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When longwall mining involves total extraction, it includes the overlying strata
movements. In order to better control these movements, the height of fracturing
(HoF) must be determined. HoF includes both the caved and continuous fractured
zones, and represents the region of the broken ground whereby a hydraulic
connection to the mined seam occurs. Among the various empirical models for
predicting HoF, the Ditton's geometry and geology models are widely used in the
Australian coalfields. This work uses a case-based reasoning (CBR) method in order
to predict HoF. The model's variables, including the panel width (W), cover depth
(H), mining height (T), key stratum thickness (t), and its distance from the mined
seam (y), are selected via the Buckingham's p-theorem. The data set consisting of 31
longwall panels is partitioned into the training and test subsets using the W/H ratio as
the primary classifier of a semi-random partitioning method. This partitioning
method overcomes the class imbalance and sample representativeness problems. A
new CBR model presents a linear mathematical equation to predict HoF. The results
obtained show that the presented model has a high coefficient of determination (R*2
=0.99) and a low average error (AE = 8.44 m). The coefficient of determination for
the CBR model is higher than that for the Ditton’s geometry (R*2 = 0.93) and
geology (R"2 = 0.97) models. Contrary to the Ditton's models, the performance of
the CBR model is consistent regarding the average and standard errors (AE and SE)
of the training and test stages. The proposed model has an acceptable performance
for all the width to depth ratios to predict HoF.

1. Introduction

Longwall mining is

the most large-scale

study of the surface subsidence and groundwater

underground coal mining method. The main
concerns of many longwall coal mining
researchers are to evaluate the behavior of the
overlying strata above the mined seam during and
after the panel extraction. When a longwall panel
is extracted, the overlying strata sag down,
leading to changes in the in-situ stress regime and
the hydraulic conductivity in the overburden. The
volume expansion of the fractured zone
determines the behavior of the overburden strata.
Nowadays, a reliable prediction of the subsurface
movements and the height of different zones
above a mined panel become a priority. Knowing
the behavior of the overburden strata can ease the
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regime changes. Numerous studies have been
investigated by many researchers on the caving
and fracturing behavior of the overburden zones.
The maximum height of the distressed zone is
equal to 50% for cohesive and 63% for
insufficient cohesion of the cover depth for a
dome [1]. Kenny has suggested that the caving
height is 2—4 times the mining height [2]. The
National Coal Board developed some empirical
methods in order to predict the caving and
fracturing zones [3]. Fawcett has developed a new
model based on the panel width, which over-
predicts the fractured heights when the widths are
between 100 m and 200 m [4]. Follington and
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Isaac using a finite element method have
suggested that the panel width and failure height
have a linear relationship [5]. Peng has
categorized the overburden zones into the caved,
fractured, continuous deformation, and surface
zones [6]. Kelly has studied the ground movement
processes above the longwall panels in more
details [7]. The height of the caved zone equals
4.1-11.25 times the mined coal seam for the weak
overburden conditions [8]. The fracturing height
would be about 22-37 m for a single-seam
extraction method [9]. The physical and numerical
modeling methods have shown that the height of
the stress arch above the longwall face is 11.5
times the mining height [10]. The maximum
height of the caving is 15 times the mining height
[11]. Palchik has shown that the horizontal
fractures are 12.9-149.4 m above the underground
openings [12]. Zhimin using the field
measurements and numerical modeling results has
shown that the fractured zone height equals
14.33—17.71 and 16.04 times the mining height,
respectively [13]. The field measurements have
shown that the height of the caving and fracturing
zones reaches 4.03 and 32.64 times the height of
the mined seam, respectively [14].

A numerical approach has shown that the
fractured height above the longwall coal mines is
approximately 40 m into the roof [15]. The
cavability index (CI) has been introduced based

on the hybrid multi-criteria decision-making
technique, combining the fuzzy analytical
network processes (ANPes) and the fuzzy

decision-making trial and evaluation laboratory
(DEAMTEL) method [16]. The fuzzy decision-
making trial and evaluation laboratory
(DEMATEL) has been employed to study and
analyze the parameters influencing the roof strata
cavability. The results obtained showed that the
most influencing parameters were the uniaxial
compressive strength (UCS), tensile strength, and
coal seam depth [17]. Mohammadi et al. have
introduced the roof strata cavability index (RSCI)
as a simple and efficient tool to assess the
cavability of the immediate roof and evaluate the
caving intervals in longwall mining [18]. A
numerical model has been presented in order to
investigate the stability of a simultaneous
excavation of two longwall coal panels of the
Tabas Parvadeh underground coal mine [19]. The
first roof weighting effect interval (FRWEI) and
the periodic roof weighting effect interval
(PRWEI) heve been determined using numerical
modeling at the E3 panel of the Tabas Parvadeh
coal mine [20]. A new hybrid probabilistically
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qualitative-quantitative has been proposed to
evaluate the cavability of the immediate roof, and
estimate the main caving span in longwall mining
by combining the empirical model and numerical
solution [21]. A new time-independent analytical
model based on the strain energy balance in
longwall mining has been developed to determine
the height of the destressed zone (HDZ). The
proposed energy model incorporates the possible
influencing  geometrical and geo-mechanical
parameters in calculating HDZ [22]. A new ANN
approach has been proposed to estimate the height
of caving—fracturing zone (HCFZ) over the
longwall mines. The proposed ANN model is in
close agreement with the in situ models, and the
existing empirical, analytical, numerical, and
physical models [23]. Rezai et al., using measured
data, have presented a multi-layer perception
(MLP) model to predict the height of the HDZ.
The proposed MLP model predicted the values in
agreement with the measured ones. Their results
showed that the most influential parameter is the
unit weight. On the other hand, the -elastic
modulus is the minor effective parameter on HDZ
in the study [24]. In another study, Rezai et al.
have developed a new theoretical energy-based
model of HDZ determination in the long-term
condition. Furthermore, the sensitivity analysis
showed that the two temperature-related
constants, material constant, and time are the most
influential variables in HDZ, and the slope of
material hardening is the least effective one [25].
A time-dependent model based on the energy
balance in longwall mining combined with a
rheological model of caved materials with time-
varying parameters has been used to calculate
HDZ [26].

