Document Type : Original Research Paper

Authors

Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran

Abstract

Optimization of the effective parameters in the copper bioleaching of chalcopyrite concentrates (CuFeS2) is studied by moderately thermoacidophilic microorganisms. The microorganisms with extensive metabolic properties are used in two different ways: 'top-down' and 'bottom-up'. The bioleaching experiments are performed based on the parameters of silver, activated charcoal, concentrate type (Sarcheshmeh and Miduk), and a type of bacteria. By regrinding the concentrate particles down to 10 µm, bottom-up consortium, 500 ppm silver, and 3 g/L of coal, more than 97% of the copper from the Miduk chalcopyrite concentrate is recovered within 12 days. The final recovery of the control test without the microbes is 35%. The performance of the bottom-up method is significantly better than the top-down one. The moderate thermophiles have an important role in copper biomining.

Keywords

[1]. Tanne, C.K. and Schippers, A. (2019). Electrochemical investigation of chalcopyrite (bio)leaching residues. Hydrometallurgy 187, 8-17. https://doi.org/10.1016/j.hydromet.2019.04.022.
[2]. Eftekhari, N., Kargar, M., Rokhbakhsh Zamin, F., Rastakhiz, N., and Manafi, Z. (2020). A review on various aspects of jarosite and its utilization potentials. Ann. Chim.-Sci. Mat. 44 (1): 43-52. https://doi.org/10.18280/acsm.440106.
[3]. Manafi, Z., Kargar, M., and Kafilzadeh, F. (2021). Tank bioleaching of a copper concentrate using the moderately thermophilic microorganisms Sulfobacillus thermosulfidoxidans KMM3 and Sulfobacillus acidophilus KMM26”. Rev. Metal. 57 (4): e207. https://doi.org/10.3989/revmetalm.207.
[4]. Wang, X., Ma, L., Wu, J., Xiao, Y., Tao, J., and Liu, X. (2020). Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments. Bioresour. Technol. 308, 123273. https://doi.org/10.1016/j.biortech.2020.123273.
[5]. Tao, J., Liu, X., Luo, X., Teng, T., Jiang, C., Drewniak, L., Yang, Z., and Yin, H. (2021). An integrated insight into bioleaching performance of chalcopyrite mediated by microbial factors: Functional types and biodiversity. Bioresour Technol. 319, 124219. https://doi.org/10.1016/j.biortech.2020.124219.
[6]. Oyama, K., Takamatsu, K., Hayashi, K., Aoki, Y., Kuroiwa, S., Hirajima, T., and Okibe, N. (2021). Carbon-assisted Bioleaching of Chalcopyrite and Three Chalcopyrite/Enargite-bearing Complex Concentrates. Minerals, 11, 432. https://doi.org/10.3390/ min11040432.
[7]. Zhou, H., Zhang, R., Hu, P., Zeng, W., Xie, Y., Wu, C., and Qiu, G. (2008). Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite. J. Appl. Microbiol. 105: 591–601. https://doi.org/10.1111/j.1365-2672.2008.03807.x.
[8]. Zhu, W., Xia, J., Yang, Y., Nie, Z., Zheng, L., Ma, C., and Qiu, G. (2011). Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite. Bioresource Technology. 102 (4): 3877–3882. doi:10.1016/j.biortech.2010.11.
[9]. Wang, Y., Zeng, W., Qiu, G., Chen, X., and Zhou, H. (2014). A moderately thermophilic mixed microbial culture for bioleaching of flotation chalcopyrite at high pulp density. Applied and Environmental Microbiology. 80 (2): 741–750. https://doi.org/10.1128/AEM.02907-13.
[10]. Johnson DB, Hallberg KB. (2003). The microbiology of acidic mine waters. Res. Microbiol. 154:466–473. https://doi.org/10.1016/S0923-2508 (03 00114-1.
[11]. Rawlings, D.E and Johnson, D.B. (2007). The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology. 153 (2): 315-324. https://doi.org/ 10.1099/mic.0.2006/001206-0.
