[1]. Ye, L., Cook, N. J., Ciobanu, C. L., Yuping, L., Qian, Z., Tiegeng, L., Wei, G., Yulong, Y., and Danyushevskiy, L. (2011). Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study, Ore Geology Reviews, 39,188–217.
[2]. Tian, L., Zhang, T.A., Liu, Y., and Tang, J.J. (2017). Oxidative acid leaching of mechanically activated sphalerite. Canadian Metallurgical Quarterly, 57, 59-69.
[3]. Bafghi, M., Emami, A., Zakeri, A., and Vahdati Khaki, J., (2010). Effect of mechanical activation on the kinetics of leaching of chalcopyrite in the ferric sulfate media. Iranian Journal of Materials Science and Engineering, 7, 30-35.
[4]. Pecina, T., Franco, T., Castillo, P., and Orrantia, E. (2008). Leaching of a zinc concentrate in H2SO4 solutions containing H2O2 and complexing agents. Minerals Engineering, 21, 23-30.
[5]. Karimi, S., Fereshteh, F., and Moghaddam, J. (2017). Parameters optimization and kinetics of direct atmospheric leaching of Angouran sphalerite, International Journal of Mineral Processing, 162, 58-68.
[6]. Hu, H., Chen, Q., Yin, Z., Zhang, P., and Wang, Z. (2003). Effect of grinding atmosphere on the leaching of mechanically activated pyrite and sphalerite, Hydrometallurgy, 72, 79 – 86.
[7]. Hu, H., Chen, Q., Yin, Z., Zhang, P., and Wang, G. (2007). Mechanism of mechanical activation for sulfide ores. Transactions of Nonferrous Metals Society of China, 17, 205-213.
[8]. Baláž, P. (2000). Extractive metallurgy of activated minerals, 10. Elsevier, Amsterdam
[9]. Baláž, P. (2003). Mechanical activation in hydrometallurgy, International Journal of Mineral Processing, 72, 341–354.
[10]. Baláž, P., Alacova, A., Achimovicova, M., Ficeriova, J., and Godocıkova, E. (2004). Mechanochemistry in hydrometallurgy of sulphide minerals. Hydrometallurgy. 77: 9 –17.
[11]. Tkáčová, K., Baláž, P., Mišura, B., Vigdergauz, V.E., and Chanturiy, V.A. (1993). Selective leaching of zinc from mechanically activated complex Cu-Pb-Zn concentrate. Hydrometallurgy. 33: 291-300.
[12]. Akhgar, B.N., Pazouki, M., Ranjbar, M., Hosseinnia, A. and Salarian, R. (2012). Application of Taguchi method for optimization of synthetic rutile nano powder preparation from ilmenite concentrate. Chemical Engineering Research & Design. 90: 220–228.
[13]. Ebadi, H. and Pourghahramani, P. (2019). Effects of mechanical activation modes on microstructural changes and reactivity of ilmenite concentrate. Hydrometallurgy. 188: 38–46.
[14]. Deniz Turan, M. (2021). Characterization and leaching of mechanically activated zinc residue. Chemical papers, 75, 2881–2890.
[15]. Aram, R., Abdollahy, M., Pourghahramani, P., Khodadadi, A. and Mohseni, M. (2021). Dissolution of mechanically activated sphalerite in the wet and dry milling conditions, Powder Technology. 386: 275-285.
[16]. Zdujic, M., Jovalekic, C., Karanovic, Li, Mitric, M., Poleti, D. and Skala, D. (1998). Mechanochemical treatment of α-Fe2O3 powder in air atmosphere. Materials Science Engineering. A. 245: 109–117.
[17]. Tahmasebi, R., Shamanian, M., Abbasi, M.H., and Panjepour, M. (2009). Effect of iron on mechanical activation and structural evolution of hematite-graphite mixture. Journal of Alloys and Compounds. 472: 334–342.
[18]. Pourghahramani, P. and Forssberg, E. (2006). Microstructure characterization of mechanically activated hematite using XRD line broadening. International Journal of Mineral Processing. 79 (2): 106–119.
[19]. Xiao, Z., Chen, Q., Yin, Z., Hu, H., and Zhang, P. (2004). Calorimetric studies on leaching of mechanically activated sphalerite in FeCl3 solution. Thermochimica Acta. 416: 5-9.
[20]. Demopoulos, G., Papangelakis, V.G. (1998). Sulfuric acid pressure leaching of a limonitic laterite: chemistry and kinetics. Hydrometallurgy. 49: 23–46.
[21]. Ohlberg, S. and Strickler, D. (1962). Determination of percent crystallinity of partly devitrified glass by X-ray diffraction. Journal of the American Ceramic Society. 45 (4): 170–171.