The initial understandings about the overburden
zones above a longwall panel can only be inferred
from the conceptual models. These models have
been discussed by many researchers using several
simplified hypotheses. Peng has presented a new
conceptual model including the caved, fractured,
continuous deformation, and surface zones [6].
Several conceptual models have been developed
in the Australian coalfields based on the
measurements and numerical modeling methods.
Forster has presented a comprehensive monitoring
program above longwall panels in the Great
Northern (GN) seam, concluding that the height
of the continuous fractured zone is between 21T
and 33T above the mined seam ( T is the mining
height) [27]. Another widely accepted conceptual
model in New South Wales is the Mackie model
[28]. The four different zones (caved, fractured,
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constrained, and surface zones) above the mined
seam are depicted in Figure 1. The caved zone
includes the immediate roof, collapsing into the
void space left after longwall panel extraction has
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is situated above the fractured zone and has been
deformed by bending action, but lesser than the
fractured zone. The surface zone includes the
vertical cracking due to the horizontal tensile and

finished. The fractured zone is affected by a high compressive  strains caused by the mine
degree of bending, causing the fracturing and subsidence deformation.
separation of the rock mass. The constrained zone
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Figure 1. Zones in overburden according to Mackie model [28].

The empirical height of the fracturing prediction
models such as the Ditton’s geometry and geology
methods are currently used widely in Australia.
The independent expert panel on mining in the
catchment (IEPMC) has concluded that both
Ditton’s models are valuable. In the geometry
model, three parameters, including the effective
panel width (m), cover depth (m), and mining
height (m), are the influential independent
variables. The regression results of the Ditton’s
geometry model suggest that the fracturing height
has a positive correlation with the effective panel
width (W’), cover depth (H), and mining height
(T). Regarding the geology model, four influential
parameters are the effective panel width (m),
cover depth (m), mining height (m), and effective
key stratum thickness. The regression results
indicate that the fracturing height has a positive
correlation with the effective panel width (W’),
cover depth (H), and mining height (T), and a
negative correlation with the thickness of the key
stratum. The Ditton’s geometry and geology
models are as Equations 1, and 2 [27].

Hp=2.215W' 3574027170372 (1)
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Hf= 1.52W/ 040535 T0.464 11 —0.4 @)

where H¢: is the height of the fractured zone
(m), W' is the effective panel width (minimum of
W and 1.4 H) (m), H: is the cover depth (m),  T:is
the mining height (m), and t': is the effective key
stratum thickness (m) that limits the fracturing
height above a longwall panel.

If tiog >tmax, then t’ = tyay and If tjgg <tmax, thent’ =ty

©)

where t}og indicates the thickness of bore log (m),
tmax 1S @ parameter that can be calculated from
Equation 4 (m), and ty,j, is the minimum key
stratum value (m) (Table 1).

-1.3
tmax= W'[0.035 (1) 7] )
where W': is the effective panel width
(minimum of W and 1.4H) (m), y: is the key

stratum location above workings (Figure 4) (m),
and H isthe cover depth (m). The minimum
effective key stratum thickness values for the
normal and adverse rock mass conditions in the
Australian coalfields are provided in Table 1. The
Adverse conditions are likely to be affected by the
geological structure or the atypical rock mass
conditions.
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Table 1. t,;, values in Australian Coalfields [27].

Minimum Effective t,,;,

Cover . R
depth(m) Normal conditions Adverse conditions
Southern Western Newcastle Hunter valley Bowen basin All coalfields
>450 40 - - 30 30 15
350 - 450 40 40 30 20 20 15
250 -350 20 20 20 20 20 10
150 - 250 20 20 20 15 15 10
<150 20 15 20 15 15 10

The application of case-based reasoning in
underground mining and especially longwall coal
mining is entirely new. The method presented in
this research work has a solid mathematical
support in defining the matrix of the empirical
height of fracturing expertise model (EHOFEM),
introducing the new similarity function, and
finally presenting a new mathematical formula to
predict HoF. The final presented equation is easy
to use and interpret. The proposed model applies
the homogeneity theorem in order to select the
independent variables of the HoF model. The
presented CBR model has the following
characteristics: 1) Contrary to other soft
computing methods, the presented method
provides a mathematical formula that can be used
to predict HoF. This method may also be used as a
quick check on the results of the other empirical
models. 2) This model is developed based on the
data from New South Wales, and is only valid for
the selected sites fitting to the parameter scale that
the model is developed. 3) Due to the differences
in geology, lithology, and stratigraphy, the
application of this model in other regions requires
some modifications in the presented final
equation. 4) Among the various empirical models,
the Ditton's geometry and geology models are
widely used in the Australian coalfields. The
independent expert panel on mining in the
catchment (IEPMC) believes that both are
valuable models to estimate the height of
fracturing. 5) The results obtained are compared
with the results of the Ditton's models and
acquired satisfying conclusions. 6) The predictor
variables are selected based on the mathematical
logic and homogeneity theorem. All the input
variables of the model according to the
homogeneity theorem should be independent.
Therefore, the presented model does not include
the dependent variables such as the uniaxial
compressive strength (UCS), the coefficient of
immediate roof expansion, and many other
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dependent variables used in other numerical or
intelligent methods. In other words, the effect of
these dependent parameters is indirectly involved
in the proposed model, although they are not
included in the final equation introduced to
predict the height of fracturing above longwall
panels. 7) While simple, this method can provide
reliable results with a small number of input
parameters. 8) In the greenfields of New South
Wales, where the longwall mining experience
does not exist, this model can be used as a
primary method to estimate the height of
fracturing above longwall panels.