[12]. Johnson, D.B. (2008). Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates. Transactions of the Nonferrous Metals Society of China. 18: 1367–1373.
[13]. Marhual, N., Pradhan, N., Kar, R., Sukla, L., and Mishra, B. (2008). Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample. Bioresour. Technol. 99:8331–8336. https://doi.org/10.1016/j.biortech.2008.03.003.
[14]. Cancho, L., Blazquez, M., Ballester, A., Gonzalez, F., and Munoz, J. (2007). Bioleaching of a chalcopyrite concentrate with moderate thermophilic microorganisms in a continuous reactor system. Hydrometallurgy 87:100–111. https://doi.org/10.1016/j.hydromet.2007.02.007.
[15]. Cameron, R.A., Yeung, C.W., Greer, C.W., Gould, W.D., Mortazavi, S., Bédard, P.L., Morin, L., Lortie, L., Dinardo, O., and Kennedy, K.J. (2010). The bacterial community structure during bioleaching of a low-grade nickel sulphide ore in stirred-tank reactors at different combinations of temperature and pH. Hydrometallurgy. 104:207–215. https://doi.org/10.1016/j.hydromet.2010.06.005.
[16]. Johnson, D.B., Okibe, N., Wakeman, K., and Yajie, L. (2008). Effect of temperature on the bioleaching of chalcopyrite concentrates containing different concentrations of silver. Hydrometallurgy. 94: 42–47.  https://doi.org/10.1016/j.hydromet.2008.06.005.
[17]. Lv, X., Wang, J., Zeng, X., Liang, Z., He, D., Zhang, Y., and Meng, Q. (2021). Cooperative extraction of metals from chalcopyrite by bio-oxidation and chemical oxidation. Geochemistry, 125772. https://doi.org/ 10.1016/j.chemer.2021.12577.
[18]. Tian, Z., Li, H., Wei, Q., Qin, W., and Yang, C. (2021). Effects of redox potential on chalcopyrite leaching: An overview. Minerals Engineering. 172: 107135. https://doi.org/ 10.1016/j.mineng.2021.1071.
[19]. Zhang, R., Wei, M., Ji, H., Chen, X., Qiu, G., and Zhou, H. (2009). Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite. Appl. Microbiol. Biotechnol. 81: 1161–1168.  https://doi.org/10.1007/s00253-008-1792-8.
[20]. Yuguang, W., Lijun, S., Lijuan, Z., Weimin, Z., Junzi, W., Lili, W., Guanzhou, Q., Xinhua, C., and Hongbo, Z. (2012). Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium. 121: https://doi.org/10.1016/j.biortech.2012.06.114.
[21]. Eftekhari, N., Kargar, M., Rokhbakhsh Zamin, F., Rastakhiz, N., and Manafi, Z. (2020). The catalytic activity of biological seeds and Acidithiobacillus ferrooxidans on the process of ammonium jarosite. Journal of Microbial World 12 (4): 355-363.
[22]. Eftekhari, N., Kargar M, Rokhbakhsh Zamin, F., Rastakhiz, N., and Manafi, Z. (2020). Bioremoval of iron ions from copper raffinate solution using biosynthetic jarosite seed promoted by Acidithiobacillus ferrooxidans. Rev. Metal. 56 (4): e182. https://doi.org/ 10.3989/revmetalm.182.
[23]. Gomez, C., Blazquez, M., and Ballester, A. (1999). Bioleaching of a Spanish complex sulphide ore bulk concentrate. Minerals Engineering. 12 (1): 93-106. https://doi.org/ 10.1016/S0892-6875(98)00122-8.
[24]. Yuehua, H., Guanzhou, Q., Jun, W., and Dianzuo, W. (2002). The effect of silver-bearing catalysts on bioleaching of chalcopyrite. Hydrometallurgy. 64 (2): 81-88. https://doi.org/ 10.1016/S0304-386X (02)00015-4.
[25]. Gomez, E., Ballester, A., Blazquez, M., and Gonzalez, F. (1999). Silver catalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms. Hydrometallurgy. 51 (1): 37-46. https://doi.org/ 10.1016/S0304-386X (98)00070-X.
[26]. Liang, C. L., Xia, J.-L., Zhao, X.-J., Yang, Y., Gong, S. Q., Nie, Z. Y., and Qiu, G. (2010). Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis. Hydrometallurgy. 105 (1-2): 179–185. https://doi.org/10.1016/j.hydromet.2010.07.