[1]. Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers. 10 (4): 1285-1303.
[2]. Lin, R., Howard, B.H., Roth, E.A., Bank, T.L., Granite, E.J. and Soong, Y. (2017). Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel, 200, 506-520.
[3]. Jowitt, S. M., Werner, T.T., Weng, Z., and Mudd, G.M. (2018). Recycling of the rare earth elements. Current Opinion in Green and Sustainable Chemistry, 13, 1-7.
[4]. Seredin, V.V., Dai, S., Sun, Y. and Chekryzhov, I.Y. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31, 1-11.
[5]. Dai, S., Ward, C.R., French, D. and Hower, J.C. (2018). Comments on geochemical characteristics of rare metal, rare-scattered, and rare earth elements and minerals in the late permian coals from the Moxinpo mine, Chongqing, china. Energy and Fuels. 32 (8): 8891-8894.
[6]. Valkovic, V., Trace Elements in coal, Boca Raton: CRC Press, 1983, Vol. 1, 210 pp. Vol. 2, 281 pp.
[7]. Finkelman, R.B. (1993). Trace and minor elements in coal. In Organic geo-chemistry (pp. 593-607). Springer, Boston, MA.
[8]. Dai, S., Zhou, Y., Ren, D., Wang, X., Li, D. and Zhao, L. (2007). Geo-chemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China. Science in China Series D: Earth Sciences, 50(5), 678-688.
[9]. Seredin, V.V. and Finkelman, R.B. (2008). Metalliferous coals: a review of the main genetic and geochemical types. International Journal of Coal Geology. 76 (4): 253-289.
[10]. Zou, J., Tian, H. and Wang, Z. (2017). Leaching process of rare earth elements, gallium, and niobium in a coal-bearing strata-hosted rare metal deposit—A case study from the Late Permian tuff in the Zhongliangshan mine, Chongqing. Metals. 7 (5): 174.
[11]. Dai, S., Finkelman, R.B., French, D., Hower, J.C., Graham, I.T. and Zhao, F. (2021). Modes of occurrence of elements in coal: A critical evaluation. Earth-Science Reviews, 103815.
[12]. Montross, S.N., Verba, C.A., Chan, H.L. and Lopano, C. (2018). Advanced characterization of rare earth element minerals in coal utilization by-products using multimodal image analysis. International Journal of Coal Geology, 195, 362-372.
[13]. Zhao, S., Duan, Y., Lu, J., Gupta, R., Pudasainee, D., Liu, S. and Lu, J. (2018). Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants. Fuel, 232, 463-469.
[14]. Chen, G., Sun, Y. Wang, Q., Yan, B., Cheng, Z. and Ma, W. (2019). Partitioning of trace elements in coal combustion products: A comparative study of different applications in China. Fuel, 240, 31-39.
[15]. Franus, W., Wiatros-Motyka, M. M., and Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research. 22 (12): 9464-9474.
[16]. Kursun Unver, I. and Terzi, M. (2018). Distribution of trace elements in coal and coal fly ash and their recovery with mineral processing practices: A review. Journal of Mining and Environment. 9 (3): 641-655.
[17]. Pazand, K. (2015). Rare earth element geochemistry of coals from the Mazino Coal Mine, Tabas Coalfield, Iran. Arabian Journal of Geosciences. 8 (12): 10859-10869.
[18]. Pazand, K. (2015). Geo-chemical properties of rare earth elements (REEs) in coals of Abyek coalfield, North Iran. Arabian Journal of Geosciences. 8 (7): 4855-4862.
[19]. Moore, F. and Esmaeili, A. (2012). Mineralogy and geochemistry of the coals from the Karmozd and Kiasar coal mines, Mazandaran province, Iran. International journal of coal geology. 96: 9-21.
[20]. Pazand, K. (2015). Characterization of REE geo-chemistry of coals from the Sangrud coal mine, Alborz coalfield, Iran. Arabian Journal of Geosciences. 8 (10): 8277-8282.
[21]. Taghipour, N. and Solaymani, M.Z. (2015). Geo-chemistry and origin of elements of Upper Triassic Olang coal deposits in north-eastern Iran.
[22]. Shahhosseini, M., Ardejani, F.D. and Baafi, E. (2017). Geo-chemistry of rare earth elements in a neutral mine drainage environment, Anjir Tangeh, northern Iran. International Journal of Coal Geology. 183: 120-135.