2. Materials and methods

The case-based reasoning method is briefly
introduced in Section 2.1; since the fundamentals
and various applications of the CBR method are
discussed comprehensively in [29], the detailed
review is not presented. In Section 2.2, the
granular computing theory and a semi-random
data partitioning algorithm are presented.

2.1. Case-based reasoning

The field of case-based reasoning (CBR) arises
out of the research in cognitive science. The
earliest contributions in this area were from Roger
Schank and his colleagues at the Yale University
[30]. The systems based on case-based reasoning
first collect the data and information about the
problem. After identifying a new system, the
problem is defined, and similar solutions are
identified in the past. The solutions and answers
related to the past cases are often effective for the
new case and can be used as a new solution. Then,
the solutions and results are selected using
similarity and difference tests between the case
under review and the items in the database. In
other words, after completing the database using a
specific procedure, it is necessary to determine a
method to define the degree of similarity and
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difference between the new case and the database
items. For this purpose, a logical method is
defined to calculate the similarity of the new case
with the database.

Extensive studies have been conducted on the
application of case-based reasoning in various
fields [31-37]. The applications of this method are
divided into the following two categories based on
their tasks: (1) analytical and (2) combined
systems. The first category is solved by finding
the correct item from the database, and then the
solution can be directly deduced. The
classification issues, case-based decision support
fall into this category. The second category
attempts to find a new solution, which did not
exist before, by combining the past solutions.
Configuration, planning, and design are some of
these. Case-based reasoning works on experience
without a detailed understanding of the principal
mechanism of the prediction model. Contrary to
the rule-based systems, the database of a case-
based reasoning system consists of the relevant

Problem

Tested
repaired
case

|

Confirmed
solution
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cases, their representation, and finally, storage. In
the systems that the results are recorded, the cause
for failures is applied to avoid future failures. The
complexity nature of the rule-based models leads
to a problem when there is a missing or
incomplete data. In contrast, in these situations,
the case-based systems can often provide a
reasonable and reliable solution. A case-based
reasoning system can be applied to broader
problems with higher accuracy and success as
databases expand. Another advantage of this
system is avoiding the repeating steps that are
required to be taken to find a solution. The cycle
of a case-based reasoning system consists of four
parts [29]: (1) retrieving similar previously
experienced cases (2) reusing the cases by
copying or integrating the solutions from the cases
retrieved (3) revising or adapting the solution(s)
retrieved in an attempt to solve the new problem,
and (4) retaining the new solution once it has been
confirmed or validated. Figure 2 shows the cycle
in a case-based reasoning system [29].

Suggested
solution

Figure 2. Case-based reasoning cycle [29].

2.2. Granular computing and semi-random
data partitioning

Granular computing has become a common
method in information-processing and
computational intelligence. Basic foundations and
different applications of this method can be found
in [38-45]. Granular computing uses a structural
framework for the in-detail processing of
information. In general, granular computing
consists of granulation and organization.
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Granulation includes decomposing a problem into
small parts, whereas the organization integrates
parts into a whole. Granulation is a top-down
approach, while an organization is a bottom-up
approach. A similarity between the granules g;
and g, can be defined as Equation 5 [46].

1 m,n

Sim (g, 82) = —

mxn £i=1j=1

)

where m and n are the numbers of granules ( g,
g2), respectively, gq; is the ith subgranule of g,

Sim(gy;, gz,j)
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and g5 ; is the jth sub-granule of g,. It is critical in
machine learning methods to split a data-set into
the training and testing subsets correctly. The
training set is used for learning the model, and the
test set is then used to evaluate the performance of
the proposed model. In most studies, data
partitioning has only been studied regarding the
optimal proportion for the two sets, and the
characteristics of the training and test sets are
neglected. The common practice in traditional
data partitioning is to split the dataset randomly
into 70% and 30% for the training and testing
purposes. Randomly partitioning the data leads to
two main problems: (1) class imbalance and (b)
sample representativeness issues [47, 48]. Class

Journal of Mining & Environment, Vol. 12, No. 4, 2021

imbalance occurs when the samples from one
class are higher than the others. In imbalanced
data-set, the class with more instances is called a
majority class, while the one with a relatively
small number of instances is called a minority
class. Class imbalance affects the performance of
classifiers towards the majority class. The
representativeness of the training set affects the
model performance through the datasets that do
not describe the characteristics of the whole
datasets. In this work, a semi-random data-
partitioning method proposed by [37] is used to
determine the data type (training or test). Figure 3
illustrates the semi-random data partitioning
method used in the proposed CBR method.

5 Random selectionof | »Training set +
Level 1 Original Data training and test instances |, Testset <
Class 1 ; = .
Class i Training subsets 1 -1—@—
A\ ——
Level 2 : s s | TR
Subset 1 Subset 2 --- Subseti training and test instances
e Merging
Rule 1.1 \Kl‘e foo 'We .
Rulei.l Training subsets 1.1 - i.n Merging
Level 3 Sub-subset Lol Sub-subset 1.n Sub-subset i.1 --- Sub-subset i.n
| | Random selection of
training and test instances
Test subsets 1.1-i.n Merging

Figure 3. Multi-granularity framework used to semi-random data partitioning [43].

