنه استخراجروش تقسیم بندي نیمه تصادفی داده، به زیرمجموعه بااست که 
هاي نماینده نبودن داده ودر طبقات دسته بندي وازن ت عدممشکلات  ،روش نیابا به کارگیري . به کار گرفته شده است يبند میتقس روش هیاول ي کنندهبند

بینی ارتفاع توان براي پیشنمونه نسبت به جمعیت مورد مطالعه، برطرف شد. خروجی روش استدلال مبتی بر مورد، یک معادله رگرسیون خطی است که از آن می
مدل ارائه شده نسبت  )متر 44/8( کم يخطامیاگین  و )٩٩/٠( بالا نییتع بیضربه دست آمده نشانگر  جینتا. فاده کردشکست در معادن جبهه کار طولانی است

مدل برخلاف) دایتون است. ٩٧/٠( یشناس نیزم و )٩٣/0 ( یهندس يها مدل ضرایب تعیین از شتریب روش پژوهش، نییتع بیضر. استبه مدل هاي دایتون 
 به عرض يهانسبت در تمام. است داراي ثبات ،آزمون و آموزش مراحل استاندارد و متوسط يخطاهانسبت به  ،مورد بر استدلال مبتنی مدل عملکرد تون،اید يها

  .داردی قبول قابل عملکرد ارتفاع شکست، ینیبشیپ يشنهادیپ مدل پهنه استخراجی، عمق

  مدل تجربی، مدل هاي پیش بینی دایتون، محاسبات دانه اي، قضیه پی باکینگهام. کلمات کلیدي:
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