[23]. Ghasvareh, M. A., Safari, M. and Nikkhah, M. (2019). Haulage system selection for Parvadeh Coal Mine using multi-criteria decision-making methods. Mining Science: 26.
[24]. Taheri, A. and Sereshki, F. (2017). Estimate of the optimum horizontal well depth for gas drainage using a numerical method in the Tabas coal mine. Research Online: Coal Operators' Conference, University of Wollongong.
[25]. Alidokht, M., Yazdani, S., Hadavandi, E. and Chelgani, S.C. (2021). Modeling metallurgical responses of coal Tri-Flo separators by a novel BNN: A “Conscious-Lab” development. International Journal of Coal Science and Technology, 1-11.
[26]. Molayemat, H. and Mohammad Torab, F. (2017). Evaluation of coalbed methane potential in Parvadeh IV coal deposit in central Iran using a combination of MARS modeling and Kriging. Journal of Mining and Environment. 8 (2): 305-319.
[27]. Saffari, A., Ataei, M. and Sereshki, F. (2019). Evaluation of the spontaneous combustion of coal (SCC) using the R70 test method based on the correlation among intrinsic coal properties (Case study: Tabas Parvadeh coal mines, Iran). Rudarsko-geološko-naftni zbornik. 34 (3).
[28]. Rajabzadeh, M.A. Ghorbani, Z. and Keshavarzi, B. (2016). Chemistry, mineralogy, and distribution of selected trace elements in the Parvadeh coals, Tabas, Iran. Fuel, 174, 216-224.
[29]. Salehi, M.A., Moussavi-Harami, R., Mahboubi, A. and Rahimi, B. (2014). Palaeoenvironment and basin architecture of the Lower Jurassic Ab-Haji Formation, east-central Iran.
[30]. Nia, H.S. (1994). Geological characteristics of the Parvadeh region of the Tabas coal-bearing basin, Central Iran. The AAPG/Datapages Combined Publications Database, CSPG Special Publications.
[31]. Hashemi, S.M. (2010). Minerals of coal main seam in Parvade coalfield (Tabas–Iran). In The 1st International Applied Geological Congress, Department of Geology, Islamic Azad University–Mashad Branch, Iran (pp. 26-28).
[32]. Jozanikohan, G., Sahabi, F., Norouzi, G.H., Memarian, H. and Moshiri, B. (2016). Quantitative analysis of the clay minerals in the Shurijeh Reservoir Formation using combined X-ray analytical techniques. Russian Geology and Geophysics. 57 (7): 1048-1063.
[33]. Patnaik, P. (2004). Dean’s analytical chemistry handbook. McGraw-Hill Education.
[34]. Jozanikohan, G. (2017). On the development of a non-linear calibration relationship for the purpose of clay content estimation from the natural gamma ray log. International Journal of Geo-Engineering. 8 (1): 1-18.
[35]. Dai, S., Li, D., Chou, C.L., Zhao, L., Zhang, Y., Ren, D. and Sun, Y. (2008). Mineralogy and geochemistry of boehmite-rich coals: new insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. International Journal of Coal Geology. 74 (3-4): 185-202.
[36].Dai, S., Ren, D., Hou, X. and Shao, L. (2003). Geo-chemical and mineralogical anomalies of the late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin. International Journal of Coal Geology. 55 (2-4): 117-138.
[37]. Lide, D.R. (Ed.) (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.
[38]. Potin, S., Beck, P., Bonal, L., Schmitt, B., Garenne, A., Moynier, F. and Quirico, E. (2020). Mineralogy, chemistry, and composition of organic compounds in the fresh carbonaceous chondrite Mukundpura: CM1 or CM2? Meteoritics and Planetary Science. 55 (7): 1681-1696.
[39]. Wang, Z., Dai, S., Zou, J., French, D. and Graham, I.T. (2019). Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. International Journal of Coal Geology, 203, 1-14.
[40]. Leslie, S.A. and Mitchell, J.C. (2007). Removing gold coating from SEM samples. Palaeontology. 50 (6): 1459-1461.
[41]. Kim, K.H., Akase, Z., Suzuki, T. and Shindo, D. (2010). Charging effects on SEM/SIM contrast of metal/insulator system in various metallic coating conditions. Materials transactions, 1005171076-1005171076.