The data set contains three classes of cases with
the frequency distribution of a: b: ¢, where a + b +
¢ = 1 and the size of the data-set is m; a, b, ¢ are
the percentages of the sub-critical, critical, and
super-critical cases in the whole dataset.
Following the data partitioning, the percentage of
the training set is q, whereas the percentage of the
test set is 1-q. The data-set is divided into three
subsets (subcritical, critical, and supercritical
panels), respectively, which results in ma sub-
critical cases, bm critical cases, and cm super-
critical cases. Every three classes are split into the
training and test subsets. In particular, for the
subcritical class, the size of the training subset is
maq, and the size of the test subset is ma (1-q).
For the critical class, the size of the training
subset is mbq, and the size of the test subset is mb
(1-q). Similarly, for the super-critical class, the
size of the training subset is mcq, and the size of
the test subset is mc (1-q). The three training
subsets are combined into a whole training set,
and the frequency distribution between the sub-
critical, critical, and super-critical classes is maq :
mbq : mcq, which is equivalent to a : b : ¢ of the
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original class distribution. The three test subsets
are combined into a whole test set, and the
frequency distribution between the sub-critical,
critical, and supe-rcritical classes is ma (1-q) : mb
(1-q) : mc (1-q), which is equivalent to a : b : ¢ of
the original class distribution. Level 3 of the
multi-granularity data partitioning framework
controls the selection of the training and test cases
to ensure sample representativeness. The lack of
sample representativeness is likely to lead to
overfitting, which means a model performs well
on the training data and poorly on the test data. In
these situations, what the algorithm has learned
from the training data is not helpful for the test
data, leading to a lack of generalization.

3. Model Development

The principle of dimensional homogeneity
states that an equation expressing a physical
relationship between the variables must be
dimensionally homogeneous. The dimensions of
each side of the equation must be the same. It is a
valuable means of determining the physical
relationships between the independent (W, H, T, t,
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y) and response variables (Hf) in a complex
system that defy the analytical solutions and must
be solved empirically. The Buckingham’s P-
theorem accomplishes this principle by defining a
series of dimensionless groups of independent
variables that are measurable in the field. This
theory suggests that in order to define the physical
relationship between a set of n independent
parameters in a complex system, n-3
dimensionless P-terms will be required to define
the response variable reasonably (Equation 6).

m =F(m;, T ... T, _3) (6)
where m;is the dimensionless P-term
corresponding to the dependent (response)

variable, T, to m,_3 are the dimensionless P-
terms corresponding to the independent variables,
and n is the number of variables. Up to 9 variables
may influence the height of fracturing as Equation
7:

H;=F (W, H, T, t,y, UCS, E, E,, tan0) (7)

Where Hg: is the height of the fractured zone
(m), W: is the panel width (m), H: is the cover
depth (m),  T: is the mining height (m),  t: is the
thickness of key stratum (m), y: is the key stratum
distance from mined seam (m), UCS: is the
uniaxial compressive strength of the rock mass
(Mpa), E: is the Young modulus (Mpa), E: is the
goaf modulus (Mpa), and 0: is the caving angle
(degree). The goaf modulus (Eg) and caving angle
(0) are considered dependent on the mining
geometry, and precluded from the analysis. The
dimensionless w terms for the remaining predictor
variables were then analyzed using the P-terms.

g
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4 is the H¢/H, 5 : is the W/H, m3: is the t/T, my:
is the y/H, and ms: is the E/UCS. Then the
complete equation of the dimensionless © terms
may be simplified as Equation 8.

Hy/H = F (W/H), (¢T), (y/H), (E/UCS)) (8)

The last @ term (15: E/UCS) for all cases in the
database will be constant (E is typically 250 to
300 times the UCS), and then the final equation
can be simplified as Equation 9.

He/H =a (W/H)* (t/T) P (y/H)Y )

where a, o, B, and y are constants. Rearranging
Equation 9 in terms of H gives Equation 10 as:

He = aW® H1~%Y B T8 yv (10)

Therefore, the independent variables for
calculating the response variable are W, H, T, t,
and y. The main independent variables may
influence the height of fracturing as Equation 11.

He=F (W, H, T, t,y) (1)

Figure 4 shows a schematic representation of
the key variables of the proposed CBR model.
The mentioned factors are classified, and finally,
the specifications of each item are stored as a
matrix with 0 and 1 items in the empirical height
of the fracturing expert model (EHOFEM). If a
specific factor corresponds to one of the
categorized cases, the number 1 is used for that
specific value; otherwise, the number zero is used.
In other words, entering the number 1 indicates
that the attribute matches the category of that
column.

|Maxlmum Surface Subsidence, 5, |

Cover
Depth, H

| Key stratum thickness,t

l Key stratum location above working,t

5
¥
¢
i
i
5

i
¥

¥
]

mmmmmem e e

‘SPANNING' ZONE

;
|

Working Height, T

Panel Width, W]

Figure 4. A schematic representation of key variables of case-based reasoning model [27].
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One of the case-based reasoning method
challenges is retrieving the most similar item in
the database to the new one. This procedure is
often determined by defining a similarity function
in order to check the similarity of the new item
with the items in the database. Therefore, the
EHOFEM model should develop a procedure to

d11, Q12, Ad13,

dzq, A1, A11,

[Tlgxn=[331, 311,  a11,

k1, Adkz, dk3,

[Z]t=[211 Zzl Z31 Zil le Zzz Z32
[M,]*=[HoF’; HoF’, HoF’, HoF'y]; vk

J is the code assigned to each attribute; ijis a
code assigned to the ith category of the jth
attribute; n is the number of categories; k denotes
the number of items in the database; T is the
comprehensive characteristic matrix and consists
of the characteristics of all cases with k x n
elements; HoF'y denotes the estimated value for
the height of fracturing in case k is the product of
multiplying the row k of the matrix T by matrix Z;
My denotes the matrix consisting of HoF'y for all
cases; matrix Z is the coefficient matrix with n
numbers; Zj; denotes the element of the matrix Z

defined as a proportionate coefficient of ij; and
A, denotes the value of the matrix T obtained
according to Equation 13.

akij_ 0 lfAkI] e 1] (13)

where Aki]. is the value of the characteristic j in

the case k. Therefore, in order to determine the
most optimal properties of the matrix Z, Equation
14 can be used.

Minimize R=Y¥( HoF, — HoF’} )?

(14)
Subject to: [Z]=[T] ™1 x[My]

HoF 'y denotes the estimated height of fracturing
for case k, obtained by multiplying the row k of
the matrix T by the matrix Z (m); HoFy is the
measured value of the height of fracturing (m);
[T]~1 is the inverse of matrix T; R shows the sum
of the squares of the differences between HoFj
and HoF'y. The value of R must be minimized by
optimizing the arrays of the matrix Z. The average
error (AE) can be calculated by Equation 15.

Journal of Mining & Environment, Vol. 12, No. 4, 2021

search and retrieve the most similar case in the
database to the new case. For this purpose, the
matrix Z in the EHOFEM model is defined as
Equation 12.

[TlixnX[Z]nx1= [MiJkxa (12)
where:
aii, d11, a1z, Adiz, agj
dpj, dz1, 4dzz, 4dpzz, azi;
dzi, 4dsz1, 4dszz, azs, asj
ki, dk1, Adk2, ak3, A
H]lxn
25 (| HoFy—HoF' )
AEgnorEM = - (15)
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HoFy, HoF'y, and k are defined in Equation 14.
After calculating the most optimal elements of the
matrix Z, the value of the height of fracturing for
case u is achieved through Equation 16.

T,x Z=HoF', (16)

where Ty: is the specification matrix of the new
case u, HoF',: is the height of fracturing value for
case u; and u denotes the new case. Finally, in
order to determine the similarity degree between
the new case and the cases in the database, a
function must be defined to calculate the
percentage of similarity. This function must be
defined so that as the difference between two
cases increases, its value decreases and eventually
tends to zero. As the difference between HoF;
and HoF, decreases, the similarity percentage
increases and eventually reaches to 100.
Therefore, the similarity function between the
new case and the existing ones is proposed as

Equation 17.
100

HoF’, — HoF’
R
Simy_,, is the similarity percentage between the
new case and the database; HoF', denotes the
estimated height of fracturing value for case u
(m), and HoF'y is the estimated height of
fracturing value for case k (m). According to
Equation 17, the similarity values tend to zero as
the difference between HoF', and  HoF'y
increases. Also, the similarity values reach 100
when HoF', and HoF'y are equal. Finally, the
estimated height of the fracturing value for the

Simk_u =

(17
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new case is equal to the measured value of the
case with the highest percentage similarity to the
new case. Therefore, the estimated height of the
fracturing value for the new case can be calculated
as Equation 18.

100

HoF’u—HoF’I|
HoF'y

VHoF' ,=HoF;: Sim,_,= €

(18)

Max{Sim, _,, Sim,_y, ..., Simy_, }

where Sim;_,, : is the percentage of similarity
between the case t and the case under study (case
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u); t: is the case or cases that have the highest
percentage of similarity with the case under
investigation; HoF;: is the measured height of
fracturing for case t (m); HoF'y: is the estimated
value of the fractured height for case t (m); and
HoF',: is the estimated value of the fractured
height for case u (m). Table 2 shows how to
categorize the specifications of each item. Table 3
shows how to store the information for the
hypothetical case in the EHOFEM model.

Table 2. Specifications of each item in proposed CBR model.

Variable Classes Assigned code

W <150 m 1,

. 150m <W <250 m 24

Panel width (m) 250m < W< 350 m 3,

W > 350 m 4,

H< 150 1,

c denth 150 <H< 250 2,

t

over depth (m) 250 <H <350 3,

H> 350 4,

T<25 1,

Mining height (m) 25<T<35 23

T>3.5 33

T<30 1,

Tickness of key 30 <t<60 2,

stratum (m) t> 60 3,

y<50 1g

Key stratum 50 <y <100 2.
location (m)

y > 100 3c

Table 3. Stored information for hypothetical case in EHOFEM model.

Specification of hypothetical case (L W10- metropolitian mine)

Height of

frac%uring W(m) H(m) T (m) t(m) y(m)
according to the
proposed CBR 11 21 31 4 1z 2 3 4 1 2 35 1, 2 34 1 25 3

model

=117.39 m 1 0 0 0 0 0

0

1 0 1 0 0 0 1 0 0 1

4. Results and Discussion

The described CBR model is used for the
prediction of the height of fracturing above the
longwall panels. The dataset, which is the exact
dataset Ditton used for the proposed geology and
geometry models, is provided as a benchmark for
the data analysis and model building (Table 5).
The model database includes the extensometer

1111

and piezometric data from the Southern, Western,
and Hunter Valley coalfields in New South Wales
(NSW), Australia. The independent variables for
calculating the response variable are W, H, T, t,
and y (Figure 4). 21 training datasets, including
W, H, T, t, and y, according to Table 5, are used
for model building. Table 4 shows the statistics of
the variables of the CBR model.
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Table 4. Statistics of CBR model parameters.

Parameter(m) Type Min Max Mean Standard deviation
Panel width (W) input 110 355 197.13 76.29
Cover depth (H) input 76 460 251.26 135.18
Mining height (T) input 1.88 6 3.1 0.94
Thickness of key stratum (t) input 15 120 57.80 37.76
Key stratum distance from mined seam (y) input 33 145 87.82 32.18
Height of fracturing (Hy) output 40 145 89.52 31.35

By solving Equations 12 and 15, the matrix Z
and the AEggorgm Vvalue for the EHOFEM model
is obtained as follows:

_ 3X(|HoFy~HoFy|) _ 21801

AEEHOFEM = K ) =844 m

Z'=[ 2517 24.73 24.82 -1.53 —17.05 20.36 32.69 37.2 2238 2414 2668 539 2208 4573 185 -—345 -14.84

The final and simplified mathematical equation height variable; it can be inferred from the
of the proposed CBR model for prediction of the corresponding coefficients that as the value of the
height of fracturing are as Equation 19 and mining height increases the value of the height of
Equation 20. fracturing increases, (Z4,, Z,,,Z3,) = (5.39, 22.08,

(HOFcpRr)k is the the height of fracturing for 45.73) corresponds to the thickness of the key
case k according to the CBR model. (Z,, Z;,, stratum; the value of this variable has a positive
Zy,, 7)) = (25.17, 2473, 24.82, -1.53) correlation with the value of the height of
corresponds to the panel width variable, (Zy,, fracturing, (Zy,, Zz,,Z3,) = (18.5, -3.45, -14.34)
Z3,,L3,, 11,) = (-17.05, 20.36, 32.69, 37.2) cqrresponds to the key stratum distance from the
corresponds to the cover depth, as the coefficients mined seam. The predicted values of the CBR
show the higher cover depths lead to the higher mf)del’ are compared with the results of the
height of fracturing values, (Zy,, Z,,,Z3,) = Ditton’s geometry and geology models in Table 5.

(22.38, 24.14, 26.68) corresponds to the mining

(HOFcpR)k = 25.17ayy, + 24.73 ay,, + 24.82 ays, — 1.53ayy, — 17.05 ajy, + 20.36 ayy, + 32.69 ajs, +

19)
37.2ay,, +22.38ayy, + 24.14a), + 26.68axs, + 5.39a), + 22.08ay,, + 45.73ays, +18.5a),, —3.45a),, —14.84ays,
(HOFpp)i = (25.17,24.73,24.82, -1.53) ., | 2% +(-17.05,20.36,32.69, 37.2) .ay, | =4+
. . , (20)
(22.38,24.14,26.68) .ay | 123+ (5.39,22.08,45.73) | 1234 (18.5,-3.45,-14.84) A | b
Figure 5 compares the predicted values of the the three models (Ditton’s geometry, geology, and
CBR model and the field measurements. The CBR) vs. the measured values. The CBR
residuals of the predicted values for the CBR predictions are closer to the actual data at most
model are depicted in Figure 6. The scatter plots points, which illustrates the better modelling via
of the residuals for the CBR model are depicted in the CBR model. The test results of the CBR
Figure 7. The R-Square of the linear regression model are compared with the Ditton’s models in
equation is 0.0058. Figure 8 shows the results of Table 6.
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Table 5. Predicted values of CBR model vs. results of Ditton’s models [16].

Case Panel W (m) H (m) T (m) t (m) Y (m) Geometry (m) Geology (m) CBR (m) Measured (m)
1 LW10 140 460 34 100 130 107 109 117.39 130
2 LWI- 110 325 2.5 100 85 30 76 87.48 85
3 LW6 117 335 2.75 100 98 85 84 89.24 98
4 LWA 159 417 6 100 30 135 118 95.84 87
5 LWs51 150 400 2.7 100 90 97 84 93.74 90
6 LW28 200 500 2.3 120 90 108 81 91.54 90
7 LW2 150 368 3.5 100 113 105 101 117.39 113
8 LW9 150 350 2.7 34 110 81 86 134.29 110
9 SW1 120 176 2.3 100 76 68 63 75.15 76
10 411 315 368 3.25 55 139 133 156 128.43 139
11 LW5 160 179 3.7 25 83 90 103 122.25 118
12 LW1 216 206 3.44 30 126 101 121 111.51 126
13 TE1L 120 95 2.3 15 41 57 59 3245 45
14 LWE 259 155 2.55 15 145 84 120 133.54 145
15 LwW41 179 113 3.8 20 72 76 76 74.94 72
16 LW39 280 155 3.5 35 105 95 105 111.59 85
17 LW39 179 105 39 20 68 73 71 74.94 68
18 TE3D 355 185 1.9 50 63 84 60 59.84 63
19 TE35 355 180 1.9 50 40 83 59 43.16 40
20 Pa;lel 150 76 1.88 15 33 48 45 54.4 45
21 LW1 205 95 32 30 55 67 58 50.45 55

160
150
'g 140 easured Data
= 130
g; 120 |4 » A —{—CBR Model
Sl :
2 i
g 90 \/ \
= 80
S 70
= 60
2050 #
= 40
30
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Case Number

Figure 5. Predicted values of CBR model vs. field measurements.

Height of fracturing(m) and Residuals(m)

160

150

140
130
120
110
100

§28388

Case Number

Figure 6. Residuals of predicted values (CBR model).
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Figure 7. Scatter plots of residuals (CBR model).
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Figure 8. Results of compared models vs. measured values.
Table 6. Test results of the CBR model vs. Ditton’s models [16].

Site Panel ‘W(m) H(m) T(m) t(m) y(m) Geometry(m) Geology(m) CBR(m) Measured(m)
1 MWS508R 110 a1 25 100 90 RA6 R2 92 92
2 LW20 163 450 3.4 100 100 113 99 933 100
3 TE 200 446 2.5 100 101 108 86 116.95 101
4 LW409 265 384 3.25 55 133 126 131 128.43 133
5 LW5 245 255 3.75 80 123 116 110 114.99 123
6 LW1 145 116 2.7 15 106 84 90 96.49 96
7 LWs 216 154 2.55 30 82 84 91 87.86 82
8 LW40 179 113 3.8 20 80 80 81 74.94 80
9 TE-NB 150 75 2.88 20 58 55 53 58 58
10 LW9/9a 200 80 3.3 15 65 61 62 724 70

Figure 9 shows the test results of the proposed
case-based reasoning model vs. the measured
values. The test results are closer to the actual

data at the majority of points, which illustrates the
acceptable performance of the CBR method.
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Figure 9. Test results of CBR model vs. Ditton’s models.

The most general definition of the coefficient of

determination is as Equation 21.
Rz SSres
SStot

where SS;.¢s is the sum of the squares of the
residuals, and can be measured as Equation 22.

SStes= Zi(Yi - fi)2 (22)

where SS;,; is the total sum of the squares, and
can be calculated as Equation 23.

SStot=Zi(yi — ¥)?

where y; is the measured value for case i, f; is
the predicted or fitted value for case i, and ¥y is the
mean of the observed or measured values.
Rearranging Equation 21 based on the proposed
case-based reasoning model gives Equation 24 as:

e2))

(23)

__ Zj(HoFj—HoF'j?

2 —
Roor =1 ¥;(HoF; —HoF)?

(24)

where R?y;f is the coefficient of determination,
HoFjis the measured value of the height of
fracturing for case i, HoF'; is the predicted value
of the height of fracturing for case i, and HoF is
the mean value of the measured heights of
fracturing. In the best case, the modeled values
exactly match the observed values, which results
in SS;es = 0 and R? = 1. The standard error (SE)
measures the spread of data distribution. It
measures the typical distance between the data
points and the mean of the population. The
formula is used for standard deviation depending
on whether the data is considered a population of
its own or a sample representing a larger
population. In the present work, the predicted
values are a sample representing a large
population. In other words, the aim of using SE in
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the present work is to determine the spread of the
predicted results of the compared models
(Ditton’s geometry, geology, and the proposed
CBR). SE measures the distance between the
mean value of the predicted results and the
predicted values. The general formula for
calculation of the standard deviation of a sample
is as Equation 25.

(25)

(26)

where SE is the standard error of a sample, k is
the number of data in a given sample, Sy is the
standard deviation of the sample, x; is the sample
value for case i, and X is the mean value of the
data in the sample. Rearranging Equation 25
based on the proposed CBR model gives Equation
27 as:

SHoF!

SEqor' = JK

@7

(28)

Shor!

Y k=k(HoF'), — HoF")?
k—1

where SEy;,p is the standard error of the
predicted values in the model; other parameters
have been defined previously. Table 7 compares
the performance of three models (Ditton’s
geometry, geology, and the CBR) in terms of the
statistical estimators. Table 8 shows the
performance of the compared models regarding
the width to depth ratios (W/H).
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Table 7. Statistics of Ditton’s geometry, geology models vs. CBR models.

Stage PreI;;)cl:ion Min Mean Max SE (m) AE (m) R?
& model HoF (m) HoF(m) HoF (m) (Equation27) (Equation 15)  (Equation 24)
Ditton’s geometry 48 88.42 135 4.76 18.52 0.93
model
Training ~ Ditton’s geology 45 87.38 156 6.03 12.71 0.97
model
CBR model 32.45 89.97 133.54 6.68 8.44 0.99
Ditton’s geometry 55 91.3 126 7.49 6.60 0.89
L model
Validation o
(test) Ditton’s geology 53 89.7 131 7.08 5.80 0.91
model
CBR model 58 93.534 128.43 6.93 491 0.92
Table 8. Performance of CBR and Ditton’s models regarding the (W/H) ratio.
Number of cases
Stage Panel criticality Number of i (predicted (HoF? > measured (HoF))
longwall panels Ditton’s Ditton’s
CBR model
geometry model  geology model
Sub-critical (W/H <0.7) 9 3 1 6
Training Critical (0.7 <W/H<0.1.4) 4 1 2 1
Super-critical (W/H >1.4) 8 7 6 5
Sub-critical (W/H <0.7) 4 2 0 2
Test Critical (0.7 <W/H<0.1.4) 2 0 0 1
Super-critical (W/H > 1.4) 4 2 2 3
Sub-critical (W/H <0.7) 13 5 1 8
Total data Critical (0.7 <W/H<0.1.4) 6 1 2 2
Super-critical (W/H > 1.4) 12 9 8 8
Percent of cases (Predicted (HoF) > measured (HoF)) 48% 35% 58%

The following results can be obtained from
Tables 7 and 8:

The coefficient of determination (R?) obtained
from the proposed CBR model is higher than that
for the Ditton's geometry and geology models
(99% vs. 93%) and (99% vs. 97%), respectively.
Moreover, the average error (AE) of the CBR
model is 8.44 m that is much smaller than the
average error of the Ditton's geometry (18.52 m)
and geology (12.71m) models. Hence, the CBR
model is the best performing model, as indicated
in Figures 8 and 9 and Table 7. The standard
errors of the case-based reasoning model in the
training and validation stages are 6.68 m and 6.93
m, respectively. The slight difference in the
standard error value in the training and validation
stages indicates the stability and consistency of
the performance of the CBR model. The
differences in the standard errors calculated for
Ditton's geometry (4.76 m, 7.49m) and geology
(6.03 m, 7.08m) models in the training and
validation stages indicate the volatility and over-
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dependence of these models on the changes in the
input data. Another significant advantage of CBR
is its ability to present a coefficient matrix (matrix
Z); including a detailed relationship between the
independent and the dependent variables. Matrix
Z vyields a general understanding of the model's
nature, its variables, and the importance of each
independent variable in the proposed model.

1. Sub-critical panels (W/H < 0.7): out of 13 panels,
Ditton's geometry model, and the case-based
reasoning model predicted larger values than the
measured ones in 5 and 8 cases, respectively.
However, only in one case, the Dittont's geology
model predicted a larger value than the measured
value. Therefore, it can be concluded that the
application of the Ditton's geology model is not
suitable for predicting HoF in the sub-critical
panels. Compared to the Ditton's models, the case-
based reasoning model better predicts the height of
fracturing above the sub-critical longwall panels.

2. Critical panels (0.7 < W/H < 1.4): out of 6
panels, Ditton's geometry, geology, and the case-
based reasoning models predicted larger values
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than the measured ones in 1, 2, and 2 cases. None
of the mentioned methods have a significant
advantage over the others regarding the cases where
the predicted values are larger than the measured
data.

3. Super-critical panels (W/H > 1.4): out of 12
super-critical panels, Ditton's geometry, geology,
and the case-based reasoning methods predicted
larger values than the measured ones in 9,8, and 8
cases. None of the mentioned methods have a
significant advantage over the others regarding the

Journal of Mining & Environment, Vol. 12, No. 4, 2021

cases where the predicted values are larger than the
measured ones.

The predicted values of the CBR model are
greater than the measured data in 18 out of 31
(58% of total cases). As the results obtained show,
the CBR model yields better results than the
Ditton's (geometry and geology) models for
predicting the height of fracturing above the
longwall panels. Table 9 compares the advantages
and disadvantages of the CBR and Ditton's
geometry and geology models.

Table 9. Advantages and disadvantages of compared models.

HoF prediction

model Main advantages

Main disadvantages

1. It is a simple and fast prediction method with

Ditton’s geometry ~ few independent input parameters (W, H, T).

model

1. Its application is limited to the coalfields of New South Wales
(Australia).

2. It does not take into account the presence of the key stratum above

the mined seam.

2. It is obtained acceptable performance when the
longwall panel is sub-critical or super-critical.

3. It has a lower coefficient of determination and higher average error
than Ditton’s geology and the case-based reasoning methods.

4. Its performance is inconsistent regarding the average and standard
errors (AE and SE) of the training and validation stages.

1. It is a simple and fast prediction method with
few independent input parameters (W, H, T, t').

Ditton’s geology 2. It takes into account the presence of the key

1. Its application is limited to the coalfields of New South Wales
(Australia).

2. It has a lower coefficient of determination and higher average error

model stratum above the mined seam. than Ditton’s geology and the case-based reasoning methods.

3. It is obtained acceptable performance when the 3. Its performance is inconsistent regarding the average and standard
longwall panel is super-critical. errors (AE and SE) of the training and validation stages.
1. It is a simple and fast prediction method with
few independent input parameters (W, H, T, t, y).
2. It takes into account the presence of the key
stratum above the mined seam.
3. It is obtained acceptable performance for all

Case-based 1. Its application limited to the coalfields of New South Wales

width to depth ratios.

reasoning model 4. 1t has a higher coefficient of determination and

lower average error than the Ditton’s geometry
and geology models.

5. Its performance is consistent regarding the
average and standard errors (AE and SE) of the

(Australia).

training and validation stages.

4. Conclusions

An accurate prediction of the height of
fracturing is the most critical issue regarding the
mine water interactions above a longwall panel.
The Mackie model is an acceptable conceptual
model in the Australian coalfields. The Dittion’s
geometry and geology models have been widely
used in the Australian coalfields, especially in
New South Wales. There is no comprehensive
model for predicting the height of fracturing
above the mined longwall panels due to the
several independent variables with complicated
relationships. A CBR prediction model was
presented for the prediction of the height of
fracturing. This model constructed a linear
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regression model with 21 training datasets. These
datasets are exactly the datasets that Ditton used
in order to build the geometry and geology
models. One granular computing-based approach
divides the datasets into the training and test
subsets in order to overcome the class imbalance
and sample representativeness issues in the data
partitioning stage. The width to depth ratio (W/H)
was used as a crucial parameter in the first level
of the semi-random partitioning method. Finally,
one new linear mathematical formula was
presented in order to predict the fracturing height
above the longwall panels. The results obtained
indicated that the proposed CBR model had a high
accuracy in terms of the statistical metrics; R?
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(99%) and AE (8.44 m); demonstrate the
acceptable performance of the proposed model.
The standard errors of the case-based reasoning
model in the training and test stages were 6.68 m
and 6.93 m, respectively. The slight difference in
the standard error value in the training and
validation stages indicated the stability and
consistency of the performance of the CBR
model. The differences in the standard errors
calculated for the Ditton's geometry (4.76 m, 7.49
m) and geology models (6.03 m, 7.08 m) in the
training and validation stages indicated the
volatility and over-dependence of these models on
the changes in the input data. The results obtained
showed that the application of the Ditton's
geology model was not suitable to predict HoF
above the sub-critical panels. Compared to the
Ditton's models, the CBR method better predicted
the height of fracturing above the sub-critical
longwall panels. Regarding the cases where the
predicted values were larger than the measured
data, the presented CBR method had an
acceptable prediction performance to predict HoF
above the mined longwall panels (58% of total
cases) for all types (sub-critical, critical, and
super-critical).
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